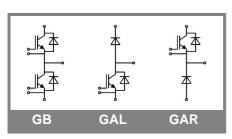


SEMITRANS[®] 3

Ultra Fast IGBT Modules


SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

Features

- N channel , homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom} • Fast & soft inverse CAL diodes
- Isolated copper baseplate using . DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

Typical Applications*

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Absolut	e Maximum Ratings	I _c =	25 °C, unless otherwis	e specified
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	200	A
		T _{case} = 80 °C	160	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse	Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	200	А
		T _{case} = 80 °C	130	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	А
Freewhe	eling Diode			•
I _F	T _j = °C	T _c = 25 °C	200	А
		T _c = 80 °C	130	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А
I _{FSM}	t _p = 10 ms;	T _j = 150 °C	1440	А
Module	·			
I _{t(RMS)}			500	А
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 6 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		1,5	1,75	V
		T _j = 125 °C				V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		12	14	mΩ
		T _j = 125°C				mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	$T_j = °C_{chiplev.}$		3,3	3,85	V
C _{ies}				10	13	nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,5	2	nF
C _{res}				0,8	1,2	nF
Q_{G}	V _{GE} = 0V - +20V			1300		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				75		ns
t _r	$R_{Gon} = 4 \Omega$	V _{CC} = 600V		36		ns
E _{on}	-	I _C = 150A		14		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		420		ns
t _f		V _{GE} = ±15V		25		ns
E _{off}						mJ
R _{th(j-c)}	per IGBT				0,09	K/W

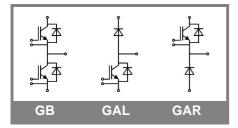
SEMITRANS[®] 3

Ultra Fast IGBT Modules

SKM 200GB125D SKM 200GAL125D SKM 200GAR125D

Features

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom} • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*

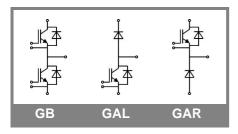
- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Characte	eristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V	
		$T_j = 125 \ ^\circ C_{chiplev.}$		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		6	8,7	mΩ	
		T _j = 125 °C T _j = 125 °C				mΩ	
I _{RRM}	I _F = 150 A	T _j = 125 °C		230		А	
Q _{rr}	di/dt = 5500 A/µs			24		μC	
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
	eling Diode						
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V	
		$T_j = 125 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,8		V	
V _{F0}				1,1	1,2	V	
		T _j = 125 °C T _j = 25 °C				V	
r _F				6	8,7	V	
		T _j = 125 °C T _j = 125 °C				V	
I _{RRM}	I _F = 150 A	T _j = 125 °C		230		Α	
Q _{rr}	di/dt = 5500 A/µs			24		μC	
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ	
R _{th(j-c)FD}	per diode				0,25	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

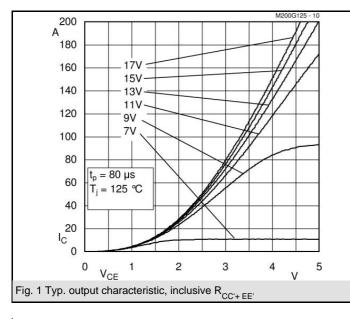
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

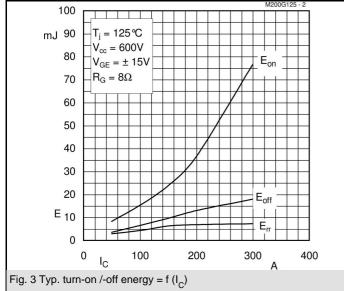
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

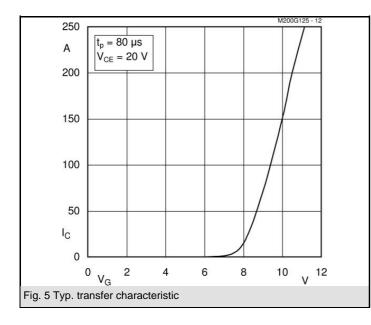
Ultra Fast IGBT Modules

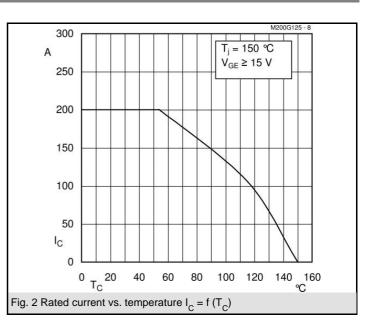

SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

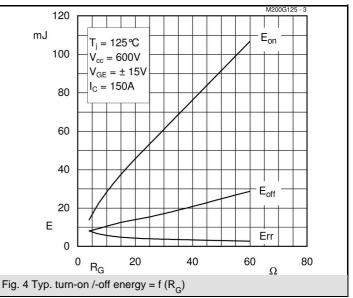
Features

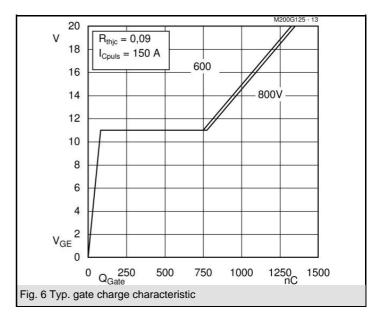

- N channel , homogeneous Si •
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom} • Fast & soft inverse CAL diodes
- Isolated copper baseplate using . DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

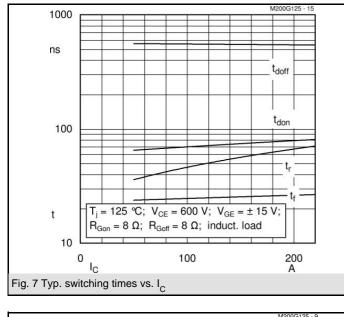

Typical Applications*

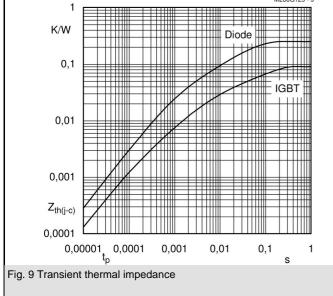

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

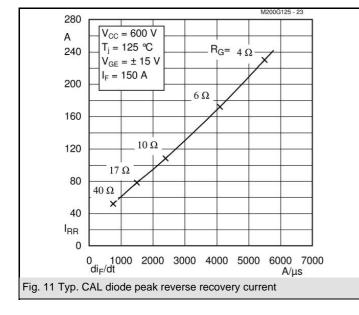


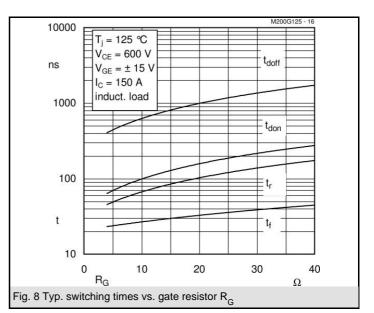

Z _{th}			
Symbol	Conditions	Values	Units
Z R _i th(j-c)l			
R _i	i = 1	60	mk/W
R _i	i = 2	23	mk/W
R _i	i = 3	5,9	mk/W
R _i	i = 4	1,1	mk/W
tau _i	i = 1	0,0744	s
taui	i = 2	0,0087	s
tau _i	i = 3	0,002	s
tau _i	i = 4	0,0015	s
Z Ri th(j-c)D			
R _i	i = 1	160	mk/W
R _i	i = 2	67	mk/W
R _i	i = 3	20	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,0536	s
tau _i	i = 2	0,0034	s
tau	i = 3	0,077	s
tau _i	i = 4	0,0003	s

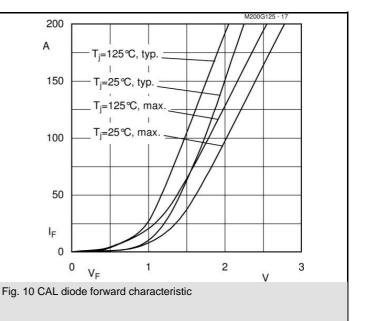


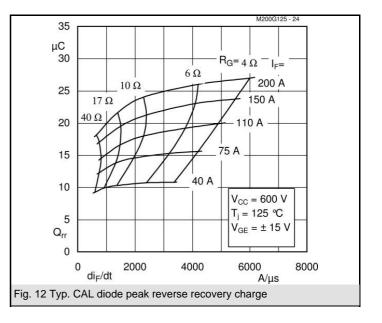


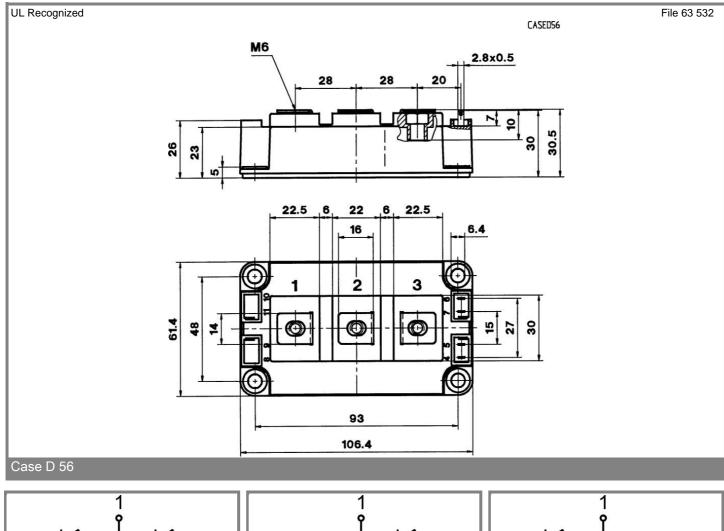


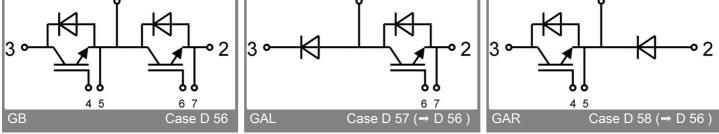












X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by Semikron manufacturer:

Other Similar products are found below :

 F3L100R07W2E3_B11
 F3L15R12W2H3_B27
 F3L400R07ME4_B22
 F3L400R12PT4_B26
 F4-100R12KS4
 F4-50R07W2H3_B51
 F4

 75R12KS4_B11
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD300R06KE3
 FD300R12KE3
 FD300R12KS4_B5

 FD400R12KE3
 FD400R33KF2C-K
 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF100R12KS4
 FF1200R17KE3_B2
 FF150R12KE3G

 FF200R06KE3
 FF200R06YE3
 FF200R12KT3
 FF200R12KT3_E
 FF200R12KT4
 FF200R17KE3
 FF300R12KE4_E

 FF300R12KS4HOSA1
 FF300R12ME4_B11
 FF300R12MS4
 FF300R12MS4
 FF300R12ME4_F4
 FF450R17IE4
 FF600R12IE4V

 FF600R12IP4V
 FF800R17KP4_B2
 FF900R12IE4V
 MIXA30W1200TED
 MIXA450PF1200TSF
 FP06R12W1T4_B3
 FP100R07N3E4

 FP100R07N3E4_B11
 FP10R12W1T4_B11
 FP10R12YT3
 FP10R12YT3_B4
 FP150R07N3E4
 FP15R12KT3

 FP15R12W2T4
 F
 F915R12W2T4
 F915R12W2T4
 F915R12W2T4
 F915R12W2T4