

Features

- · Available in JAN, JANTX, JANTXV and JANS per MIL-PRF-19500/441
- TO-66 (TO-213AA) Package

Maximum Ratings

Ratings	Symbol	2N3740	2N3741	Units
Collector - Emitter Voltage	V _{CEO}	60 80		Vdc
Collector - Base Voltage	V _{CBO}	60	80	Vdc
Emitter - Base Voltage	V _{EBO}	7.0		Vdc
Base Current	Ι _Β	2.0		Adc
Collector Current	lС	4.0		Adc
Total Power Dissipation @ $T_A = +25 ^{\circ}\text{C}$ @ $T_C = +100 ^{\circ}\text{C}$	P _T	3 14		W
Operating & Storage Temperature Range	T _{op} , T _{stg}	-65 to +200		°C
Thermal Resistance, Junction-to-Case	R _{θJC}	7.0		°C/W

Electrical Characteristics ($T_C = 25$ °C unless otherwise noted)

OFF Characteristics		Symbol	Mimimum	Maximum	Units
Collector - Emitter Breakdown Voltage I _C = 100 mAdc	2N3740 2N3741	V _(BR) CEO	60 80		Vdc
Collector - Emitter Cutoff Current V _{CE} = 40 Vdc V _{CE} = 60 Vdc	2N3740 2N3741	I _{CEO}		10 10	μAdc
Collector - Emitter Cutoff Current $V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$ $V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N3740 2N3741	I _{CEX}		300 300	nAdc
Collector - Base Cutoff Current $V_{CB} = 60 \text{ Vdc}$ $V_{CB} = 80 \text{ Vdc}$	2N3740 2N3741	I _{CBO}		100 100	nAdc
Emitter - Base Cutoff Current V _{EB} = 7.0 Vdc		I _{EBO}		100	nAdc

Revision Date: 12/14/2011 New Product

Electrical Characteristics -con't


ON Characteristics (1)		Symbol	Minimum	Maximum	Unit
Forward Current Transfer Ratio I _C = 100 mAdc, V _{CE} = 1.0 Vdc			40		
$I_C = 250 \text{ mAdc}, V_{CF} = 1.0 \text{ Vdc}$		H _{FE}	30	120	
$I_C = 500 \text{ mAdc}, V_{CF} = 1.0 \text{ Vdc}$		'-	20		
$I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$			10		
$I_C = 4.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$			3		
Collector - Emitter Saturation Voltage $I_C = 250 \text{ mAdc}, I_B = 25 \text{ mAdc}$ $I_C = 1.0 \text{ Adc}, I_B = 1.25 \text{ mA}$		V _{CE(sat)}		0.4 0.6	Vdc
Base - Emitter Voltage I _C = 250 mAdc, V _{CE} = 1 Vdc		V _{BE(on)}		1.0	Vdc
DYNAMIC Characteristics					
Magnitude of Common Emitter Small-S Forward Current Transfer Ratio I _C = 100 mAdc, V _{CE} = 10.0 Vdc, f		h _{fe}	1	12	
Small-Signal Short-Circuit Forward Curl $I_C = 50$ mAdc, $V_{CE} = 10.0$ Vdc, $f = 10.0$		h _{fe}	25	250	
Output Capacitance $V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le$	f ≤ 1.0 MHz	C _{obo}		100	pF
SWITCHING Characteristics		•	•		
Tum-On Time $V_{CC} = 30 \text{ Vdc}, I_C = 1.0 \text{ Adc}, I_B = 0$).1Adc	t _{on}		400	μѕ
Tum-off Time $V_{CC} = 30 \text{ Vdc}, I_C = 1.0 \text{ Adc}, I_{B1} =$	-I _{B2} = 0.1Adc	t _{off}		1.0	μs
SAFE OPERATING AREA		•	•		
DC Tests: $T_C = +25^{\circ}$	C, 1 Cycle, t = 1.0 s				
Test 1: $V_{CE} = 6.25$	5Vdc , $I_{\text{C}} = 4.0 \text{Adc}$				
<u></u>	$/dc$, $I_C = 1.25 Adc$				
Test 3: $V_{CE} = 50$	/dc, $I_C = 150 \text{ mAdc}$	2N3740			
V _{CE} = 65 \	/dc, $I_C = 150 \text{ mAdc}$	2N3741			

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

2

Outline Drawing

NOTE: Dimensions in Inches [mm]

Aeroflex / Metelics, Inc.

975 Stewart Drive, Sunnyvale, CA 94085 Tel: (408) 737-8181 Fax: (408) 733-7645

Sales: 888-641-SEMI (7364)

Hi-Rel Components

9 Hampshire Street, Lawrence, MA 01840 Tel: (603) 641-3800 Fax: (978) 683-3264

www.aeroflex.com/metelics-hirelcomponents

54 Grenier Field Road, Londonderry, NH 03053 Tel: (603) 641-3800 Fax: (603)-641-3500

www.aeroflex.com/metelics

metelics-sales@aeroflex.com

Aeroflex / Metelics, Inc. reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Copyright 2011 Aeroflex / Metelics. All rights reserved.

ISO 9001: 2008 certified companies

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Aeroflex manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B