ROHS
Available on commercial versions

Silicon 500 mW Zener Diodes

Qualified per MIL-PRF-19500/127

Qualified Levels:
JAN, JANTX, and JANTXV

DESCRIPTION

This popular series of 500 mW Zener voltage regulators provides a selection from 2.4 to 12 volts in a standard 5% tolerance as well as available tighter 2% and 1% tolerances. These axial-leaded, glass DO-35 Zeners feature an internal metallurgical bond and are military qualified to the JAN, JANTX, and JANTXV level. A RoHS compliant commercial grade only version is also available.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N746 through 1N759A and 1N4370 through 1N4372A series.
- Standard voltage tolerance is $\pm 5 \%$ with optional tighter tolerances of $\pm 2 \%$ or 1%.
- Internal metallurgical bond.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/127.
(See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Regulates voltage over a broad range of temperature and current.
- Regulated voltage range from 2.4 to 12 V .
- Flexible axial-lead mounting terminals.
- Non-sensitive to ESD per MIL-STD-750 method 1020.
- Minimal capacitance.
- Inherently radiation hard as described in Microsemi MicroNote 050.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Operating and Storage Temperature	$\mathrm{T}_{\text {J }}$ and $\mathrm{T}_{\text {STG }}$	-65 to +175	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Lead @ . 375 inch (9.53 mm) lead length from body	$\mathrm{R}_{\text {өJı }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-to-Ambient when mounted on PCB ${ }^{(1)}$	$\mathrm{R}_{\text {өJA }}$	300	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Average Rated Power Dissipation @ $\mathrm{T}_{\mathrm{L}}=+50^{\circ} \mathrm{C} .375$ inch $(9.53 \mathrm{~mm})$ from body ${ }^{(2)}$ @ $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ mounted on PCB	$\mathrm{P}_{\mathrm{m}(\mathrm{AV})}$	$\begin{aligned} & 0.5 \\ & 0.4 \\ & \hline \end{aligned}$	W
Forward Voltage @ $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	$V_{\text {F }}$	1.1	V
Solder Temperature @ 10 s	Tsp	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. See Figures 1 and 2 for derating curves. $T_{A}=+75^{\circ} \mathrm{C}$ on an FR4 PC board with 1 oz copper metalization.
2. The 0.5 W linearly derates starting at $\mathrm{T}_{\mathrm{L}}=50^{\circ} \mathrm{C}$ and goes to zero at $175^{\circ} \mathrm{C}$. For ambient T_{A} condition on a typical PC board, it linearly derates from 400 mW starting at $55^{\circ} \mathrm{C}$ and goes to zero at $175^{\circ} \mathrm{C}$ (see Figure 2).

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park, Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed axial-lead glass DO-35 (DO-204 AH) package.
- TERMINALS: Tin-lead or RoHS compliant annealed matte-tin plating (on commercial grade only). Solderable per MIL-STD-750, method 2026.
- MARKING: Part number.
- POLARITY: Cathode indicated by band. Diode to be operated with the banded end positive with respect to the opposite end for Zener regulation.
- TAPE \& REEL option: Standard per EIA-296 (add "TR" suffix to part number).
- WEIGHT: Approximately 0.2 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS	
Symbol	Definition
I_{R}	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.
$\mathrm{I}_{\mathrm{z},} \mathrm{I}_{\mathrm{ZT}}, \mathrm{I}_{\mathrm{ZK}}$	Regulator Current: The dc regulator current (I_{z}), at a specified test point (I_{zt}), near breakdown knee ($\mathrm{I}_{z k}$).
$\mathrm{I}_{\text {ZM }}$	Maximum Regulator (Zener) Current: The maximum rated dc current for the specified power rating.
IzSM	Maximum Zener Surge Current: The non-repetitive peak value of Zener surge current at a specified wave form.
V_{F}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.
V_{R}	Reverse Voltage: The reverse voltage dc value, no alternating component.
V_{z}	Zener Voltage: The Zener voltage the device will exhibit at a specified current (I_{z}) in its breakdown region.
$\mathrm{Z}_{\text {ZT }}$ or $\mathrm{Z}_{\text {ZK }}$	Dynamic Impedance: The small signal impedance of the diode when biased to operate in its breakdown region at a specified rms current modulation (typically 10% of I_{ZT} or I_{ZK}) and superimposed on I_{ZT} or I_{ZK} respectively.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$

JEDEC TYPE NO. (NOTE 1)	NOMINAL ZENER VOLTAGE V_{z} @ I_{zT} (NOTE 2)	$\begin{gathered} \hline \text { MAXIMUM } \\ \text { ZENER } \\ \text { IMPEDANCE } \\ Z_{\text {zT }} \text { @ I } \\ \text { (NOTE 3) } \\ \hline \end{gathered}$	MAXIMUM REVERSE voltage V_{R}	MAXIMUM REVERSE CURRENT $\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$		MAXIMUM ZENER CURRENT $I_{\text {zm }}$ (NOTE 4)	TEMPERATURE COEFFICIENT OF ZENER VOLTAGE α_{vz}
				@ $25^{\circ} \mathrm{C}$	$@+150{ }^{\circ} \mathrm{C}$		
	Volts	Ohms	Volts	$\mu \mathrm{A}$	$\mu \mathrm{A}$	mA	\% ${ }^{\circ} \mathrm{C}$
1N4370A-1	2.4	30	1.0	100	200	155	-0.085
1N4371A-1	2.7	30	1.0	60	150	140	-0.080
1N4372A-1	3.0	29	1.0	30	100	125	-0.075
1N746A-1	3.3	24	1.0	5	30	120	-0.070
1N747A-1	3.6	22	1.0	3	30	110	-0.065
1N748A-1	3.9	20	1.0	2	30	100	-0.060
1N749A-1	4.3	18	1.0	2	50	90	$-0.055 /+.020$
1N750A-1	4.7	15	1.5	5	50	85	$-0.043 /+.025$
1N751A-1	5.1	14	2.0	5	50	75	-0.030 / +. 030
1N752A-1	5.6	8	2.5	5	50	70	-0.028 / +. 036
1N753A-1	6.2	3	3.5	5	50	65	+0.045
1N754A-1	6.8	3	4.0	2	50	60	+0.050
1N755A-1	7.5	4	5.0	2	50	55	+0.058
1N756A-1	8.2	5	6.0	1	50	50	+0.062
1N757A-1	9.1	6	7.0	1	50	45	+0.068
1N758A-1	10.0	7	8.0	1	50	40	+0.076
1N759A-1	12.0	10	9.0	1	50	35	+0.080

NOTES:
1 The JEDEC type numbers shown (A suffix) have a $\pm 5 \%$ tolerance on nominal Zener voltage.
2. Voltage measurements to be performed 20 seconds after application of dc test current.
3. Zener impedance derived by superimposing on I_{ZT}, a 60 cps , rms current equal to $10 \% \mathrm{I}_{\mathrm{ZT}}(20 \mathrm{~mA})$. See MicroNote 202 for typical Zener Impedance variation with different operating currents.
4. Allowance has been made for the increase in V_{Z} due to Z_{Z} and for the increase in junction temperature as the unit approaches thermal equilibrium at the power dissipation of 400 mW .

Temperature-Power Derating Curve

Temperature-Power Derating Curve

Thermal Impedance
($T_{L}=25^{\circ} \mathrm{C}$ at 0.375 inch (9.53 mm) from body.)

	Dimensions				
Ltr	Min	Max	Min		Max
Notes					
	Minch				
BD	0.055	0.090	1.40	2.29	3
BL	0.120	0.200	3.05	5.08	4
LD	0.018	0.023	0.46	0.58	
LL	1.000	1.500	25.40	38.10	
LL $_{\boldsymbol{1}}$	-	0.050	-	1.27	5

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for information only.
3. Dimension BD shall be measured at the largest diameter.
4. The BL dimension shall include the entire body including slugs.
5. Dimension LU shall include the sections of the lead over which the diameter is uncontrolled. This uncontrolled area is defined as the zone between the edge of the diode body and extending 0.050 inch (1.27 mm) onto the leads.
6. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by Microsemi manufacturer:

Other Similar products are found below :
MMSZ5245BS-7-F RKZ13B2KG\#P1 RKZ5.6B2KJ\#R1 EDZTE6113B EDZTE6116B EDZTE616.8B 1N747A 1N966B NTE5116A NTE5121A NTE5139A NTE5147A NTE5152A NTE5155A NTE5156A NTE5164A JANS1N4974US SMAJ4764A-TP RKZ5.1BKU\#P6 3SMAJ5946B-TP 3SMAJ5950B-TP 3SMBJ5920B-TP 3SMBJ5925B-TP TDZTR24 441774C MMSZ4678-TP MMSZ5232BQ-13-F BZG04-36 BZG05C9V1-HE3-TR HZM30NBTR-E UDZTE-175.1B 3SMAJ5945B-TP 3SMAJ5947B-TP 3SMBJ5941B-TP DL4746A-TP RKZ18B2KK\#R1 RKZ10B2KL\#R1 RKZ6.8B2KL\#R1 RKZ8.2B2KL\#R1 DZ2S240M0L SMAZ27-TP SMBZ5920B-E3/52 ZMM3.0 RD16UM-T1-A RD39S-T1-A RD9.1S-T1-A RD10S-T1-A RD20S-T1-A RD2.2S-T1-A RD2.7UM-T1-A

