

ProLight PC8N-5L4E-C 5W Power LED Technical Datasheet Version: 1.5

ProLight Opto ® Hornet Series

Features

- High flux per LED
- Good color uniformity
- · Lead free reflow soldering
- Industry's first lighting-class LED
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Multi Color In One Package

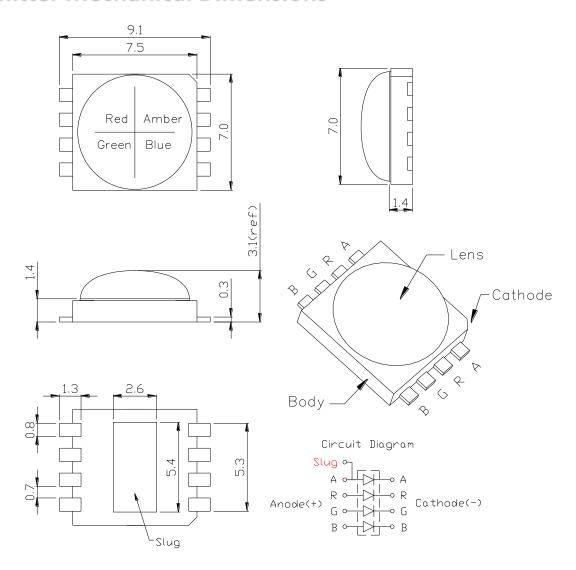
Main Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights/Stage/Studio lighting

Introduction

 ProLight Hornet Colorful series is a color changeable LED with maximum 4 color chips in one package. Compared to prior RGB in one package, Hornet-series is especial able to provide the "Amber" color independently. It's creating a small optical source for excellent optical control and efficient color mixing.
 ProLight Hornet Colorful series is much suitable for the application of colorchanging lighting, indoor cove lighting, and entertainment lighting.

> 2014/04 DS-0083


No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320,

Taiwan (R.O.C.)
Tel: +886-3-461-8618

Fax : +886-3-461-8677 www.prolightopto.com

Emitter Mechanical Dimensions

Notes:

- 1. The cathode side of the device is denoted by the chamfer on the part body.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.15mm.
- 6. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 350mA, T_j = 25°C

Radiation	Color	Part Number	Lumious F	lux Φ _v (lm)
Pattern	Coloi	Emitter	Minimum	Typical
	Amber		48	55
Lambertian	Red	PC8N-5L4E-C	45	52
Lambernam	Green	PCoN-3L4E-C	70	81
	Blue		16	19

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 350mA, T_j = 25°C

Color	Fo	orward Voltage V _F	Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)
Amber	1.9	2.3	2.8	
Red	1.9	2.3	2.8	2
Green	2.8	3.4	3.8	3
Blue	2.8	3.4	3.8	

 $[\]bullet$ ProLight maintains a tolerance of \pm 0.1V for Voltage measurements.

Optical Characteristics at 350mA, T₁ = 25°C

Radiation	Color	Domi	nant Wavelen	gth $\lambda_{ m D}$	Total included Angle (degrees)	Viewing Angle (degrees)
Pattern	Coloi	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
	Amber	587 nm	592 nm	595 nm	160	140
Lambertian	Red	620 nm	623 nm	630 nm	160	140
	Green	520 nm	525 nm	530 nm	160	140
	Blue	455 nm	460 nm	465 nm	160	140

[•] ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter Amber/Red/Green/Blue

DC Forward Current (mA) 350

Peak Pulsed Forward Current (mA) 500 (less than 1/10 duty cycle@1KHz)

Average Forward Current (mA) 350

ESD Sensitivity > ±500V

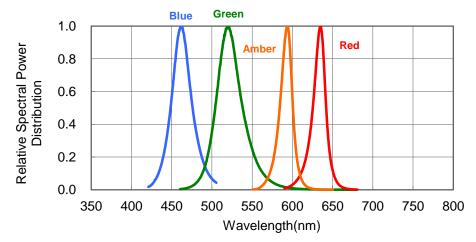
(HBM per MIL-STD-883E Method 3015.7)
LED Junction Temperature 120°C

Operating Board Temperature

-40°C - 95°C

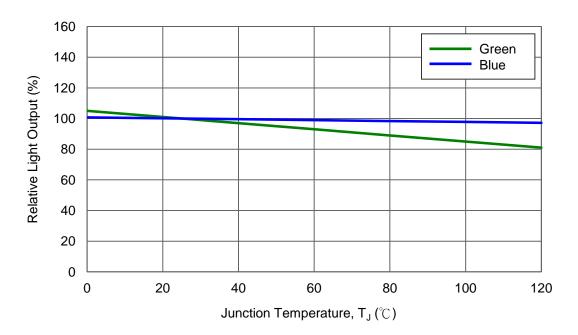
at Maximum DC Forward Current

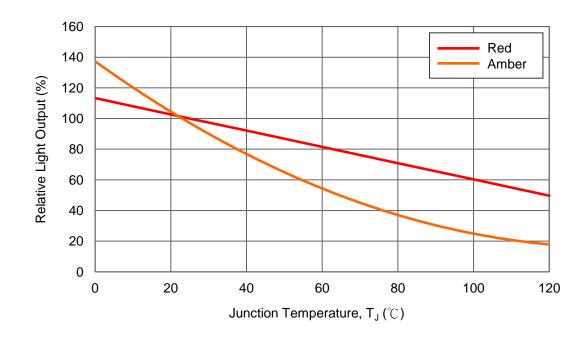
Storage Temperature -40°C - 120°C
Soldering Temperature JEDEC 020c 260°C


Allowable Reflow Cycles 3

Reverse Voltage Not designed to be driven in reverse bias

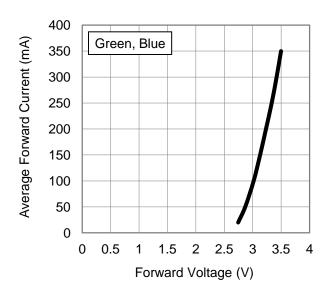
Color Spectrum, T_J = 25°C

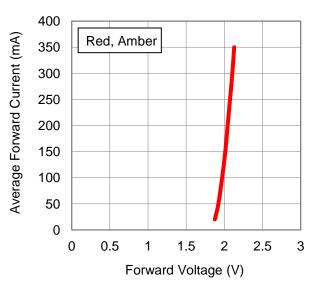

1. Blue . Green . Amber . Red

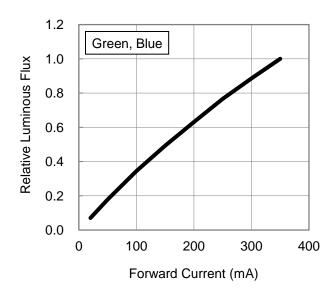


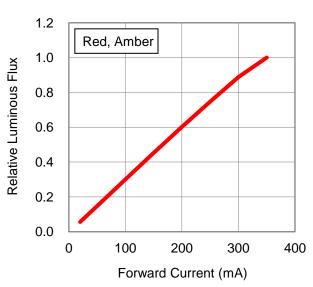
Light Output Characteristics

Relative Light Output vs. Junction Temperature at 350mA

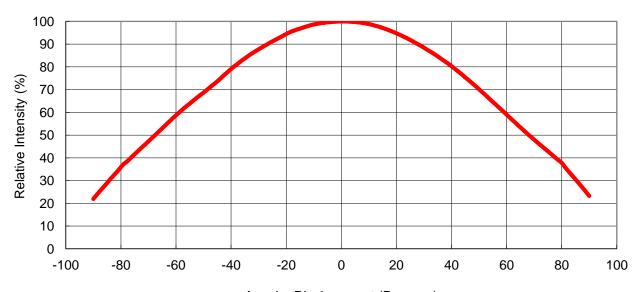





Forward Current Characteristics, T_J = 25°C


1. Forward Voltage vs. Forward Current

2. Forward Current vs. Normalized Relative Luminous Flux



Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Angular Displacement (Degrees)

Moisture Sensitivity Level – JEDEC Level 1

			Soak Requirements			
Level	Level Floor Life		Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

			Soak Requirements			
Level Floor Life		r Life	Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

Qualification Reliability Testing

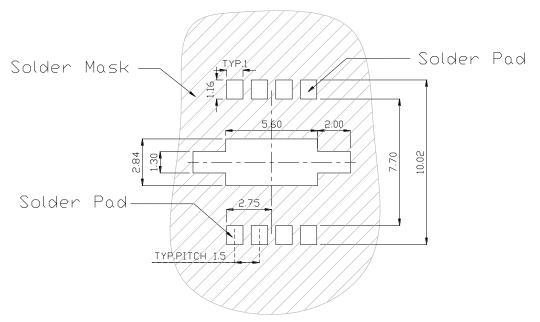
Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Non-operating Thermal Shock (TMSK)	-40°C to 120°C, 20 min. dwell, <20 sec. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

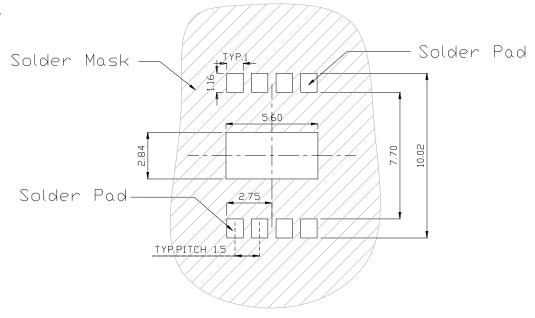
Notes:

- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
item	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7		
Reverse Current (I _R)	$V_R = 5V$		50 μA	

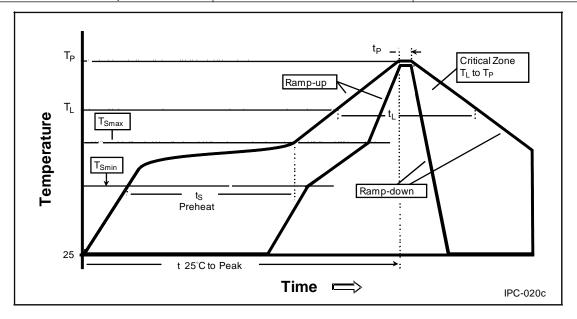
^{*} The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

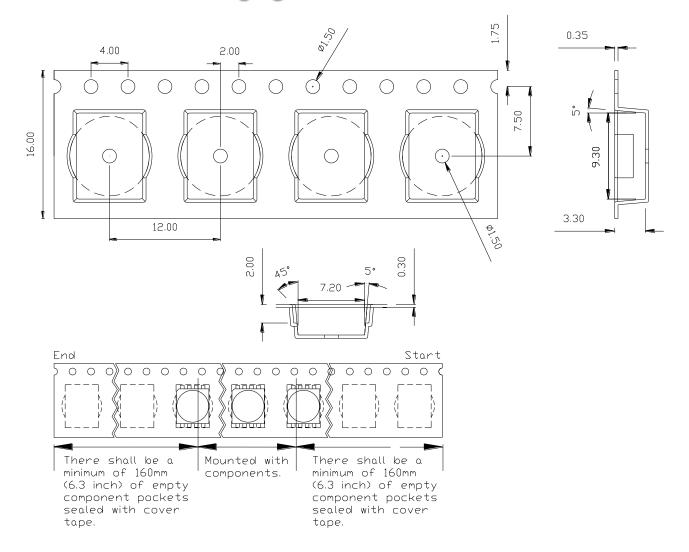
Standard Emitter

TYPE B.



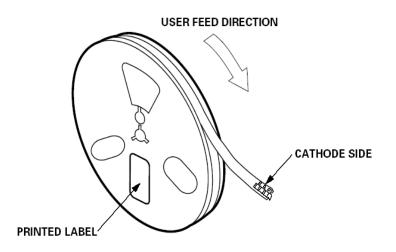
- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

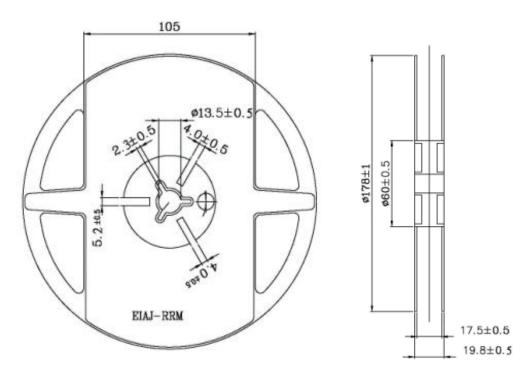
Reflow Soldering Condition


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-Up Rate	3°C / second max.	3°C / second max.	
$(T_{Smax} \text{ to } T_{P})$	5 C / Second max.		
Preheat			
– Temperature Min (T _{Smin})	100°C	150°C	
– Temperature Max (T _{Smax})	150°C	200°C	
– Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds	
Time maintained above:			
– Temperature (T _L)	183°C	217°C	
– Time (t _L)	60-150 seconds	60-150 seconds	
Peak/Classification Temperature (T _P)	240°C	260°C	
Time Within 5°C of Actual Peak	10-30 seconds	20.40 seconds	
Temperature (t _P)	10-20 Seconds	20-40 seconds	
Ramp-Down Rate	6°C/second max.	6°C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging




Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.15mm.

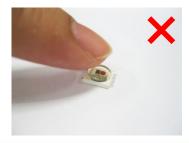
Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 250 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

Storage


Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30 °C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The LEDs are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the LEDs. Non-compliance with ESD protection measures
 may lead to damage or destruction of the LEDs.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Silicone Lens LEDs

Notes for handling of silicone lens LEDs

- Please do not use a force of over 3kgf impact or pressure on the silicone lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the silicone lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the silicone lens must be prevented.
- Please do not mold over the silicone lens with another resin. (epoxy, urethane, etc)

15

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

Tel: +886-3-461-8618 Fax: +886-3-461-8677 www.prolightopto.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Power LEDs - Multi-Colour category:

Click to view products by Prolight manufacturer:

Other Similar products are found below:

CLQ6A-TKW-S1L1R1H1QBB7935CC3 CLQ6A-TKW-S1L1R1H1QBB7935AA3 LL-HP60NUYC OSB4XME3E1E OSB5XZE1E1E

OSG5XDE5E1E OSR5XAE1E1E OSR5XAE3E1E OSR5XME1E1E PC8N-10LTS-C PC8N-5LTS-C PK2N-3LAE-SD PK2N-3LRE-SD

PM2B-3LGS-SD PQ2A-4FGE PQ2A-4FPE-YGFC PQ2A-4FWE-FC OSTCXBEAC1E PM2E-1LAE PM2E-1LAS PM2E-1LGS PM2E
1LRS PM2E-3LAE-SD PM2E-3LAS-SD PM2E-3LBS-SD PM2E-3LGS-SD PM2E-3LRE-SD PP6N-TFFE-D60 PP6N-FFFE-D60 PP6N
3LFE PP6N-1LFE-P PK2N-3LLE-L PBLA-10LTE PC8N-10LTE-VRGB OSB4XDE5E1E OSB4XME1E1E OSG5XME1E1E

OSR5XAT1C1E OSR5XAT3C1E OSR5XDE5E1E OSR5XME3E1E OSY5XAE3E1E OSY5XAT3C1E OSY5XME3E1E PC8N-10LTE-C

PC8N-5L4E-C PK2N-3LBE-SD PM2B-1LBE PM2B-1LPE-M PM2B-1LPS-M