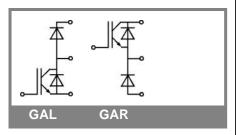


IGBT Module

SK75GAL12T4 SK75GAR12T4

Target Data


Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C			1200	V	
I _C	T _j = 175 °C	T _s = 25 °C		80	А	
		$T_s = 70 ^{\circ}C$		65	А	
I _{CRM}	I _{CRM} = 3 x I _{Cnom}			225	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C		10	μs	
Inverse I	Diode				1	
I_{F}	T _j = 175 °C	T_s = 25 °C		20	Α	
		$T_s = 70 ^{\circ}C$		16	А	
I _{FRM}	I _{FRM} = 3 x I _{Fnom}			45	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		90	А	
Freewhe	eling Diode				1	
I _F	T _j = 175 °C	T_S = 25 °C		70	Α	
		T _S = 70 °C		55	А	
I _{FRM}	$I_{FRM} = 3xI_{Fnom}$			225	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		425	А	
Module	<u> </u>					
$I_{t(RMS)}$					Α	
T _{vj}				-40 +175	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics		T _s =	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units		
IGBT	•							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3 \text{ mA}$		5	5,8	6,5	V		
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,01	mA		
		T _j = 150 °C				mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA		
		T _j = 150 °C				nA		
V _{CE0}		T _j = 25 °C		1,1	1,3	V		
		T _j = 150 °C		1	1,2	V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10		mΩ		
		T _j = 150°C		16		mΩ		
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V			1,85	2,05	V		
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V		
C _{ies}				4,4		nF		
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		0,29		nF		
C _{res}				0,235		nF		
Q_G	V _{GE} =-7V+15V			570		nC		
R _{Gint}	T _j = 25 °C			10		Ω		
t _{d(on)}				50		ns		
t _r	R_{Gon} = 15 Ω	V _{CC} = 600V		60		ns		
E _{on}	di/dt = 2000 A/μs	I _C = 75A		13		mJ		
t _{d(off)}	$R_{Goff} = 15 \Omega$	T _j = 150 °C		500		ns		
t _f		V _{GE} = -7/+15V		60		ns		
E _{off}				7		mJ		
$R_{th(j-s)}$	per IGBT			0,74		K/W		

SEMITOP® 2

IGBT Module

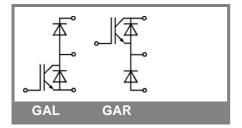
SK75GAL12T4 SK75GAR12T4

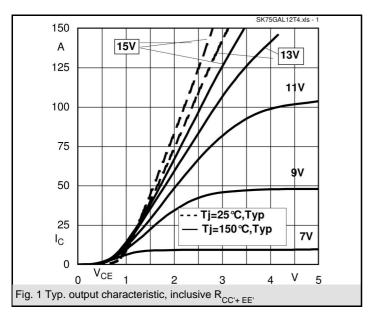
Target Data

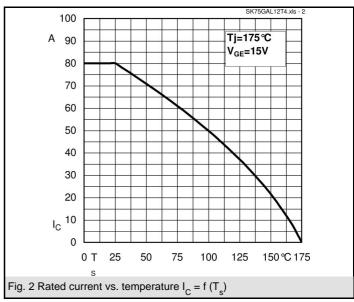
Features

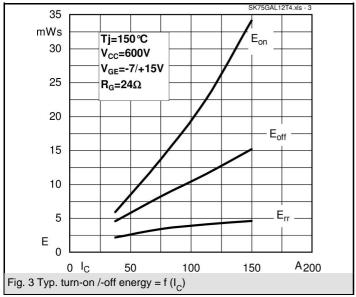
- · One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

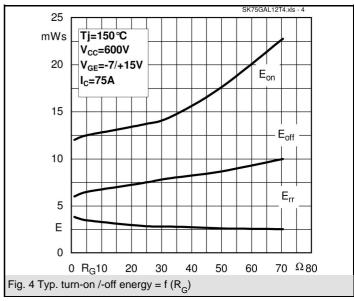
Typical Applications*

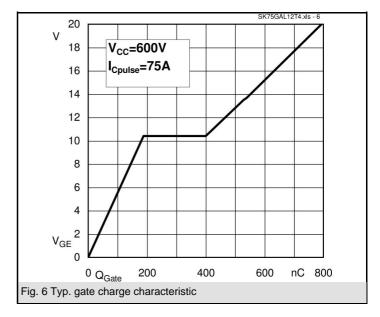

Remarks

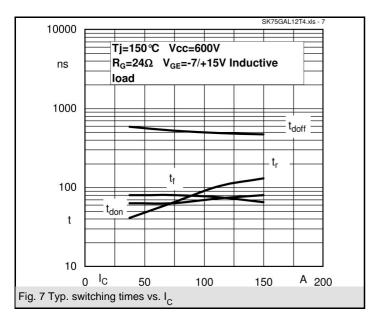

• V_{CE.sat} , V_F = chip level value

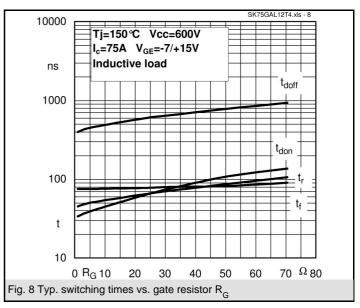

Characteristics								
Symbol	Conditions	İ	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$			2,38	2,71	V		
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		2,44	2,77	V		
V_{F0}				1,3	1,5	V		
		T _j = 150 °C T _j = 25 °C		0,9	1,1	V		
r _F				72	80,7	mΩ		
		T _j = 150 °C T _j = 150 °C		102,8	111,6	mΩ		
I _{RRM}	I _F = A	T _j = 150 °C				Α		
Q _{rr}	.,					μC		
E _{rr}	V _{CC} = 600V					mJ		
$R_{th(j-s)D}$	per diode			2,34		K/W		
	eling Diode							
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,1	2,5	V		
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		2,4	2,5	V		
V_{F0}		T _j = 25 °C		1,3	1,5	V		
		T _j = 150 °C		0,9	1,1	V		
r _F		T _j = 25 °C		12	13,3	V		
		T _j = 150 °C		16	17,3	V		
I _{RRM}	I _F = 75 A	T _j = 150 °C		45		Α		
Q_{rr}	di/dt = 2000 A/μs			10		μC		
E _{rr}	V _{CC} = 600V			3		mJ		
$R_{th(j-s)FD}$	per diode			0,97		K/W		
M_s	to heat sink				2,5	Nm		
w				30		g		
Temperat	ure sensor							
R ₁₀₀	T_s =100°C (R_{25} =5k Ω)			493±5%		Ω		

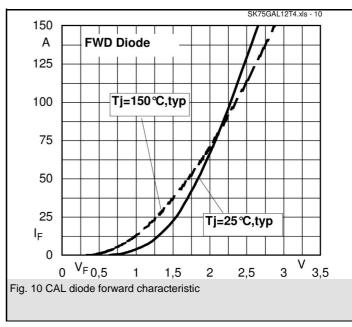

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

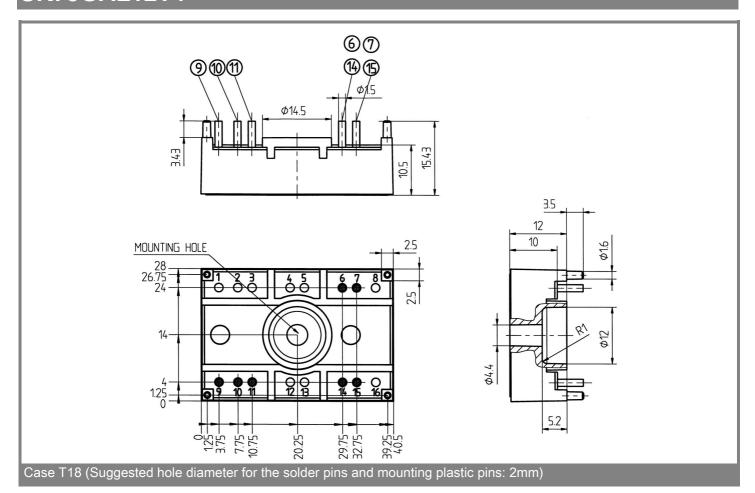

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

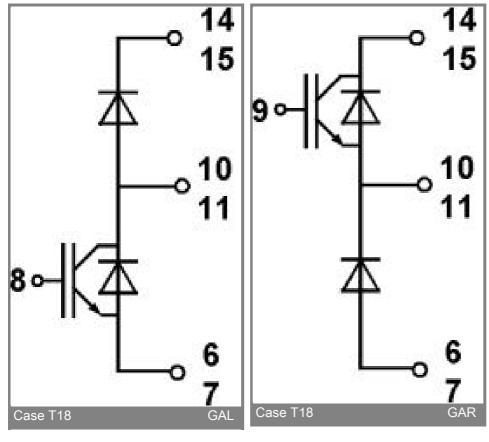












X-ON Electronics

Authorized Distributor

Click to view similar products for IGBT Modules category.

Click to view products by Semikron manufacturer.

Other Similar products are found below:

SKM150GB12T4 FS100R17PE4BOSA1 FS150R17N3E4 TDB6HK240N16P

SKM300GA12T4 F3L400R07ME4_B23 FF225R17ME4PBPSA1 FNA41560B2

F3L75R12W1H3_B27 F3L11MR12W2M1B65BOMA1 FD300R17KE4PHOSA1

FD450R12KE4PHOSA1 FP25R12W1T7B11BPSA1 FS200R12PT4PBOSA1

FP75R12KT4PB11BPSA1 FS100R12KT4PBPSA1 SKIIP25AC126V1M20

SKIIP23NAB126V1M20 MG06100SBN4MM MG12200DBN2MM MG1250SBA1MM

FF400R07KE4HOSA1 FF1400R17IP4 APT75GT120JU2 APT46GA90JD40