
ISO 9001:2008 TÜV SÜD

MKSP-I35

KONDENSATORY POLIPROPYLENOWE PRĄDU PRZEMIENNEGO I STAŁEGO DO URZĄDZEŃ ENERGOELEKTRONICZNYCH

MIFLEX S.A.

ZAKŁADY PODZESPOŁÓW RADIOWYCH 99-300 KUTNO, ul.GRUNWALDZKA 3

Telefon: +48 24 355 11 00 Fax: +48 24 355 11 88 e-mail: miflexsa@miflex.com.pl Index-I35(0H)(UV)(UU)...

H ±3

Data aktualizacji 22.05.2017

Strona 1/3

KONDENSATORY POLIPROPYLENOWE PRĄDU PRZEMIENNEGO I STAŁEGO DO URZADZEŃ ENERGOELEKTRONICZNYCH

DANE TECHNICZNE:

- -Pojemność znamionowa CN:
- Tolerancja pojemności:
- -Wymiary:
- Współczynniki tgδ (1kHz 1V):
- Rezystancja izolacji C x Ri:
- Temperatura pracy:
- -Dielektryk:
- tgδo
- -Materiał wypełniający:
- Wytrzymałość elektryczna:
 - -między końcówkami (UDC)
 - -między zwartymi końcówkami a obudową
- Obudowa:
- Bezpieczeństwo:
- Kondensatory spełniają normę:
- Przewidywany czas życia
- Pozycja pracy
- Maksymalny prąd udarowy Is

- wg tabeli str.3
- ±10 lub 5%,
- wg tabeli str.3
- < 0,0035
- >5000s
- -40°C do + 70°C
- -folia PP metalizowawana, samoregeneracyjna
- 0.0002
- masa na bazie oleju, bez PCB
- 1,5 x UNDC, 2s
- 3,0kV / 50Hz, 2s
- aluminiowa
- odłącznik nadciśnieniowy, samoregeneracja
- PN-EN61071
- 100000h
- dowolna
- maksymalnie 1000 impulsów dla całego czasu życia, czas trwania impulsu max 50ms
- Wyrób spełnia wymagania Dyrektywy RoHS (2011/65/UE).

ZASTOSOWANIE:

Kondensatory przeznaczone do stosowania w urządzeniach energoelektronicznych, w szczególności do komutacji i zabezpieczeń półprzewodników oraz filtrowania i gromadzenia energii. Mogą być stosowane w obwodach prądu stałego i przemiennego w zakresie podanych napięć i prądów.

Posiadają zdolność samoregeneracji, niską rezystancję wewnętrzną oraz indukcyjność pasożytniczą.

MIFLEX S.A.

ZAKŁADY PODZESPOŁÓW RADIOWYCH 99-300 KUTNO, ul.GRUNWALDZKA 3 Telefon: +48 24 355 11 00

Fax: +48 24 355 11 88 e-mail: miflexsa@miflex.com.pl Data aktualizacji 22.05.2017

Strona 2/3

ISO 9001:2008 TÜV SÜD

MKSP-I35

KONDENSATORY POLIPROPYLENOWE PRĄDU PRZEMIENNEGO I STAŁEGO DO URZĄDZEŃ ENERGOELEKTRONICZNYCH

Średnica gwintu wyprowa- dzenia	*\		αN	0				9 2														ı							M6
Wysokość	H [mm]		150	150		75		125		75	110	110	110	150	125		75	75	100	125	110	22	110	110	110	150	125		125
Rezystancja szeregowa	Â s [mΩ]		4,5	3,5	2,0 4,9 2,7 4,3		3,5 5,3		2,8 7,8	4,8	2	8'9			5,5		2,0 5,6		US	0,0	8,5	5,5	2'2	2,7	8,4	10,2	6,2		5,5
Maksymalny prąd udarowy	ls [kA]		3,0	3,75						2,6	2,8	2,9			3,6				3,5		2,8	2,6	2,8	2,9	2,6	3,3	3,6		3,6
Maksymalny prąd szczytowy	- ₹		200	750	650	820	1150	0011	920	800	050	930	200	1000	1200		650	850	1150	0011	920	800	050	006	200	1000	1200		1200
Maksymalny Maksymalny prąd prąd prąd prąd znamionowy szczytowy udarowy	lms [A]	ie 1	25	2.3	0,7	0			25						Wykonanie 2 i 4	16								Wykonanie 3	25				
Napiecie udarowe niepowtarzalne	sn Z	Wykonanie	1600	0001		1050	000		1500	1800			1700	1700			1350				1500	1800			1700		950	Wył	950
Napięcie znamionowe przemienne	₹Σ		680	000		760	004		280	089					350		460				280	089					350		350
Napięcie znamionowe stałe	O _{NDC}		1200	1200	006				1000		1200		1100		700		006				1000	1200			1100		700		700
Wartość skuteczna napięcia	U _{RMS} [V]		780	000	330				420	420							330				420	480					250		250
Pojemność znamionowa	C [hF]		20	25	30	40	U8	00	09	30	40	20	45	75	100		30	40	Võ	00	20	30	40	20	45	75	100		100

MIFLEX S.A.

ZAKŁADY PODZESPOŁÓW RADIOWYCH 99-300 KUTNO, ul.GRUNWALDZKA 3 Telefon: +48 24 355 11 00

Fax: +48 24 355 11 88 e-mail: miflexsa@miflex.com.pl Data aktualizacji 22.05.2017

Strona 3/3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Film Capacitors category:

Click to view products by Miflex manufacturer:

Other Similar products are found below:

F339X134748MIP2T0 F450KG153J250ALH0J 750-1018 FKP1-1500160010P15 FKP1R031007D00JYSD FKP1R031507E00JYSD FKP1U024707E00KYSD 82DC4100CK60J 82EC1100DQ50K PFR5101J100J11L16.5TA18 PME261JB5220KR19T0 A451GK223M040A A561ED221M450A QXJ2E474KTPT QXL2B333KTPT R49AN347000A1K EEC2G505HQA406 B25668A6676A375 B25673A4282E140 BFC233868148 BFC2370GC222 C3B2AD44400B20K C4ASWBU3220A3EK CB027C0473J-- CB177I0184J-- CB182K0184J-- 23PW210 950CQW5H-F SBDC3470AA10J SCD105K122A3-22 2N3155 A571EH331M450A FKP1-2202KV5P15 FKS3-680040010P10 QXL2E473KTPT 445450-1 B25669A3996J375 46KI322000M1M 46KR415050M1K 4BSNBX4100ZBFJ MKP383510063JKP2T0 MKPY2-.02230020P15 MKT 1813-368-015 4055292001 46KN410000N1K EEC2E106HQA405 EEC2G205HQA402 EEC2G805HQA415 P409CP224M250AH470 82EC2150DQ50K