Power MOSFET

-20 V, -8.2 A, Single P-Channel, 2.0x2.0x0.55 mm UDFN Package

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 2.0x2.0x0.55 mm for Board Space Saving
- Ultra Low R_{DS(on)}
- ESD Diode-Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Optimized for Power Management Applications for Portable Products, such as Cell Phones, Media Tablets, PMP, DSC, GPS, and Others
- Battery Switch
- High Side Load Switch

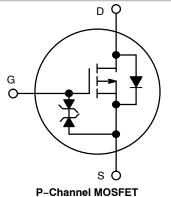
MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

Pa	Symbol	Value	Unit		
Drain-to-Source Vo	ltage		V _{DSS}	-20	V
Gate-to-Source Vol	tage		V _{GS}	±8.0	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	-8.2	А
Current (Note 1) Continuous Drain	State	T _A = 85°C		-5.9	
Current (Note 1)	t ≤ 5 s	T _A = 25°C		-12.2	
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	1.7	W
	t ≤ 5 s	$T_A = 25^{\circ}C$		3.8	
Continuous Drain	Steady	T _A = 25°C	I _D	-5.1	А
Current (Note 2)	State	T _A = 85°C		-3.7	
Power Dissipation (Note 2)	$T_A = 25^{\circ}C$	PD	0.7	W
Pulsed Drain Curre	nt	tp = 10 μs	I _{DM}	-25	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
ESD (HBM, JESD22–A114)			V _{ESD}	2000	V
Source Current (Body Diode) (Note 2)			۱ _S	-1.7	А
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

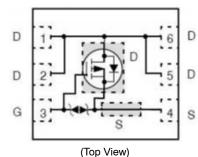
 Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.



ON Semiconductor®

www.onsemi.com

MOSFET


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX				
	18 mΩ @ −4.5 V					
-20 V	25 mΩ @ –2.5 V	-8.2 A				
201	50 mΩ @ –1.8 V	0.27				
	90 mΩ @ –1.5 V					

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Ambient – Steady State (Note 3)	R _{θJA}	72	
Junction-to-Ambient – t \leq 5 s (Note 3)	R _{θJA}	33	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	189	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = –250 μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA	∧, ref to 25°C		+10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -20 V	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±5.0 V			±5	μA

ON CHARACTERISTICS (Note 5)

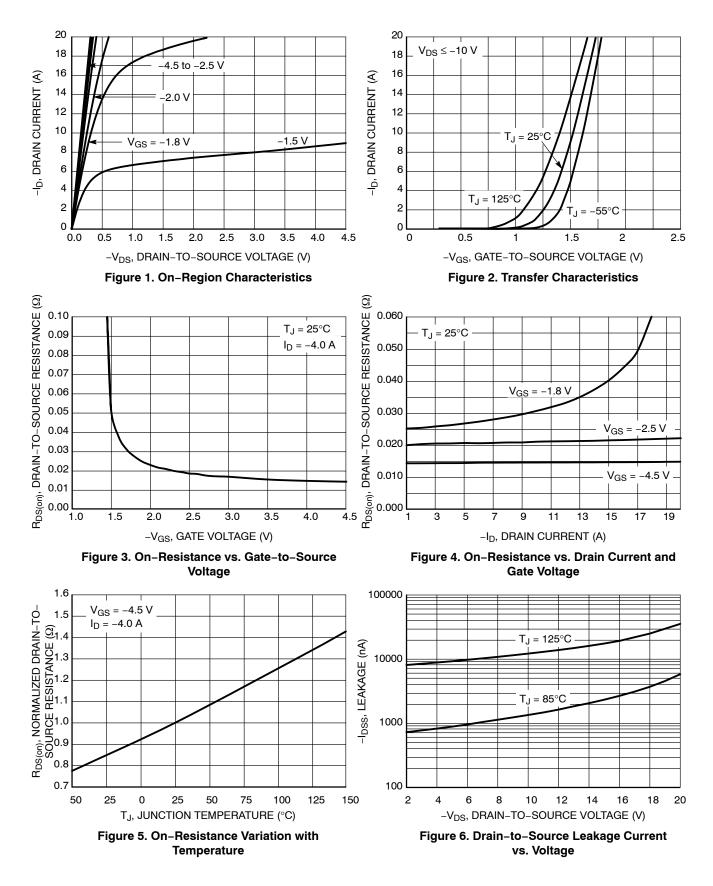
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J			3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5$ V, $I_D = -7.0$ A		14.6	18	mΩ
		V_{GS} = -2.5 V, I _D = -5.0 A		19	25	
		$V_{GS} = -1.8$ V, $I_D = -3.0$ A		25	50	
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -1.0 \text{ A}$		40	90	
Forward Transconductance	9 _{FS}	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}$		40		S

CHARGES, CAPACITANCES & GATE RESISTANCE

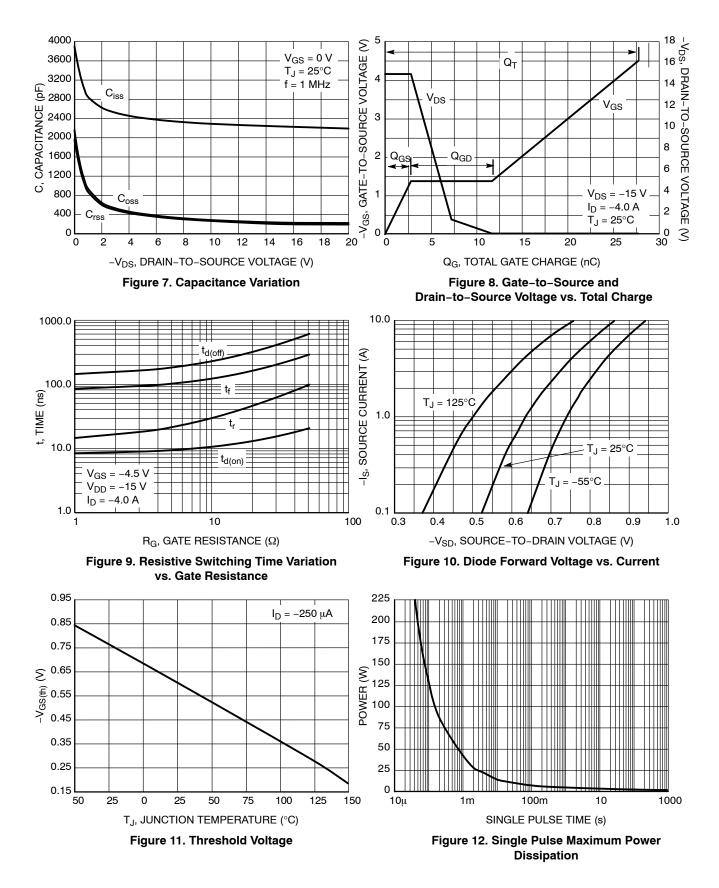
Input Capacitance	C _{ISS}		2240	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -15 V	240	
Reverse Transfer Capacitance	C _{RSS}		210	
Total Gate Charge	Q _{G(TOT)}		28	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V};$ $I_D = -4.0 \text{ A}$	1.0	
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = -4.0$ A	2.9	
Gate-to-Drain Charge	Q _{GD}		8.8	

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 6)

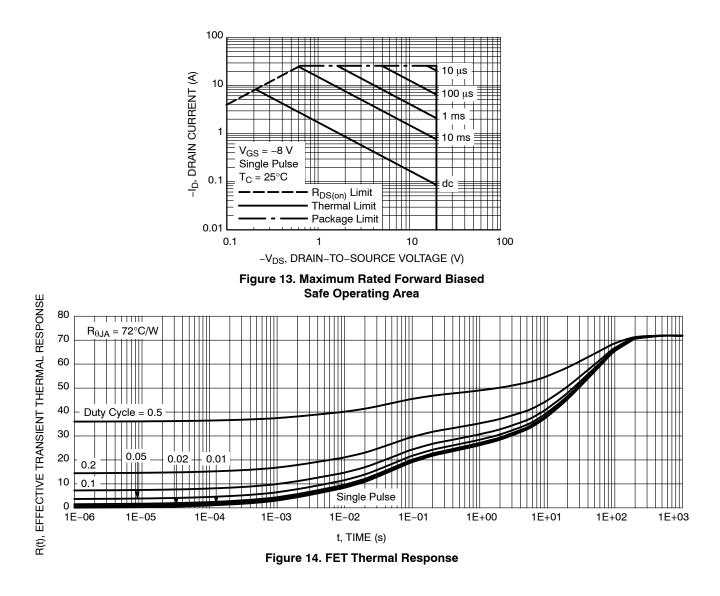
Turn-On Delay Time	t _{d(ON)}		8.6	ns
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD} = -15 V,	15	
Turn-Off Delay Time	t _{d(OFF)}	$\overline{I}_D = -4.0 \text{ A}, \ \overline{R}_G = 1 \Omega$	150	
Fall Time	t _f		88	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_{\rm J} = 25^{\circ}C$	0.63	1.0	V
		I _S = -1.0 A	T _J = 125°C	0.50		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/µs, I _S = −1.0 A		26.1		ns
Charge Time	t _a			10.2		
Discharge Time	t _b			15.9		
Reverse Recovery Charge	Q _{RR}			12		nC


5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

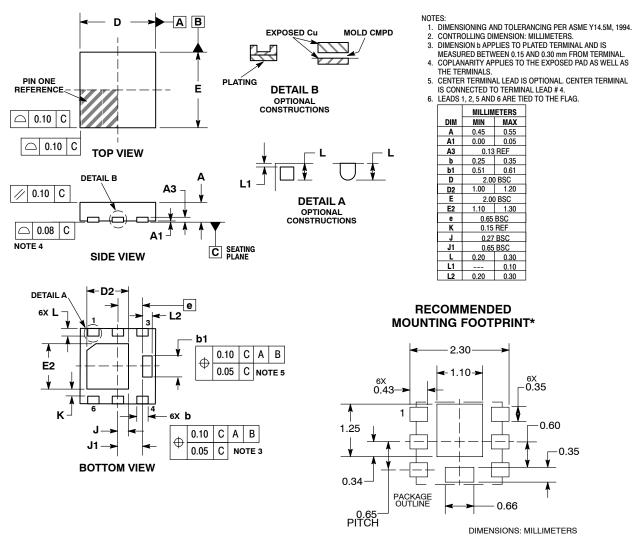
6. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

DEVICE ORDERING INFORMATION


Device	Package	Shipping [†]
NTLUS3A18PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3A18PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3A18PZTCG	UDFN6 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UDFN6 2x2, 0.65P CASE 517BG

ISSUE A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient of the patien

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3