NPN LOW POW ER SILICON TRANSISTOR
 Qualified per MILPRF-19500/ 253

Devices

2N930

Qualified Level
JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	Value	Units
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	45	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	6.0	Vdc
Collector Current	I_{C}	30	mAdc
Total Power Dissipation	P_{T}	300	mW
	@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{(1)}$ @ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}^{(2)}$	T_{T}	

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	97	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1) Derate linearly $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2) Derate linearly $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$

TO- 18*
(TO-206AA)
*See appendix A for package outline

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$	$\mathrm{V}_{\text {(BR)CEO }}$	45		Vdc
$\begin{aligned} & \text { Collector-Base Cutoff Current } \\ & V_{C B}=60 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$ η Adc
$\begin{aligned} & \text { Emitter-Base Cutoff Current } \\ & \mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {EbO }}$		$\begin{gathered} 10 \\ 5.0 \end{gathered}$	$\mu \mathrm{Adc}$ η Adc
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=45 \mathrm{Vdc}$	$\mathrm{I}_{\text {CES }}$		2.0	η Adc
Collector-Base Cutoff Current $\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$	$\mathrm{I}_{\text {CEO }}$		2.0	η Adc

2N930, JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(3)}$				
$\begin{gathered} \text { Forward-Current Transfer Ratio } \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \end{gathered}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{array}{r} 300 \\ 600 \\ \hline \end{array}$	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{mAdc}$	$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$		1.0	Vdc
Base-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{mAdc}$	$\mathrm{V}_{\text {BE(sat) }}$	0.6	1.0	Vdc

DYNAMIC CHARACTERISTICS

Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=30 \mathrm{MHz}$	$\left\|\mathrm{h}_{\text {fe }}\right\|$	1.5	6.0	
Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$	h_{fe}	150	600	
Small-Signal Short-Circuit Input Impedance $\mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}$	$\mathrm{h}_{\text {ib }}$	25	32	Ω
Small-Signal Short-Circuit Output Admittance $\mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}$	$\mathrm{h}_{\text {ob }}$		1.0	$\mu \Omega$
$\begin{aligned} & \text { Output Capacitance } \\ & \mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\text {obo }}$		8.0	pF
```Noise Figure \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc} ; \mathrm{R}_{\mathrm{g}}=10 \mathrm{k} \Omega\) Test 1: \(\mathrm{f}=100 \mathrm{~Hz}\) Test 2: \(\mathrm{f}=1.0 \mathrm{kHz}\) Test 3: \(\mathrm{f}=10 \mathrm{kHz}\)```	NF		$\begin{aligned} & 5 \\ & 3 \\ & 3 \end{aligned}$	dB

(3) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G

