Description

The ICS501 LOCO $^{\text {TM }}$ is the most cost effective way to generate a high-quality, high-frequency clock output from a lower frequency crystal or clock input. The name LOCO stands for Low Cost Oscillator, as it is designed to replace crystal oscillators in most electronic systems. Using Phase-Locked Loop (PLL) techniques, the device uses a standard fundamental mode, inexpensive crystal to produce output clocks up to 160 MHz .
Stored in the chip's ROM is the ability to generate nine different multiplication factors, allowing one chip to output many common frequencies (see table on page 2).
The device also has an output enable pin which tri-states the clock output when the OE pin is taken low.
This product is intended for clock generation. It has low output jitter (variation in the output period), but input to output skew and jitter are not defined or guaranteed. For applications which require defined input to output skew, use the ICS570B.

Features

- Packaged as 8-pin SOIC, MSOP, or die
- Available in RoHS 5 (green) or RoHS 6 (green and lead free) compliant packaging
- IDT's lowest cost PLL clock
- Zero ppm multiplication error
- Input crystal frequency of 5-27 MHz
- Input clock frequency of $2-50 \mathrm{MHz}$
- Output clock frequencies up to 160 MHz
- Extremely low jitter of 25 ps (one sigma)
- Compatible with all popular CPUs
- Duty cycle of $45 / 55$ up to 160 MHz
- Nine selectable frequencies
- Operating voltage of 3.3 V or 5.0 V
- Tri-state output for board level testing
- 25 mA drive capability at TTL levels
- Ideal for oscillator replacement
- Industrial temperature version available
- Advanced, low-power CMOS process

Block Diagram

Pin Assignment

Clock Output Table

S1	S0	CLK	Minimum Input
0	0	4 X input	per page 5
0	M	5.3125 X input	20 MHz
0	1	5 X input	per page 5
M	0	6.25 X input	4 MHz
M	M	2 X input	per page 5
M	1	3.125 X input	8 MHz
1	0	6 X input	per page 5
1	M	3 X input	per page 5
1	1	8 X input	per page 5

$0=$ connect directly to ground
1 = connect directly to VDD
M = leave unconnected (floating)

Common Output Frequency Examples (MHz)

Output	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{3 3 . 3 3}$	$\mathbf{3 7 . 5}$	$\mathbf{4 0}$	$\mathbf{4 8}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{6 2 . 5}$
Input	10	12	10	16	16.66	12	10	12	16.66	10	20
Selection (S1, S0)	M, M	M, M	$1, \mathrm{M}$	M, M	M, M	$\mathrm{M}, 1$	0,0	0,0	$1, \mathrm{M}$	1,0	$\mathrm{M}, 1$
Output	$\mathbf{6 4}$	$\mathbf{6 6 . 6 6}$	$\mathbf{7 2}$	$\mathbf{7 5}$	$\mathbf{8 0}$	$\mathbf{8 3 . 3 3}$	$\mathbf{9 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 6 . 2 5}$	$\mathbf{1 2 0}$	$\mathbf{1 2 5}$
Input	16	16.66	12	12	10	16.66	15	20	20	15	20
Selection (S1, S0)	0,0	0,0	1,0	$\mathrm{M}, 0$	1,1	0,1	1,0	0,1	$0, \mathrm{M}$	1,1	$\mathrm{M}, 0$

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	XI/ICLK	Input	Crystal connection or clock input.
2	VDD	Power	Connect to +3.3 V or +5 V .
3	GND	Power	Connect to ground.
4	S1	Tri-level linput	Select 1 for output clock. Connect to GND or VDD or float.
5	CLK	Output	Clock output per table above.
6	S0	Tri-level Input	Select 0 for output clock. Connect to GND or VDD or float.
7	OE	Input	Output enable. Tri-states CLK output when low. Internal pull-up.
8	X2	Output	Crystal connection. Leave unconnected for clock input.

External Components

Decoupling Capacitor

As with any high-performance mixed-signal IC, the ICS501 must be isolated from system power supply noise to perform optimally.

A decoupling capacitor of $0.01 \mu \mathrm{~F}$ must be connected between VDD and the GND. It must be connected close to the ICS501 to minimize lead inductance. No external power supply filtering is required for the ICS501.

Series Termination Resistor

A 33Ω terminating resistor can be used next to the CLK pin for trace lengths over one inch.

Crystal Load Capacitors

The total on-chip capacitance is approximately 12 pF . A parallel resonant, fundamental mode crystal should be used. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors, if needed, must be connected from each of the pins X 1 and X 2 to ground.

The value (in pF) of these crystal caps should equal ($\mathrm{C}_{\mathrm{L}}-12$ $\mathrm{pF})^{*}$. In this equation, $\mathrm{C}_{\mathrm{L}}=$ crystal load capacitance in pF . Example: For a crystal with a 16 pF load capacitance, each crystal capacitor would be $8 \mathrm{pF}[(16-12) \times 2=8]$.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS501. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to $\mathrm{VDD}+0.5 \mathrm{~V}$
Ambient Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (commercial)	0		+70	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature (industrial)	-40		85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (measured in respect to GND)	+3.0		+5.25	V

DC Electrical Characteristics

VDD $=5.0 \mathrm{~V} \pm 5 \%$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		3.0		5.25	V
Input High Voltage, ICLK only	V_{IH}	ICLK (pin 1)	(VDD/2)+1			V
Input Low Voltage, ICLK only	V_{IL}	ICLK (pin 1)			(VDD/2)-1	V
Input High Voltage	V_{IH}	OE (pin 7)	2.0			V
Input Low Voltage	V_{IL}	OE (pin 7)			0.8	V
Input High Voltage	V_{IH}	$\mathrm{S} 0, \mathrm{~S} 1$	$\mathrm{VDD-0.5}$			V
Input Low Voltage	V_{IL}	$\mathrm{S0}, \mathrm{~S} 1$			0.5	V
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-25 \mathrm{~mA}$	2.4			V
Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$			0.4	V
IDD Operating Supply Current, 20		No load, 100M		20		mA
Short Circuit Current		CLK output		± 70		mA
On-Chip Pull-up Resistor		Pin 7		270		$\mathrm{k} \Omega$
Input Capacitance, S1, S0, and OE		Pins 4, 6, 7		4		pF
Nominal Output Impedance				20		Ω

AC Electrical Characteristics

VDD $=5.0 \mathrm{~V} \pm 5 \%$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency, crystal input	$\mathrm{F}_{\text {IN }}$		5		27	MHz
Input Frequency, clock input	$\mathrm{F}_{\text {IN }}$		2		50	MHz
Output Frequency, VDD $=4.75$ to 5.25 V	$\mathrm{F}_{\text {OUT }}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	13		160	MHz
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13		140	MHz
Output Frequency, VDD $=3.0$ to 3.6 V	Fout	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	13		100	MHz
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13		90	MHz
Output Clock Rise Time	t_{OR}	0.8 to 2.0 V, Note 1		1		ns
Output Clock Fall Time	tof	2.0 to 8.0 V , Note 1		1		ns
Output Clock Duty Cycle	t_{OD}	$\begin{aligned} & \text { 1.5 V, up to } \\ & 160 \mathrm{MHz} \end{aligned}$	45	49-51	55	\%
PLL Bandwidth			10			kHz
Output Enable Time, OE high to output on				50		ns
Output Disable Time, OE low to tri-state				50		ns
Absolute Clock Period Jitter	t_{ja}	Deviation from mean		± 70		ps
One Sigma Clock Period Jitter	$\mathrm{t}_{\text {j }}$			25		ps

Note 1: Measured with 15 pF load.

Thermal Characteristics for 8SOIC

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{JA}	$1 \mathrm{~m} / \mathrm{s}$ air flow		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{JA}	$3 \mathrm{~m} / \mathrm{s}$ air flow		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}			40		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal of Case	Ψ_{JT}	Still air		20		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Thermal Characteristics for 8MSOP

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		95		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}			48		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Outline and Package Dimensions (8-pin MSOP, 3.00 mm Body)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		Inches*	
Symbol	Min	Max	Min	Max
A	--	1.10	--	0.043
A1	0	0.15	0	0.006
A2	0.79	0.97	0.031	0.038
b	0.22	0.38	0.008	0.015
C	0.08	0.23	0.003	0.009
D	3.00 BASIC		0.118 BASIC	
E	4.90 BASIC		0.193 BASIC	
E1	3.00 BASIC		0.118 BASIC	
e	0.65 Basic		0.0256 Basic	
L	0.40	0.80	0.016	0.032
α	0°	8°	0°	8°
aaa	-	0.10	-	0.004

*For reference only. Controlling dimensions in mm .

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body) Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		Inches *	
Symbol	Min	Max	Min	Max
A	1.35	1.75	.0532	.0688
A1	0.10	0.25	.0040	.0098
B	0.33	0.51	.013	.020
C	0.19	0.25	.0075	.0098
D	4.80	5.00	.1890	.1968
E	3.80	4.00	.1497	.1574
e	1.27	BASIC	0.050	BASIC
H	5.80	6.20	.2284	.2440
h	0.25	0.50	.010	.020
L	0.40	1.27	.016	.050
α	0°	8°	0°	8°

*For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
501 M	ICS501M	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
501 MT	ICS501M	Tape and Reel	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
501 MI	ICS501I	Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
501 MIT	ICS501I	Tape and Reel	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
501 MLF	501 MLF	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
501 MLFT	501 MLF	Tape and Reel	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
501 MILF	501 MILF	Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
501 MILFT	501 MILF	Tape and Reel	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
501 G	501 G	Tubes	8-pin MSOP	0 to $+70^{\circ} \mathrm{C}$
501 GT	501 G	Tape and Reel	8 -pin MSOP	0 to $+70^{\circ} \mathrm{C}$
501 GI	501 GI	Tubes	8 -pin MSOP	-40 to $+85^{\circ} \mathrm{C}$
501 GIT	501 GI	Tape and Reel	8 -pin MSOP	-40 to $+85^{\circ} \mathrm{C}$
501 GLF	501 GL	Tubes	8 -pin MSOP	0 to $+70^{\circ} \mathrm{C}$
501 GLFT	501 GL	Tape and Reel	8 -pin MSOP	0 to $+70^{\circ} \mathrm{C}$
501 GILF	1 GIL	Tubes	8 -pin MSOP	-40 to $+85^{\circ} \mathrm{C}$
501 GILFT	1 GIL	Tape and Reel	8 -pin MSOP	-40 to $+85^{\circ} \mathrm{C}$
$501-$ DWF	-	Die on uncut, probed wafers		0 to $+70^{\circ} \mathrm{C}$
$501-\mathrm{DPK}$	-	Tested die in waffle pack		0 to $+70^{\circ} \mathrm{C}$
$501 \mathrm{E}-\mathrm{DPK}$	-	Tested die in waffle pack		0 to $+70^{\circ} \mathrm{C}$

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
408-284-4522
www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - CODECs category:

Click to view products by IDT manufacturer:

Other Similar products are found below :

```
CS4205-KQZ ZL38015QCG1 MAX98090AEWJ+T WM9713CLGEFLV LE58QL061BVC MAX9867ETJ+G3U ADAU1777BCBZRL
WM8944BECS/R TDA7293V-E WM8998ECS/R WM8778SEDS/V CS42L73-CRZR WM8750CJLGEFL STA529Q SSM2603CPZ-REEL
TLV320AIC14IDBT TLV320AIC23BIPWRQ1 TLV320AIC23IPW TVP5151PBSR MAX98090BETL+ MAX98089ETN+
MAX98089ETNT TLV320AIC34IZASR TLV320AIC3262IYZFR SA612AD/01.112 ADAU1372BCPZ-RL MAX98090AETL+
MAX9880AETM WM8962ECSN/R TLV320DAC3203IRGER WM8904CGEFL/RV 6PAIC3106IRGZRQ1 CS42436-DMZ
TSCS25A3X1NDGXZAX BU94502CMUV-E2 TDA8932BT/N2.112 TDA8954J/N1.112 ICS512MLF 92HD73C1T5PRGIC1X
92HD73C1X5PRGXC1X SSM2167-1RMZ AD1836AASZ AD1836ACSZ AD1928YSTZ AD1937WBSTZ AD1938WBSTZ
AD1939WBSTZ AD73311ARSZ AD73311ARZ AD73311LARUZ
```

