FEATURES

- A variety of contact arrangements 2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A

- Latching types available

- High sensitivity in small size 100 mW pick-up and 200 mW nominal operating power
- High shock and vibration resistance Shock: 50 G Vibration: 10 to 55 Hz at double amplitude of 3 mm
- Wide switching range From 100 u A 100 mV DC to 4 A 250 V AC
- Low thermal electromotive force Approx. $3 \mu \mathrm{~V}$
- Dual-In-Line packaging arrangement

SPECIFICATIONS

Contacts

Arrangement			2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$50 \mathrm{~m} \Omega$
Initial contact pressure			Approx. 12 g .42 oz
Initial contact bounce, max.			1 ms
Contact material			Gold clad silver alloy
Electrostatic capacitance			Approx. 3pF
Thermal electromotive force (at nominal coil voltage)			Approx. $3 \mu \mathrm{~V}$
Rating (resistive)	Nominal switching capacity		$4 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$,3 A 30 V DC
	Maximum switching power		1,000 VA, 90 W
	Maximum switching voltage		250 V AC, 30 V DC (48 VDC at less than 0.5 A)
	Max. switching current		4 A (AC), 3 A (DC)
	Min. switching capacity**1		$100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC
Expected life (min. operations)	Mechanical (at 50 cps)		10^{8}
	Electrical	4 A 250 V AC	10^{5}
	(at 20 cpm)	3 A 30 V DC	2×10^{5}

Coil (polarized) (at $20^{\circ} \mathbf{C} 68^{\circ} \mathrm{F}$)

Single side stable	Minimum operating power	Approx. 100 mW
	Nominal operating power	Approx. 200 mW
Latching	Minimum set and reset	Approx. 100 mW
	Nominal set and reset	Approx. 200 mW

Notes:
${ }_{* 1}$ This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
Remarks
Specifications will vary with foreign standards certification ratings.
${ }^{*}$ Measurement at same location as "Initial breakdown voltage "section
*2 Deasurement at same 10
${ }_{*}^{*}$ E Excludiocing contantact bounce time
${ }^{*} 4$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{5}$ Hall-wave pulse of sine wave: 6 ms
${ }^{*}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 61).

TYPICAL APPLICATIONS

Telecommunications equipment, data processing equipment,
facsimiles, alarm equipment, measuring equipment

Max. operating speed				20 cpm for maximum load, 50 cps for low-level load (1 mA 1 V DC)
Initial insulation resistance ${ }^{* 1}$				$10,000 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts			750 Vrms
	Between contact sets			1,000 Vrms
	Between contacts and coil			1,500 Vrms
Operate time ${ }^{* 3}$ (at nominal voltage)(at $20^{\circ} \mathrm{C}$)				Max. 15 ms (Approx. 8 ms)
Release time (without diode) ${ }^{* 3}$ (at nominal voltage)(at $20^{\circ} \mathrm{C}$)				Max. 10 ms (Approx. 5 ms)
Set time ${ }^{\star 3}$ (latching) (at nominal voltage)(at $20^{\circ} \mathrm{C}$)				Max. 15 ms (Approx. 8 ms)
Reset time ${ }^{*_{3}}$ (latching) (at nominal voltage)(at $20^{\circ} \mathrm{C}$)				Max. 15 ms (Approx. 8 ms)
Initial contact bounce, max.				1 ms
Temperature rise (at nominal voltage)(at $20^{\circ} \mathrm{C}$)				Max. $35^{\circ} \mathrm{C}$ with nominal coil voltage and at maximum switching current
Shock resistance		Func	tional*4	Min. $490 \mathrm{~m} / \mathrm{s}^{2}\{50 \mathrm{G}\}$
		Dest	ructive ${ }^{*}$	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Func	ctional*6	$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3 mm
		Dest	uctive	$235.2 \mathrm{~m} / \mathrm{s}^{2}\{24 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 4 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)			Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+149^{\circ} \mathrm{F} \end{aligned}$
			Humidity	5 to 85\% R.H.
Unit weight				Approx. 8 g .28 oz

S

ORDERING INFORMATION

Notes: 1) Standard packing; Carton 50 pcs. Case 500 pcs.
2) UL/CSA approved type is standard.

TYPES AND COIL DATA at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Single side stable

Type	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, mA	Coil resistance, $\Omega(\pm 10 \%)$	Inductance, mH	Nominal operating power, mW	Maximum allowable voltage, $\mathrm{V} \mathrm{DC}\left(40^{\circ} \mathrm{C}\right)$
SD-3V	3	2.1	0.3	66.7	45	23	200	5.5
SD-5V	5	3.5	0.5	38.5	130	65	192	9.0
SD-6V	6	4.2	0.6	33.3	180	93	200	11.0
SD-12V	12	8.4	1.2	16.7	720	370	200	22.0
SD-24V	24	16.8	2.4	8.4	2,850	1,427	202	44.0
SD-48V	48	33.6	4.8	5.6	8,500	3,410	271	75.0

1 coil latching								
Type	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage DC (min.)	Nominal oper- ating current, mA	Coil resis- tance, Ω $(\pm 10 \%)$	Inductance, mH	Nominal operating power, mW	Maximum allowable voltage, $\mathrm{VDC}\left(40^{\circ} \mathrm{C}\right)$
SD-L1-3V	3	2.1	0.3	33	90	0.04	99	8.4
SD-L1-5V	5	3.5	0.5	16	300	0.14	80	15.3
SD-L1-6V	6	4.2	0.6	16	360	0.14	96	16.8
SD-L1-12V	12	8.4	1.2	8	1450	0.6	96	33.7
SD-L1-24V	24	16.8	2.4	4	5700	2.05	96	66.7
SD-L1-48V	48	33.6	4.8	3	16,000	8.9	144	111

2 coil latching

Type	Nominal voltage, V DC	Set and reset voltage, V DC (max.)	Nominal operating current, mA	Coil resistance, Ω ($\pm 10 \%$)		Inductance, mH		Nominal operating power, mW	Maximum allowable voltage,$\operatorname{VDC}\left(40^{\circ} \mathrm{C}\right)$
				Coil I	Coil II	Coil I	Coil II		
SD-L2-3V	3	2.1	66.7	45	45	10	10	200	5.5
SD-L2-5V	5	3.5	38.5	130	130	31	31	192	9.0
SD-L2-6V	6	4.2	33.7	180	180	40	40	200	11.0
SD-L2-12V	12	8.4	16.7	720	720	170	170	200	22.0
SD-L2-24V	24	16.8	8.4	2,850	2,850	680	680	202	44.0
SD-L2-48V	48	33.6	7.4	6,500	6,500	1,250	1,250	355	65.0

Note: Insert 2, 3 or 4 in \square for contact form required

DIMENSIONS

Schematic (Bottom view)
 nergize terminals 1 and 2 to transfer contacts.

REFERENCE DATA

1. Maximum switching power

\longrightarrow Contact current, A
2. Life curve

$\begin{array}{cc}3 & 4 \\ \text { Contact current, } \mathrm{A}\end{array}$
4.-(2) Coil temperature rise Tested Sample: S4-24V, 4 Form A

3. Contact reliability

Condition: 1V DC, 1 mA
Tetection level 10Ω
Tasted Sample: $S 4-24 \mathrm{~V}, 10 \mathrm{pcs}$

5.-(1) Operate and release time
(Single side stable type)
Tested Sample: S4-24V, 10pcs

S
6. Influence of adjacent mounting

$$
\begin{aligned}
& \rightarrow\|\leftarrow\| \\
& \qquad \text { (1) } \sqrt{\text { (2) }} \left\lvert\, \begin{array}{l}
\text { (3) } \\
\begin{array}{l}
\text { (1) \& (3) relays } \\
\text { are energized }
\end{array}
\end{array}\right.
\end{aligned}
$$

\longrightarrow Inter-relay distance, mm
7. Thermal electromotive force

8. Effect from an external magnetic field

ACCESSORIES

Specifications

Breakdown voltage	$1,500 \mathrm{Vrms}$ between terminals
Insulation resistance	More than $100 \mathrm{M} \Omega$ between terminals at 500 V DC Mega
Heat resistance	$150 \pm 3^{\circ} \mathrm{C}\left(302 \pm 5.4^{\circ} \mathrm{F}\right)$ for 1 hour.
Maximum continuous current	4 A
(Note: Don't insert or remove relays while in the energized condition.)	

Dimensions

PC board pattern (Copper-side view)

nserting and removing method

Inserting method: Insert the relay as shown in Fig. 1 unit the rib of the relay snaps into the clip of the socket.

Removing method:
(1) Remove the relay straight from the socket holding the shaded portion of the relay as shown in Fig. 2.

(2) When sockets are mounted in close proximity, use a slotted screw driver as shown in Fig. 3.

NOTES

1. Special use of 2 coil latching types: 2 ways can be considered if 2 coil latching types are used as 1 coil latching types. (A) Reverse polarity is applied to the set coil of 2 coil latching type.
(B) By shorting terminals 12 and 7, apply plus to 1 , minus to 6 at set and plus to 6 , minus to 1 at reset. Applied coil voltage should be the same as the nominal. Operating power will be reduced to one-half.

2. Soldering operations should be accomplished as quick as possible; within 10 seconds at $250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ solder temperature or 3 seconds at $350^{\circ} \mathrm{C} 662^{\circ}$. The header portion being sealed with epoxy resin, undue subjection to heat may cause loss of seal. Solder should not be permitted to remain on the header.

CAUTIONS FOR USE

Based on regulations regarding insulation distance, there is a restriction on same-channel load connections between terminals No. 2, 3 and 4, 5, as well as between No. 8, 9 and 10, 11. See the figure below for an example.

For Cautions for Use, see Relay Technical Information (Page 48 to 76).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for panasonic manufacturer:
Other Similar products are found below :
ECE-A1HKAR47 ELC-09D151F HC2-H-DC48V-F HL2-HP-AC120V-F HL2-H-DC12V-F HL2-HP-DC12V-F HL2-HP-DC6V-F HL2-HP-DC24V-F HL2-H-DC110V-F HC4-H-DC24V HL2-HTM-DC24V-F HL2-HTM-AC24V-F HC4-H-AC24V HC4-H-AC120V HC4-H-DC12V AZH2031 RP-SDMF64DA1 EVM-F6SA00B55 RP-SMLE08DA1 ERZ-V20R391 ELL-ATV681M ERZ-V05V680CB LT4H-DC24V LT4HL8-AC24V LT4HW-AC24V LT4HWT8-AC240V LT4HWT-AC240VS CY-122A-P ETQ-P5M470YFM EVAL_PAN1555 EVQPAE04M EX-14B EX-22B-PN EX-31A-C5 EXB-24N121JX MC-NA40-4 EX-F72-PN EX-L211 EYG-A121803V MFMCA0030AEB FCR-M50-AC208V FC-SFBH-20 FC-SFBH-24 FD-F8Y MHMA102A1C MHMD022S1S MHMD041S1S MHMD042G1T MHMD082G1T FD-S9

