

4-Mbit (1 M × 4) Static RAM

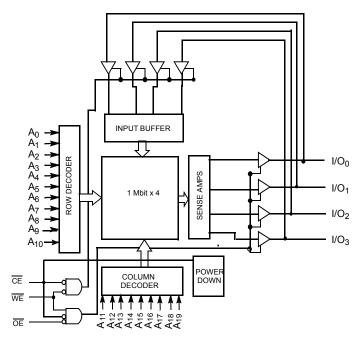
Features

- Pin- and function-compatible with CY7C1046CV33
- High speed

 □ t_{AA} = 10 ns
- Low active power
 □ I_{CC} = 90 mA @ 100 MHz
- Low CMOS standby power
 □ I_{SB2} = 10 mA
- 2.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in lead-free 400-mil-wide 32-pin SOJ package

Functional Description

The CY7C1046DV33 is a high-performance CMOS static RAM organized as 1M words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the four I/O pins (I/O $_0$ through I/O $_3$) is then written into the location specified on the address pins (A_0 through A_{19}).


Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The four input/output pins (I/O $_0$ through I/O $_3$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1046DV33 is available in a standard 400-mil-wide 32-pin SOJ package with center power and ground (revolutionary) pinout.

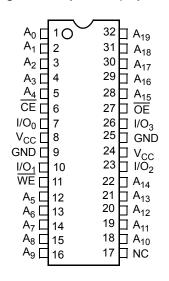
For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Selection Guide	3
Pin Configuration	3
Maximum Ratings	4
Operating Range	4
DC Electrical Characteristics	4
Capacitance	4
Thermal Resistance	4
AC Test Loads and Waveforms	5
AC Switching Characteristics	6
Data Retention Characteristics	7
Data Retention Waveform	7
Switching Waveforms	7

Truth Table	10
Ordering Information	10
Ordering Code Definitions	10
Package Diagram	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	14
Products	
PSoC Solutions	14



Selection Guide

Description	-10	Unit
Maximum access time	10	ns
Maximum operating current	90	mA
Maximum CMOS standby current	10	mA

Pin Configuration

Figure 1. 32-pin SOJ (Top View)

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Ambient temperature with power applied–55 °C to +125 °C Supply voltage on V_{CC} to relative GND $^{[1]}$ –0.3 to +4.6 V DC voltage applied to outputs in high Z State $^{[1]}$ -0.3 V to V $_{\rm CC}$ + 0.3 V

DC input voltage [1]	0.3 V to V _{CC} + 0.3 V
Current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	3.3 V <u>+</u> 0.3 V

DC Electrical Characteristics

Over the Operating Range

Doromotor	Description	Test Conditions		-10		Unit
Parameter	Description	Test Conditions		Min	Max	Oilit
V _{OH}	Output HIGH voltage	Min V_{CC} , $I_{OH} = -4.0 \text{ mA}$		2.4	_	V
V _{OL}	Output LOW voltage	Min V _{CC} , I _{OL} = 8.0 mA		-	0.4	V
V _{IH}	Input HIGH voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage [1]			-0.3	0.8	V
I _{IX}	Input leakage current	GND ≤ V _{IN} ≤ V _{CC}	$GND \le V_{IN} \le V_{CC}$			μΑ
I _{OZ}	Output leakage current	$GND \le V_{OUT} \le V_{CC}$, output disable	$GND \le V_{OUT} \le V_{CC}$, output disabled			μΑ
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, f = f_{MAX} = $1/t_{RC}$	100 MHz	-	90	mA
			83 MHz	-	80	mA
			66 MHz	_	70	mA
			40 MHz	_	60	mA
I _{SB1}	Automatic CE power-down Current – TTL inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{MAX}} \end{aligned}$		_	20	mA
I _{SB2}	Automatic CE power-down Current –CMOS inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V or V}_{\text{IN}} \leq 0.3 \text{ V}, \end{array}$	· = 0	_	10	mA

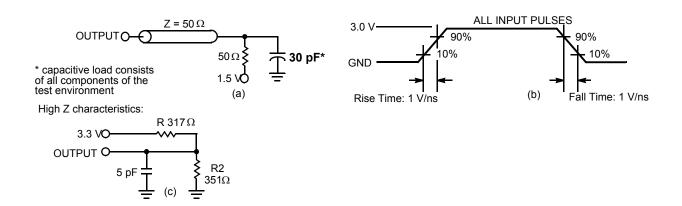
Capacitance

Parameter [2]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	8	pF
C _{OUT}	I/O capacitance		8	pF

Thermal Resistance

Parameter [2]	Description	Test Conditions	32-pin SOJ Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	53.44	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		38.25	°C/W

Notes


- V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

Document Number: 38-05611 Rev. *F

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms [3]

Note

^{3.} AC characteristics (except high Z) are tested using the load conditions shown in Figure 2 (a). High Z characteristics are tested for all speeds using the test load shown in Figure 2 (c).

AC Switching Characteristics

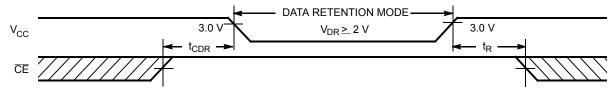
Over the Operating Range

Parameter [4]	D	-	10	11!4	
Parameter	Description		Max	Unit	
Read Cycle			•		
t _{power} ^[5]	V _{CC} (typical) to the first access	100	_	μS	
t _{RC}	Read cycle time	10	_	ns	
t _{AA}	Address to data valid	_	10	ns	
t _{OHA}	Data hold from address change	3	_	ns	
t _{ACE}	CE LOW to data valid	-	10	ns	
t _{DOE}	OE LOW to data valid	_	5	ns	
t _{LZOE}	OE LOW to low Z [6]	0	_	ns	
t _{HZOE}	OE HIGH to high Z [6, 7]	_	5	ns	
t _{LZCE}	CE LOW to low Z [6]	3	_	ns	
t _{HZCE}	CE HIGH to high Z [6, 7]	_	5	ns	
t _{PU}	CE LOW to power-up	0	_	ns	
t _{PD}	CE HIGH to power-down	_	10	ns	
Write Cycle [8,	9]	<u> </u>		•	
t _{WC}	Write cycle time	10	_	ns	
t _{SCE}	CE LOW to write end	7	_	ns	
t _{AW}	Address set-up to write end	7	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address set-up to write start	0	_	ns	
t _{PWE}	WE pulse width	7	_	ns	
t _{SD}	Data set-up to write end	5	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{LZWE}	WE HIGH to low Z [6]	3	_	ns	
t _{HZWE}	WE LOW to high Z [6, 7]	_	5	ns	

Notes

- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V.
 5. t_{POWER} gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.
 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 7. t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of Figure 2 on page 5. Transition is measured when the outputs enter a high impedance state.
- 8. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data <u>set-up</u> and hold <u>timing</u> should be referenced to the leading edge of the signal that terminates the Write.

 9. The minimum Write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


Data Retention Characteristics

Over the Operating Range

Parameter	meter Description Conditions ^[10]		Min	Max	Unit
V_{DR}	V _{CC} for data retention	-	2.0	_	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR} = 2.0 \text{ V}, \overline{CE} \ge V_{CC} - 0.3 \text{ V},$ $V_{IN} \ge V_{CC} - 0.3 \text{ V or } V_{IN} \le 0.3 \text{ V}$	_	10	mA
t _{CDR} ^[11]	Chip deselect to data retention time	-	0	_	ns
t _R ^[12]	Operation recovery time	-	t _{RC}	_	ns

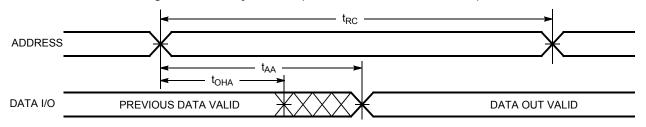

Data Retention Waveform

Figure 3. Data Retention Waveform

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled) [13, 14]

- 10. No inputs may exceed $V_{\rm CC}$ + 0.3 V. 11. Tested initially and after any design or process changes that may affect these parameters.
- 12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs. 13. Device is continuously selected. OE, CE = V_{IL}. 14. WE is HIGH for Read cycle.

Switching Waveforms (continued)

Figure 5. Read Cycle No. 2 (OE Controlled) [15, 16]

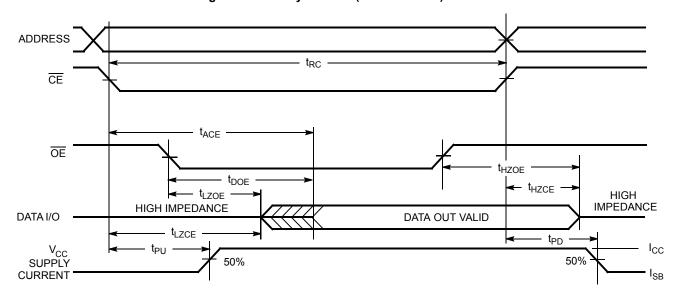
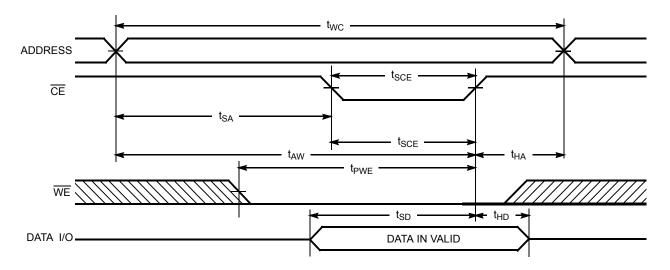



Figure 6. Write Cycle No. 1 (CE Controlled) [17, 18]

^{15.} WE is HIGH for Read cycle.

^{16.} Address valid prior to or coincident with CE transition LOW.
17. Data I/O is high impedance if OE = V_{IH}.
18. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 2 (WE Controlled, OE HIGH During Write) [19, 20]

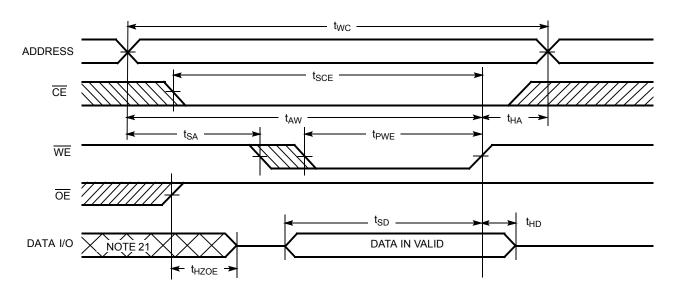
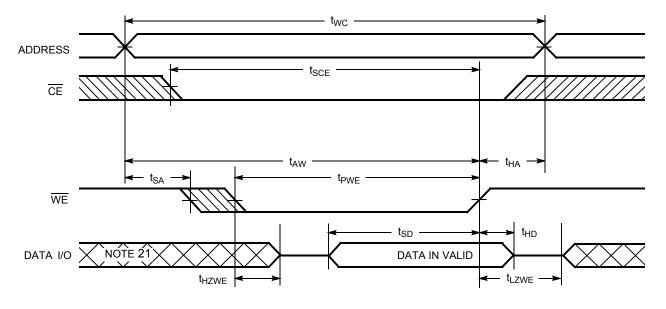
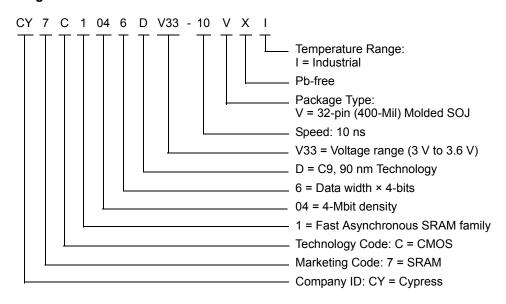



Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [20]

^{19.} Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.
20. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
21. During this period the I/Os are in the output state and input signals should not be applied.

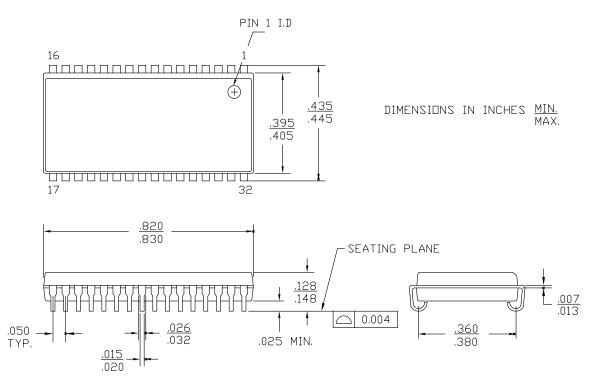

Truth Table

CE	OE	WE	I/O ₀ -I/O ₃	Mode	Power
Н	Х	Х	High Z	Power-down	Standby (I _{SB})
L	L	Н	Data out	Read	Active (I _{CC})
L	Х	L	Data in	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

3	Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
	10	CY7C1046DV33-10VXI	51-85033	32-lead (400-mil) Molded SOJ (Pb-free)	Industrial

Ordering Code Definitions


Please contact your local Cypress sales representative for availability of these parts.

Package Diagram

Figure 9. 32-pin SOJ (400 Mils) V32.4 (Molded SOJ V33) Package Outline, 51-85033

32 Lead (400 MIL) Molded SOJ V33

51-85033 *E

Acronyms

Acronym	Description		
CMOS	complementary metal oxide semiconductor		
CE	chip enable		
I/O	input/output		
OE	output enable		
SOJ	small outline J-lead		
SRAM	static random access memory		
TTL	transistor-transistor logic		
WE	write enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
ns	nanosecond			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Document	ocument Title: CY7C1046DV33, 4-Mbit (1 M × 4) Static RAM ocument Number: 38-05611						
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change			
**	307613	See ECN	RKF	New data sheet			
*A	397134	See ECN	RXU	Changed from Advance to Preliminary Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed -15 Speed bin Corrected DC voltage limits in maximum ratings section from -0.5 to -0.3 V and $V_{\rm CC}$ + 0.5 V to $V_{\rm CC}$ + 0.3 V Redefined $I_{\rm CC}$ values for Com'l and Ind'l temperature ranges $I_{\rm CC}$ (Com'l): Changed from 100, 80 and 70 mA to 90, 80 and 75 mA for 8, 10 and 12 ns speed bins respectively $I_{\rm CC}$ (Ind'l): Changed from 80 and 70 mA to 90 and 85 mA for 10 and 12 ns speed bins respectively Removed footnote on rise time and added footnote on Operation Recovery Time ($I_{\rm CC}$) Corrected Typo in Truth Table from (I/O_0 - I/O_7) to (I/O_0 to I/O_3) Changed part names from V33 to V32 in the Ordering Information Table Removed L-Version Added Lead-Free Product Information Shaded Ordering Information Table			
*B	459072	See ECN	NXR	Converted from Preliminary to Final Removed -8 and -12 speed bins Removed Commercial Operating Range product information Removed the PIn Definition table Changed the Capacitance value of input pins and I/O pins from 6 pF to 8 pF Updated the Thermal Resistance table Updated footnote #7 on High-Z parameter measurement Added footnote #11 Replaced Package Name column with Package Diagram in the Ordering Information table			
*C	3059211	10/14/2010	PRAS	Added Ordering Code Definitions. Updated Package Diagram.			
*D	3100106	12/02/2010	PRAS	Added Acronyms and Units of Measure. Minor edits and updated in new template.			
*E	3432847	11/08/2011	TAVA	Updated Features. Updated Functional Description. Updated DC Electrical Characteristics. Updated Switching Waveforms. Updated Package Diagram.			
*F	4574311	11/19/2014	TAVA	Added related documentation hyperlink in page 1. Updated Figure 9 in Package Diagram (spec 51-85033 *D to *E).			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks & Buffers
Interface
Lighting & Power Control

Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc

cypress.com/go/memory cypress.com/go/image cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2005-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Cypress manufacturer:

Other Similar products are found below:

5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB CYDM128B16-55BVXIT
GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3
IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN 515712X IS62WV51216EBLL45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI
IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI
CY7C1382KV33-167AXC CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 59628866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 59628959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS882Z18CD-150I GS81284Z36B-250I
M38510/28902BVA IS62WV12816ALL-70BLI