Noritake itron # RoHS 2002/95/EC # VACUUM FLUORESCENT DISPLAY # **MODULE** # **SPECIFICATION** MODEL : <u>CU20045-UW4J</u> SPECIFICATION NO. : DS-1433-0000-06 DATE OF ISSUE: March 27, 2007 (00R) R E V I S I O N : May 7, 2007 (00) : August 2, 2007 (01) : June 23, 2008 (02) : December 3, 2008 (03) : July 1, 2009 (04) : September 17, 2009 (05) : November 10, 2010 (06) **PUBLISHED BY** NORITAKE ITRON CORP. / JAPAN http://www.noritake-itron.jp This specification is subject to change without prior notice. This product complies with RoHS Directive 2002/95/EC | Inc | lex | | | |-----|--------|--|----| | 1 | | General Description | 2 | | | 1.1 | Application | 2 | | | 1.2 | Construction | 2 | | | 1.3 | Scope | 2 | | | 1.4 | Weight | | | 2 | | Absolute Maximum Ratings | | | 3 | | Electrical Ratings | | | 4 | | Electrical Characteristics. | | | 5 | | Optical Characteristics | | | 6 | | Environmental Conditions | | | 7 | | Functional Descriptions | | | , | 7.1 | | | | | 7.1 | Instruction table | | | | | Display Clear | | | | 7.3 | Cursor Home | | | | 7.4 | Entry Mode Set | | | | 7.5 | Display ON/OFF | | | | 7.6 | Cursor/Display Shift | | | | 7.7 | Function Set | | | | | 7.1 Function Set Command | | | | | 7.2 Brightness Control | | | | 7.8 | Set CG RAM Address | | | | 7.9 | Set DD RAM Address | | | | 7.10 | Write Data | 10 | | | 7.11 | Read Data | 10 | | | 7.12 | Read Busy Flag/Address Counter | 10 | | 8 | | Other features | | | | 8.1 | CG RAM | 11 | | | 8.2 | Power-on reset | 12 | | | 8.3 | CPU interface | | | | 8. | 3.1 Select CPU | | | | 8. | 3.2 4-bit CPU interface | | | | 8.4 | Jumper | | | 9 | · · | Character Font | | | - | 9.1 | Katakana character font | | | | 9.2 | International character font | | | 10 | | Timing | | | 10 | 10.1 | CPU bus write timing (Parallel interface i80 type) | | | | 10.1 | CPU bus read timing (Parallel interface i80 type) | | | | 10.2 | CPU bus write timing (Parallel interface M68 type) | | | | | | | | | 10.4 | CPU bus read timing (Parallel interface M68 type) | | | | 10.5 | Write timing (Serial interface) | | | 11 | 10.6 | Read timing (Serial interface) | | | 11 | | Connector Pin assignment | | | | 11.1 | 14pin Connector (CN1) for parallel interface | | | | 11.2 | 6pin Connector (CN3) for serial interface | | | 12 | | Outline dimension | | | No | tice f | or the Cautious Handling VFD Modules | 22 | ## 1 General Description 1.1 Application : Readout of computer, micro-computer, communication terminal and automatic instruments. 1.2 Construction : Single board display module consists of 80 characters (4×20) VFD, a controller which includes character generator ROM, RAM and DC/DC converter. 1.3 Scope : Interface is 8/4 bit parallel and synchronous serial. +5V single power supply is required. 1.4 Weight : About 67 g ## 2 Absolute Maximum Ratings | Parameter | Symbol | Min. | Тур. | Max. | Unit | Condition | |----------------------|-------------|------|------|----------------------|----------|-----------| | Power Supply Voltage | V_{CC} | 0 | _ | 5.5 | V_{DC} | | | Logic Input Voltage | $V_{\rm I}$ | 0 | _ | V _{CC} +0.3 | V_{DC} | _ | ## 3 Electrical Ratings Measuring Conditions: TA (Ambient temperature) = 25 degree | Parameter | | Symbol | Min. | Тур. | Max. | Unit | Condition | | |----------------------------------|-----|-------------------------------|-------------|------|-------------|-------------|---------------------------|--| | Logic Input Voltage DB0-DB7, RS, | "H" | V_{IH1} | 2.0 | _ | V_{CC} | $V_{ m DC}$ | $V_{\rm CC} - V_{\rm SS}$ | | | R/W(WR), E(RD),
SCK, STB | "L" | $V_{{\rm I\!L}1}$ | V_{SS} | _ | 0.8 | V DC | =5.0V | | | Logic Input Voltage | "H" | V_{IH2} | $0.7V_{CC}$ | _ | V_{CC} | 17 | $V_{\rm CC}-V_{\rm SS}$ | | | SI/SO | "L" | $V_{\rm IL2}$ | V_{SS} | _ | $0.3V_{CC}$ | V_{DC} | = 5.0V | | | Logic Input Voltage | "H" | V_{IH3} | $0.8V_{CC}$ | _ | V_{CC} | 17 | $V_{\rm CC} - V_{\rm SS}$ | | | /RESET | "L" | V_{IL3} | V_{SS} | _ | $0.2V_{CC}$ | V_{DC} | = 5.0V | | | Power supply Volta | age | $V_{\text{CC-}}V_{\text{SS}}$ | 4.75 | 5.00 | 5.25 | V_{DC} | _ | | Note: "/RESET" must be driven by open-collector or open-drain because this module has an internal Reset-IC. Configuration of Reset-IC peripheral circuit. #### 4 Electrical Characteristics Measuring Conditions: TA (Ambient temperature) = 25 degree, $V_{CC} = 5.0V_{DC}$ | Parameter | | Symbol | Min. | Тур. | Max. | Unit | Condition | |----------------------|-----------|-----------|---------------|------|------|-------------|--------------------------| | | "H" | V_{OH} | V_{CC} -0.8 | 1 | ı | V_{DC} | $I_{OH} = -4 \text{ mA}$ | | Logio Output Voltago | "L" | V_{OL} | ı | 1 | 0.6 | V DC | $I_{OL} = 4 \text{ mA}$ | | Logic Output Voltage | "H" | V_{OH} | V_{CC} -0.5 | 1 | ı | 17 | $I_{OH} = -2 \text{ mA}$ | | | "L" | V_{OL} | _ | - | 0.5 | V_{DC} | $I_{OL} = 2 \text{ mA}$ | | Power Supply Curre | nt 1 | I_{CC1} | _ | 250 | 330 | mA | Display ON | | Power Supply Curre | I_{CC2} | ı | 7 | 12 | mA | Display OFF | | | Power Consumption | | _ | 1.25 | 1.65 | W | Display ON | | Note: I_{CC1} shows the current, when all dots are turned on. I_{CC} might be anticipated twice as usual at power on rush. ## 5 Optical Characteristics Number of characters : 80 (4 lines×20 chars) Matrix format : $5 \times 7 dot$ Display area : 70.8×20.9 mm (X×Y) Character size : 2.4×4.7 mm (X×Y) Character pitch : 3.6 mm Line pitch : 5.4 mm Dot size : 0.4×0.5 mm $(X\times Y)$ Dot pitch : 0.5×0.7 mm $(X\times Y)$ Luminance : 350 cd/m² (100fL) Min. Color of illumination : Green (Blue-green) #### 6 Environmental Conditions Operating temperature : -40 to +85 degree Storage temperature : -50 to +85 degree Operating humidity : 20 to 80 % RH (Non condensation) Vibration (Non operation): 10 to 55 to 10 Hz (Frequency) on operation). To to 33 to 10 Hz (Frequen 1.0 mm (Total Amplitude) 30 Min. (Duration) X, Y, Z each direction Shock (Non operation) : 539 m/s², 10ms # 7 Functional Descriptions # 7.1 Instruction table | Instruction | CODE | | | | | | | | Time | Description | | | |-------------------------------|------|-----|-----|-----|-----|-----|-----|-----|------|-------------|---------------|--| | mstruction | RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | Time | - | | Display
Clear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100μs
MAX. | Clears all display
and sets DD RAM
address 0 in the
address counter. | | Cursor
Home | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | 666ns | Sets DD RAM address 0 in the address counter. Also returns the display being shifted to the original position. DD RAM contents remain unchanged. | | Entry
Mode Set | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S | 666ns | Sets the cursor
direction and
specifies display
shift.
These operations are
performed during
writing/reading data. | | Display
ON/OFF
Control | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | * | В | 666ns | Sets all display
ON/OFF(D), cursor
blink of character
position (B). | | Cursor or
Display
Shift | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | * | * | 666ns | Shifts display or
cursor, keeping DD
RAM contents. | | Function
Set | 0 | 0 | 0 | 0 | 1 | IF | * | * | * | * | 666ns | Sets data length (IF). | | Brightness
Control | 1 | 0 | * | * | * | * | * | * | BR1 | BR0 | 666ns | Accepts 1 byte data of just after "Function set" as brightness control data. | | | | | | | CO | DE | | | | | | | |---|----|-----|---|--|-----|--------|--------|-----|-----|---|-------|---| | Instruction | RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | Time | Description | | CG RAM
Address
setting | 0 | 0 | 0 | 1 | | | A | CG | | | 666ns | Sets the CG RAM address. | | DD RAM
Address
setting | 0 | 0 | 1 | | ADD | | | | | | 666ns | Sets the DD RAM address. | | Busy flag
& Address
Reading | 0 | 1 | BF | | | | ACC | | | | 666ns | Reads busy flag
(BF) and address
counter. | | Data Writing
to CG or DD
RAM | 1 | 0 | | Data writing | | | | | | | 666ns | Writes data into
CG RAM or DD
RAM. | | Data Reading from CG or DD RAM | 1 | 1 | | | | Data r | eading | | | | 666ns | Reads data from
CG RAM or DD
RAM. | | I/D = 1 : I/D = 0 : S = 1 : S = 0 : S/C = 1 : S/C = 0 : R/L = 1 : R/L = 0 : BR1,BR0 = | | | Decr
Disp
Curs
Disp
Curs
Shift
Shift
00: | rement $IF = 1: 8$ -bits $IF = 0: 4$ -bits play shift enabled $IF = 0: 4$ -bits -b | | | | sy | | DD RAM: Display Data RAM CG RAM: Character Generator RAM ACG: CG RAM Address ADD: DD RAM Address ACC: Address Counter | | | Note: ^{*:} Don't care. ## 7.2 Display Clear | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01H | | RS-0 | | | | | | | | • | #### This instruction - 1. Fills all locations in the display data (DD) RAM with 20H (Blank character). - 2. Clears the contents of the address counter to 0H. - 3. Sets the display for zero character shift. - 4. Sets the address counter to point to the DD RAM. - 5. If the cursor is displayed, the cursor moves to the left most character in the top line (Line 1). - 6. Sets the address counter to increment on each access of DD RAM or CG RAM. #### 7.3 Cursor Home | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | 02H to 03H | | RS=0 | | | | | | | | | *: Don't care. #### This instruction - 1. Clears the contents of the address counter to 0H. - 2. Sets the address counter to point to the DD RAM. - 3. Sets the display for zero character shift. - 4. If the cursor is displayed, moves the left most character in the top line (Line 1). ## 7.4 Entry Mode Set | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | _ | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S | 04H to 07H | | RS=0 | | | | | | | | | The I/D bit selects the way in which the contents of the address counter are modified after every access to DD RAM or CG RAM. I/D=1: The address counter is increment. I/D=0: The address counter is decrement. The S bit enables display shifts instead of cursor shift, after each write or read to the DD RAM. S=1: Display shift enabled. S=0: Cursor shift enabled. The direction in which the display is shifted is opposite in sense to that of the cursor. For example if S=0 and I/D=1, the cursor would shift one character to the right after a CPU writes to DD RAM. However if S=1 and I/D=1, the display would shift one character to the left and the cursor would maintain its position on the panel. The cursor will already be shifted in the direction selected by I/D during reads of the DD RAM, irrespective of the value of S. Similarly reading and writing the CG RAM always shifts the cursor. Also both lines are shifted simultaneously. Cursor move and Display shift by the "Entry Mode Set" | I/D | S | After writing DD RAM data | After reading DD RAM data | |-----|---|--|--| | 0 | 0 | The cursor moves one character to the left. | The cursor moves one character to the left. | | 1 | 0 | The cursor moves one character to the right. | The cursor moves one character to the right. | | 0 | 1 | The display shifts one character to the right without cursor's move. | The cursor moves one character to the left. | | 1 | 1 | The display shifts one character to the left without cursor's move. | The cursor moves one character to the right. | ## 7.5 Display ON/OFF | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 0 | 0 | 0 | 1 | D | * | В | 08H to 0FH | | RS=0 | | | | | | | | • | This instruction controls various features of the display. The D bit turns the entire display on or off. D=1: Display on D=0: Display off Note: When display is turned off, power converter is also inhibited and reduces a power consumption. The B bit enables blinking of the character the cursor coincides with. B=1: Blinking on B=0: Blinking off Blinking is achieved by alternating between a normal and all on display of a character. The cursor blinks with a frequency of about 1Hz and DUTY 50%. ## 7.6 Cursor/Display Shift | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 0 | 0 | 1 | S/C | R/L | * | * | 10H to 1FH | | RS=0 | | | | | | | | • | *: Don't care. This instruction shifts the display and/or moves the cursor, on character to either left or right, without neither reading nor writing DD RAM. The S/C bit selects movement of the cursor or movement of both the cursor and the display. S/C=1: Shift both cursor and display. S/C=0: Shift cursor only. The R/L bit selects left ward or right ward movement of the display and/or cursor. R/L=1: Shift one character right. R/L=0: Shift one character left. Cursor move and Display shift by the "Cursor/Display Shift" | S/C | R/L | Cursor shift | Display shift | |-----|-----|---|----------------------------------| | 0 | 0 | Move one character to the left | No shift | | 0 | 1 | Move one character to the right | No shift | | 1 | 0 | Shift one character to left with display | Shift one character to the left | | 1 | 1 | Shift one character to right with display | Shift one character to the right | #### 7.7 Function Set This command sets width of data bus line by itself, and sets screen brightness by following one byte data. #### 7.7.1 Function Set Command | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 0 | 1 | IF | * | * | * | * | 20H to 3FH | | RS=0 | | | | | | | | | *: Don't care. This instruction initializes the system, and must be the first instruction executed after power-on. The IF bit selects between an 8-bit or a 4-bit bus width interface. IF=1: 8-bit CPU interface using DB7 to DB0 IF=0: 4-bit CPU interface using DB7 to DB4 When serial interface is selected, IF=1. #### 7.7.2 Brightness Control | | _ | _ | | _ | DB2 | | _ | | |------|---|---|---|---|-----|-----|-----|------------| | * | * | * | * | * | * | BR1 | BR0 | 00H to 03H | | RS=1 | | | | | | | | • | *: Don't care. One byte data (RS=1) which follows the "Function Set Command" is considered as brightness data. When a command (RS=0) is written after the "Function Set Command", the brightness control function is not initiated. Screen brightness is as follows. | BR1 | BR0 | Brightness | |-----|-----|-----------------| | 0 | 0 | 100 % (Default) | | 0 | 1 | 75 % | | 1 | 0 | 50 % | | 1 | 1 | 25 % | #### 7.8 Set CG RAM Address | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|-----|-----|-----|-----|-----|------------| | 0 | 1 | | | AC | CG | | | 40H to 7FH | | RS=0 | | | | | | | | • | #### This instruction - 1. Loads a new 6-bit address into the address counter. - 2. Sets the address counter to address CG RAM. Once "Set CG RAM Address" has been executed, the contents of the address counter will be automatically modified after every access of CG RAM, as determined by the "7.4 Entry Mode Set" instruction. The active width of the address counter, when it is addressing CG RAM, is 6-bits so the counter will wrap around to 00H from 3FH if more than 64 bytes of data are written to CG RAM. #### 7.9 Set DD RAM Address | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |------|-----|-----|-----|-----|-----|-----|-----| | 1 | | | | ADD | | | | | RS=0 | | | | | | | | 80H to 93H (1 line), A0H to B3H (2 line), C0H to D3H (3 line), E0H to F3H (4 line) #### This instruction - 1. Loads a new 7-bit address into the address counter. - 2. Sets the address counter to point to the DD RAM. Once the "Set DD RAM Address" instruction has been executed, the contents of the address counter will be automatically modified after each access of DD RAM, as selected by the "7.4 Entry Mode Set" instruction. Valid DD RAM Address (ADD) Range | | Number of Characters | Address | |----------|----------------------|------------| | 1st line | 20 | 00H to 13H | | 2nd line | 20 | 20H to 33H | | 3rd line | 20 | 40H to 53H | | 4th line | 20 | 60H to 73H | #### 7.10 Write Data | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | |------|-----|-----|------|-------|-----|-----|-----|------------| | | | - | DATA | WRITE | E | | | 00H to FFH | | RS=1 | | | | | | | | • | This instruction writes the data in DB7 to DB0 into either the CG RAM or the DD RAM. The RAM space (CG or DD), and the address in that space, that is accessed depends on whether a "Set CG RAM Address" or a "Set DD RAM Address" instruction was last executed, and on the parameters of that instruction. The contents of the address counter will be automatically modified after each "Write Data", as determined by the "7.4 Entry Mode Set". When data is written to the CG RAM, the DB7, DB6 and DB5 bits are not displayed as characters. #### 7.11 Read Data | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |------|-----|-----|------|------|-----|-----|-----| | | | | DATA | READ | | | | | RS=1 | | | | | | | | This instruction reads data from either CG RAM or DD RAM, depending on the type of "Set RAM Address" instructions last sent. The address in that space depends on the "Set RAM Address" instruction parameters. Immediately before executing "Read Data", "Set CG RAM Address" or "Set DD RAM Address" must be executed. The contents of the address counter are modified after each "Read Data". As determined by the "7.4 Entry Mode Set". Display shift is not executed, as described at of the "7.4 Entry Mode Set". #### 7.12 Read Busy Flag/Address Counter | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |------|-----|-----|-----|-----|-----|-----|-----| | BF | | | | ACC | | | | | RS=0 | • | | • | | • | | • | Reading the instruction register yields the current value of the address counter and the busy flag. This instruction must be executed prior to any other instructions. ACC, the address counter value, will point to a location in either CG RAM or DD RAM, depending on the type of "Set RAM Address" instruction last sent. In "Busy Flag Check" immediately after executing "Write Data" instruction, a valid address counter value can be ready as soon as BF goes low. The BF bit shows the status of the busy flag. BF=1: busy. BF=0: ready for next instruction, command receivable. ## 8 Other features ## 8.1 CG RAM The display module has CG RAM of 320 bit = $(5\times8 \text{ bit /char}) \times 8 \text{ chars which is for user definable character fonts.}$ The character fonts consist of 5×7 dots. The number 1-35 corresponds to character fonts. | ionis. | | | | | | | | | | | | | | | |-------------|----------------|-----|-----|-----|-----|-----|---------------------------------|-----|-----|-----|-----|-----|-----|-----| | Character | CG RAM address | | | | | | CG RAM data (character pattern) | | | | | | | | | code | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | | 0 | 0 | 0 | 0 | 0 | 0 | * | * | * | 1 | 2 | 3 | 4 | 5 | | | 0 | 0 | 0 | 0 | 0 | 1 | * | * | * | 6 | 7 | 8 | 9 | 10 | | 0011 | 0 | 0 | 0 | 0 | 1 | 0 | * | * | * | 11 | 12 | 13 | 14 | 15 | | 00H | 0 | 0 | 0 | 0 | 1 | 1 | * | * | * | 16 | 17 | 18 | 19 | 20 | | or
(08H) | 0 | 0 | 0 | 1 | 0 | 0 | * | * | * | 21 | 22 | 23 | 24 | 25 | | (00П) | 0 | 0 | 0 | 1 | 0 | 1 | * | * | * | 26 | 27 | 28 | 29 | 30 | | | 0 | 0 | 0 | 1 | 1 | 0 | * | * | * | 31 | 32 | 33 | 34 | 35 | | | 0 | 0 | 0 | 1 | 1 | 1 | * | * | * | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 1 | 0 | 0 | 0 | * | * | * | 1 | 2 | 3 | 4 | 5 | | | 0 | 0 | 1 | 0 | 0 | 1 | * | * | * | 6 | 7 | 8 | 9 | 10 | | 0111 | 0 | 0 | 1 | 0 | 1 | 0 | * | * | * | 11 | 12 | 13 | 14 | 15 | | 01H | 0 | 0 | 1 | 0 | 1 | 1 | * | * | * | 16 | 17 | 18 | 19 | 20 | | or
(09H) | 0 | 0 | 1 | 1 | 0 | 0 | * | * | * | 21 | 22 | 23 | 24 | 25 | | (09П) | 0 | 0 | 1 | 1 | 0 | 1 | * | * | * | 26 | 27 | 28 | 29 | 30 | | | 0 | 0 | 1 | 1 | 1 | 0 | * | * | * | 31 | 32 | 33 | 34 | 35 | | | 0 | 0 | 1 | 1 | 1 | 1 | * | * | * | 0 | 0 | 0 | 0 | 0 | REMARKS; "*": Don't care. "0": Turned off. "1": Turned on. ## Dot assignment | 1 | 2 | 3 | 4 | 5 | |----|----|----|----|----| | 6 | 7 | 8 | 9 | 10 | | 11 | 12 | 13 | 14 | 15 | | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | #### 8.2 Power-on reset Internal status of the module is initialized, when the controller detects the rising of power supply up. The statuses are as follows: ## 1. Display clear Fills the DD RAM with 20Hex (Space code). During executing of "Display Clear" (Max.100µs), the busy flag (BF) is "1". #### 2. Sets the address counter to 0H. Sets the address counter to point the DD RAM. #### 3. Display ON/OFF D=0: Display OFF B=0: Blink OFF ### 4. Entry Mode Set I/D=1: Increment (+1) S=0: No display shift #### 5. Function Set IF=1: 8-bit interface ## 6. Brightness Control BR0=BR1=0: 100% #### Remarks There is a possibility that reset doesn't work by slow start power supply. Therefore the initializing by commands needs. #### 8.3 CPU interface The display module is capable to select some interfaces such as parallel (i80 or M68, 8-bit or 4-bit) or serial. #### 8.3.1 Select CPU The module is able to select to parallel or serial data transfer by setting JP13 jumper, and to connect to bus of i80 type or M68 type CPU by setting JP9 jumper. Refer to "8.4 Jumper" for detail. #### 8.3.2 4-bit CPU interface If 4-bit interface is used, the 8-bit instruction is written nibble by nibble: the high-order nibble being written first, followed by low-order nibble. It is not necessary to check the busy flag between writing separate nibbles of individual instructions. Refer to "7.7.1 Function Set Command" for detail. #### 8.3.3 Serial data transfer Serial data can be inputted when the Strobe goes to "0". Serial data consists of 2 bytes. The first byte (Start Byte) consists of a total of 8 bits: the Synchronous bits (bit1-bit5), R/W (bit6), RS (bit7) and bit8. The register is selected (Instruction Register or Data Register) by the RS (bit7). RS is "0" in Instruction Register, and it is "1" in Data Register. The data write or read is selected by R/W (bit6). R/W is "0" when the data is written, and it is "1" when the data is read. | | 0 | 1 | |------------------|----------------------|---------------| | R/\overline{W} | Data Write | Data Read | | RS | Instruction Register | Data Register | In "Data Write", the second byte (8-bit Instruction / Data Byte) is written after the Start Byte. On the other hand, the second byte is the read data in "Data Read", such as the Busy Flag + Address Counter or the data written in the DD RAM or CG RAM. The read data is outputted at the falling edge of the shift clock. ### <Data Read> #### 8.4 Jumper Some jumpers are prepared on the PCB board, to set operating mode of the display module. A soldering iron is required to short jumper. No.2 and No.3 of jumper 'JP2' is used to reset of module. You can reset the module by shorting No.2 and No.3 of the jumper 'JP2' for some interval which is longer than 10µs. The following figure shows the location of each jumper. #### Location JP 6 JP 7 JP 8 JP 9 JP 10 JP 11 JP 12 JP 13 The following table shows the function of No.1 and No.2 of JP2, JP9, JP11 and JP13. Default setting is no external reset inputs, M68 CPU bus parallel interface and Katakana font. External reset input signal is active when it is low. Table of No 1 and No 2 of JP2 setting | No.1 and No.2 of JP2 | No.3 of CN1 | |----------------------|-----------------| | | and No.6 of CN3 | | open | NC | | short | RESET | NC: no connection Table of JP13 setting | | , 5 000 | |-------|--------------------| | JP13 | Interface | | open | Parallel interface | | short | Serial interface | Table of JP9 setting | JP9 | CPU bus mode | Control signals | |-------|--------------|---| | open | M68 type | E,R/W | | short | i80 type | $\overline{\mathrm{WR}},\overline{\mathrm{RD}}$ | Table of JP11 setting | Tuole of the | 1 Setting | |--------------|--------------------| | JP11 | Character font | | open | Katakana font | | short | International font | JP1, JP6 to JP8, JP10 and JP12 are factory use only. # 9 Character Font Note: Font number 00-07Hex (08-0FHex) is User Definable Character Fonts. ## 9.1 Katakana character font | | D 7
D 6
D 5
D 4 | 0
0
0
0 | 0
0
0
1 | 0
0
1
0 | 0
0
1
1 | 0
1
0
0 | 0
1
0
1 | 0
1
1
0 | 0
1
1
1 | 1
0
0
0 | 1
0
0
1 | 1
0
1
0 | 1
0
1
1 | 1
1
0
0 | 1
1
0
1 | 1
1
1
0 | 1
1
1 | |------|--------------------------|------------------|------------------|--|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---|------------------|-------------------|---------------| | 0100 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | | 0000 | 0 | | | | | | | • | ļ:::· | | | | | -::: | ::: <u>.</u> | | :::: : | | 0001 | 1 | | | | 1. | | | .::: | -::: | :::; | | ::: | | ::::::::::::::::::::::::::::::::::::::: | :; | | :: | | 0010 | 2 | | | 11 | | | | | ļ | ::: | | I" | | ::: | .:: ['] | <u> </u> | | | 0011 | 3 | | | | | | ::::; | : | ::::. | | | | **; | ::::: | 1 | :::. | ::-:: | | 0100 | 4 | | | | :: | | | | † | :::: | | ٠. | | ŀ. | †: | ļ·i | :::: | | 0101 | 5 | | | :: .:
::::::::::::::::::::::::::::::::: | :::: | i | 11 | :::: | 11 | | | :: | | : | | :::: | | | 0110 | 6 | | | | <u> </u> | ļ | 1.,1 | ÷. | i.,: | | -# | | 17 | | | ļ:; | :: | | 0111 | 7 | | | := | | | | - | 1,1,1 | :::: | :: | .::: | | ;;;; <u>;</u> | | -::: | :::: | | 1000 | 8 | | | i. | | - | × | - | > | | : | ·i | | :::: | Ņ | .j | ;:: <u>;</u> | | 1001 | 9 | | <u>.</u> | | | II. | 4 | 1. | 1:::! | 40 | 1, | **:; | - | ٠ | 11. | : | ·! | | 1010 | A | | : | :‡: | :: | " | | | | ii | | ::::: | | 1 | ļ· | : | ::::: | | 1011 | В | | ļ::- | | :: | | I. | l:: | - | | :: | ;:# | # | <u> </u> | | ∷ | ;::; | | 1100 | С | | .:i | := | ·:. | İ | | 1. | | ٠ | <u>:</u> | †:: | ::: | ·:.;i | "] | | :::: | | 1101 | D | | - | | ::::: | | | | : | ;;::: | | | ; | ٠٠., | : | <u>‡</u> | : | | 1110 | Е | | -# | :: | | | ···· | 1": | | ::,: | : #: | :::! | | | | i ^{::} : | | | 1111 | F | | .::. | | : | | | :::: | ÷ | ::::: | | ::: | `! | ·:: | ::: | :::: | | Font: G57131.cg # 9.2 International character font | | D7
D6 | 0 0 | 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 1 | 0 1 | 1 0 | 1 0 | 1 0 | 1 0 | 1 1 | 1 1 | 1 1 | 1 1 | |-----------------|----------|--|--|--|---|--|------|--|------|--|--|--|---|-------------|----------|------|------| | | D5
D4 | $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ | $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$ | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ | 1 1 | $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ | 0 | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ | 1 1 | $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ | $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 1
1 | 0 | 0 | 1 0 | 1 1 | | D D D D 3 2 1 0 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | 0 0 0 0 | 0 | | | | | | | ٠ | :::- | | | ::. | ::: | | ::: | | | | 0 0 0 1 | 1 | | | i | 1 | | | : | -::: | | | ::. | ::: | : | :::: | | :::: | | 0 0 1 0 | 2 | | | :: | :::: | | | <u></u> | :··· | | | | | | ### I | : | | | 0 0 1 1 | 3 | | | | : | i: | :: | : | ·::. | .: . | | .:: | :::: | | :::: | ::: | ::: | | 0 1 0 0 | 4 | | | | :: . | | | ::: | : | | | | ::::::::::::::::::::::::::::::::::::::: | :: | | | | | 0 1 0 1 | 5 | | | :: .: | :::: | ::::: | ii | : | 11 | | | | | 11 | | | | | 0 1 1 0 | 6 | | | | :::: | : | 1 | | ŧ.,: | ::::: | | | :::: | :::: | ### T | :::: | ::: | | 0 1 1 1 | 7 | | | : | :: | | | :::: | 1 | | | :::: | ::::: | ::::: | <u></u> | :::: | :::: | | 1 0 0 0 | 8 | | | | :::: | | ::: | i | ::: | ::::: | | :::: | :::: | :::: | :::: | :::: | | | 1 0 0 1 | 9 | | | | :::: | | : ;: | : | •• | | | :::. | :::. | : | :::. | :::. | :::. | | 1 0 1 0 | A | | | :4: | :: | : | :::: | : | | ::::: | | # | | <u>;</u> ∷. | ##:· | :: | ::: | | 1 0 1 1 | В | | | | :: | l:: | | . :: | | | ::: | | | | | : | | | 1 1 0 0 | С | | | :: | | i | ٠ | 1. | i | | | | :::: | •• | • .: | | | | 1 1 0 1 | D | | | | | | | ::: | : | ::: | | | | : · : | : | | | | 1 1 1 0 | Е | | | :: | | | | !··: | | | :: : | | ::::: | | :::i | ::: | :::. | | 1 1 1 1 | F | | | | • | | | :::: | | | 1.,.1 | | | ::::: | | :::: | | Font: G57206.cg # 10 Timing Input signal rise time and fall time < 15 ns. # 10.1 CPU bus write timing (Parallel interface i80 type) # 10.2 CPU bus read timing (Parallel interface i80 type) # 10.3 CPU bus write timing (Parallel interface M68 type) # 10.4 CPU bus read timing (Parallel interface M68 type) # 10.5 Write timing (Serial interface) # 10.6 Read timing (Serial interface) ## 11 Connector Pin assignment The through holes are prepared for power supply and data communications. A connector or pins may be able to solder to the holes. Diameter of holes is 1.0mm. ## 11.1 14pin Connector (CN1) for parallel interface | Pin No. | Signal name | Function | Direction | |---------|----------------------|----------------------|--------------| | 1 | GND | Ground | Input | | 2 | VCC | Power supply | Input | | 3 | NC * | Non connection | - | | 4 | RS | Switch signal | Input | | 5 | $R/\overline{W(WR)}$ | Data transfer select | Input | | | | (Write enable) | | | 6 | $E(R\overline{D})$ | Write enable | Input | | | | (Read enable) | | | 7 | DB0 | Data input/output | Input/Output | | 8 | DB1 | Data input/output | Input/Output | | 9 | DB2 | Data input/output | Input/Output | | 10 | DB3 | Data input/output | Input/Output | | 11 | DB4 | Data input/output | Input/Output | | 12 | DB5 | Data input/output | Input/Output | | 13 | DB6 | Data input/output | Input/Output | | 14 | DB7 | Data input/output | Input/Output | ^{*:} The third through hole is for reset input when No.1 and No.2 of JP2 are short. ## 11.2 6pin Connector (CN3) for serial interface | Pin No. | Signal name | Function | Direction | |---------|-------------|-------------------|--------------| | 1 | VCC | Power supply | Input | | 2 | SI/SO | Data input/output | Input/Output | | 3 | GND | Ground | Input | | 4 | STB | Strobe | Input | | 5 | SCK | Display clock | Input | | 6 | NC * | Non connection | - | ^{*:} The 6th through hole is for reset input when No.1 and No.2 of JP2 are short. ^{():} At the i80 type. ## 12 Outline dimension #### **Notice for the Cautious Handling VFD Modules** #### Handling and Usage Precautions: Please carefully follow the appropriate product application notes for proper usage, safety handling, and operation standards for maximum performance. #### [VFD tubes are made of glass] - · Because the edges of the VFD glass-envelop are not smooth, it is necessary to handle carefully to avoid injuries to your hands. - Please avoid breaking the VFD glass-envelop to prevent injury from sharp glass particles. - The tip of the exhaust pipe is fragile so avoid shock from impact. - It is recommended to allow sufficient open space surrounding the exhaust pipe to avoid possible damage. - Please design the PCB for the VFD-module within 0.3 mm warping tolerance to avoid any forces that may damage the display due to PCB distortion causing a breakdown of the electrical circuit leading to VFD failure. #### [High voltage] - Avoid touching conductive electrical parts, because the VFD-module uses high voltage exceeding 30~100 volts. - Even when electric power is turned off, it may take more than one minute for the electrical current to discharge. #### [Cable connection] - Do not unplug the power and/or data cables of VFD-modules during operating condition because unrecoverable damage may result. - Sending input signals to the VFD-module during a power off condition sometimes causes I/O port damage. - It is recommended to use a 30 cm or shorter signal cable to prevent functional failures. #### [Electrostatic charge] VFD-modules need electrostatic free packaging and protection from electrostatic charges during handling and usage. [Structure] - During operation, VFD and VFD-modules generate heat. Please consider sufficient heat radiation dissipation using heat sink solutions. - We prefer to use UL grade materials or components in conjunction with VFD-modules. - Wrap and twist motion causes stress and may break VFDs & VFD modules. Please adhere to allowances within 0.3mm at the point of attachment. #### [Power] - Apply regulated power to the VFD-module within specified voltages to protect from failures. - Because some VFD-modules may consume in rush current equal to twice the typical current at power-on timing, we recommend using a sufficient power capability and quick starting of the power regulator. - VFD-module needs a specified voltage at the point of connection. Please use an adequate power cable to avoid a decrease in voltage. We also recommend inserting a power fuse for extra protection. #### [Operating consideration] - Illuminating phosphor will decrease in brightness during extended operation. If a fixed pattern illuminates for an extended period (several hours), the phosphor efficiency will decrease compared to the non operating phosphor causing a non uniform brightness among pixels. Please consider programming the display patterns to use all phosphor segments evenly. Scrolling may be a consideration for a period of time to refresh the phosphor condition and improve even illumination to the pixels. - We recommend using a signal cable 30cm or less to avoid some possible disturbances to the signal. #### [Storage and operating environment] Please use VFD-modules under the recommended specified environmental conditions. Salty, sulfur and dusty environments may damage the VFD-module even during storage. #### [Discard] Some VFDs contain a small amount of cadmium in the phosphor and lead in the solder. When discarding VFDs or VFD-modules, please adhere to governmental related laws or regulations. (Note: RoHS-compliant products do not contain cadmium) #### [Others] - Although the VFD-module is designed to be protected from electrical noise, please plan your circuitry to exclude as much noise as possible. - Do not reconstruct or repair the VFD-module without our authorization. We cannot assure the quality or reliability of unauthorized reconstructed VFD-modules. #### Notice - We do not authorize the use of any patents that may be inherent in these specifications. - Neither whole nor partial copying of this specification is permitted without our approval. If necessary, please ask for assistance from our sales consultant. - This product is not designed for military, aerospace, medical or other life-critical applications. If you choose to use this product for these applications, please ask us for prior consultation or we cannot take responsibility for problems that may occur. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for LED Displays & Accessories category: Click to view products by Noritake manufacturer: Other Similar products are found below: LTC-2721WC LTC-4624JD LTC-4627G LTC-4627WC LTD-5021AWC LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 F416SYGWA/S530-E3 EADST040RA2 1668 HT-F196NB-5323 IPD2131-27 SA03-12EWA LDD-E2802RD LDD-E306MI LDQ-N514RI LDS-A3506RD LDS-A3926RI LDT-M516RI SC03-12HDB SI-B9T151550WW SI-B9V171550WW SLC-3PF-WL 1624 LTC-2621JD LTC-2623WC LTC-4624P LTC-4627JD LTD-2601E LTD-322G LTD-482PC LTP-1457AKR LTP-3784G-01 LTS-313AP LTS-4812SKR-P LTS-547AE LTS-6780P 446010401-3 HV-7W30-6829 CA12240_MINNIE-WWW-MTG-ASSY DA43-11GWA LDD-A516RI-17 LDD-E305RI LDQ-M513RI LDQ-M5204RI-SI LDQ-N3402RI LDQ-N3606RI LDS-A3924RI-SI