NTE5600 thru NTE5607 TRIAC, 4 Amp #### **Description:** The NTE5600 through NTE5607 TRIACs are designed primarily for full—wave AC control applications such as light dimmers, motor controls, heating controls and power supplies; or wherever full—wave silicon gate controlled solid—state devices are needed. TRIAC type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering. #### **Features:** - 2 Mode Gate Triggering - Blocking Voltages to 600V - All Diffused and Glass Passivated Junctions for Greater Parameters Uniformity and Stability ### **Absolute Maximum Ratings:** | Absolute Maximum Itatings. | | |--|----------------| | Repetitive Peak Off–State Voltage (T _C = +110°C, Note 1), V _{DRM} | | | NTE5600 | | | NTE5601 |)V | | NTE5602 |)V | | NTE5603 |)V | | NTE5604 |)V | | NTE5605 | VC | | NTE5606 | VC | | NTE5607 |)V | | RMS On–State Current ($T_C = +85^{\circ}C$), $I_{T(RMS)}$ | 1A | | Peak Surge Current (One Full Cycle, 60Hz , $T_J = -40^\circ$ to $+110^\circ\text{C}$), I_{TSM} |)A | | Circuit Fusing (t = 8.3ms), I^2t | 2 s | | Peak Gate Power, P _{GM} 10 | W | | Average Gate Power, P _{G(AV)} | W | | Peak Gate Voltage, V _{GM} | | | Operating Junction Temperature Range, T _J | ^o C | | Storage Temperature Range, T _{stq} 40° to +150° | °C | | Thermal Resistance, Junction–to–Case, R _{th.IC} | | | Thermal Resistance, Junction–to–Ambient, R _{thJA} | | | **·**· | | | Mounting Torque (6–32 Screw, Note 2) | ιD. | - Note 1. Ratings apply for open gate conditions. Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage. - Note 2. Torque rating applies with the use of a compression washer. Mounting torque in excess of 8 in. lb. does not appreciably lower case—to—sink thermal resistance. MT₂ and heatsink contact pad are common. # **Electrical Characteristics:** $(T_C = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---|--|--|-----|-----|-----|------| | Peak Forward or Reverse
Blocking Current | I _{DRM} ,
I _{RRM} | Rated V_{DRM} or V_{RRM} , Gate Open,
$T_J = +25$ °C | _ | _ | 10 | μΑ | | | | Rated V_{DRM} or V_{RRM} , Gate Open,
$T_J = +110^{\circ}C$ | _ | _ | 2 | mA | | On-State Voltage (Either Direction) | V_{TM} | I _{TM} = 6A Peak | _ | _ | 2 | V | | Peak Gate Trigger Voltage
MT ₂ (+), G (+); MT ₂ (-), G (-)
MT ₂ (+), G (-); MT ₂ (-), G (+) | V _{GT} | Main Terminal Voltage = 12V,
$R_L = 100\Omega$, $T_J = -40^{\circ}C$ | _ | 1.4 | 2.5 | V | | Peak Gate Trigger Voltage
MT ₂ (+), G (+); MT ₂ (-), G (-)
MT ₂ (+), G (-); MT ₂ (-), G (+) | V _{GT} | Main Terminal Voltage = Rated V_{DRM} , $R_L = 10kΩ$, $T_J = +110$ °C | 0.2 | - | - | V | | Holding Current (Either Direction) | lн | Main Terminal Voltage = 12V, Gate Open, $T_J = -40^{\circ}C$, Initiating Current = 1A | _ | - | 70 | mA | | | | Main Terminal Voltage = 12V, Gate Open, $T_J = +25$ °C | _ | _ | 30 | mA | | Turn-On Time (Either Direction) | t _{on} | I _{TM} = 14A, I _{GT} = 100mA | _ | 1.5 | _ | μs | | Blocking Voltage Application
Rate at Commutation | dv/dt | Rated V _{DRM} , Gate Open, T _J = +85°C | _ | 5 | _ | V/μs | | Gate Trigger Current
Quads I & III | I _{GT} | Main Terminal Voltage = 12V,
$R_L = 100\Omega$, $T_J = +25^{\circ}C$ | ı | ı | 30 | mA | | | | Main Terminal Voltage = 12V,
$R_L = 100\Omega$, $T_J = -40^{\circ}C$ | _ | _ | 60 | mA | # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Triacs category: Click to view products by NTE manufacturer: Other Similar products are found below: ACST435-8B LIC01-215B-TR T2035H-6G BT137-600-0Q Z0410NF 1AA2 098128C 620675E T1610-600G-TR Z0409MF0AA2 Z0109NA 2AL2 ACS108-8SA-AP ACS108-8SN-TR ACST1635T-8FP BCR16PM-12LG#B00 BCR20RM-30LA#B00 T1205-600G-TR CMA60MT1600NHR NTE5611 NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T-8I BTA312-600CT.127 T1210T-8G-TR T1210T-8G BT136S-600E,118 BT137B-800G,118 Z0109NN0,135 MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115 BT258-500R,127 BTA08-800BW3G BTA140-800,127 BTA30-600CW3G BTB08-800BW3G BTB16-600CW3G BTB16-600CW3G Z0405M-0AA2 Z0410MF0AA2 Z0109MN,135 T825T-6I