Panasonic ideas for life

SMALL \& SLIM

 AUTOMOTIVE RELAY
FEATURES

 board pattern design switching with compact size

- Terminal layout for simplifying PC
- Capable of 25A high-capacity load
- Plastic sealed type

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Power sunroof
- Electrically powered mirrors
- Powered seats
- Lift gates
- Slide door closers, etc. (for DC motor forward/reverse control circuits)

RoHS compliant

ORDERING INFORMATION

Contact arrangement
1: 1 Form C
2: 1 Form $\mathrm{C} \times 2$ (8 terminal)
5: 1 Form $\mathrm{C} \times 2$ (10 terminal)
Coil voltage, DC
12: 12 V

TYPES

Contact arrangement	Coil voltage	Part No.
1 Form C	12 V DC	ACT112
1 Form C $\times 2$ (8 terminals type)		ACT212
1 Form $\mathrm{C} \times 2$ (10 terminals type)		ACT512

Standard packing; 1 Form C: Carton (tube) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton (tube) 30pcs. Case 900pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]\left(a t 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Coil resistance $[\pm 10 \%]\left(\right.$ at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nominal operating power (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Usable voltage range

[^0]
2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form $\mathrm{C} \times 2$, 1 Form C
	Contact resistance (Initial)		N.O.: Typ 7ms, N.C.: Typ 10m (By voltage drop 6V DC 1A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		N.O.: 20 A 14V DC, N.C.: 10 A 14V DC
	Max. carrying current (14V DC) ${ }^{*}$		N.O.: 25 A for 1 hour, 35 A for 2 minutes at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ 20 A for 1 hour, 30 A for 2 minutes at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
	Nominal operating power		800 mW
	Min. switching capacity (resistive load)**		1 A 14V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contacts and coil	500 Vrms for 1 min . (Detection current: 10 mA)
	Operate time (at nominal voltage)		Max. 10ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
	Release time (at nominal voltage)		Max. 10 ms (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, excluding contact bounce time) (Initial)
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. 1,000 m/s ${ }^{2}$ \{100G\} (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$ (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$, Time of vibration for each direction; X, Y direction: 2 hours, Z direction: 4 hours
	Mechanical		Min. 10^{7} (at 120 cpm)
Expected life	Electrical		<Resistive load> Min. 10^{5} (at nominal switching capacity, operating frequency: 1 s ON, 9s OFF) <Motor load> N.O. side: Min. 2×10^{5} (at Inrush 25A, Steady 5A 14 V DC), Min. 10^{5} (at 25A 14 V DC motor lock condition) N.C. side: Min. 2×10^{5} (at brake current 20A 14 VDC) (operating frequency: $0.5 \mathrm{~s} \mathrm{ON}, 9.5 \mathrm{~s}$ OFF)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Humidity: 5% R.H. to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		6 cpm (at nominal switching capacity)
Mass			Twin type: approx. $8 \mathrm{~g} .28 \mathrm{oz}, 1$ Form C type: approx. 4 g .14 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load
*2. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Please refer to "Usage ambient condition" in CAUTIONS FOR USE OF AUTOMOTIVE RELAYS. Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.
*3. Depends on connection conditions. Also, this does not guarantee repeated switching. We recommend that you confirm operation under actual conditions.

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A
Ambient temperature: Room temperature

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A
Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
2. Max. switching capability (Resistive load, initial)

3. Ambient temperature and operating voltage range

6-(1). Electrical life test (Motor free)
Sample: ACT212, 3pcs.
Load: Inrush 25A, steady 5A
Brake current: 13A 14V DC,
Power window motor actual load (free condition)
Operating frequency: ON 0.5 s , OFF 9.5 s
Ambient temperature: Room temperature Circuit:

Load current waveform

Inrush current: 25A, Steady current: 6A
Brake current: 13A

$$
10 \mathrm{~A}^{+}
$$

4. Distribution of pick-up and drop-out voltage Sample: ACT212, 40pcs.

. Distribution of operate and release time Sample: ACT212, 40pcs.

Change of pick-up and drop-out voltage

Change of contact resistance

6-(2). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 25A 14V DC
Power window motor actual load (lock condition)
Switching frequency: ON 0.5 s , OFF 9.5 s
Ambient temperature: Room temperature
Circuit:

Load current waveform

Change of contact resistance

6-(3). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 20A 14V DC,
door lock motor actual load (Lock condition)
Switching frequency: ON 0.3s, OFF 19.7s
Ambient temperature: Room temperature
Circuit:

Change of contact resistance

Load current waveform

1. Twin type (8 terminals)

CAD Data

External dimensions

Dimension:

Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\quad \pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering.

Intervals between terminals is measured at A surface level.
2. Twin type (10 terminals)

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

[^1] Intervals between terminals is measured at A surface level.

CT (ACT)

3. Slim 1c type

CAD Data

External dimensions

Pre-soldering
Dimension:
Max. 1mm . 039 inch:

Min. 3mm . 118 inch:

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

* Dimensions (thickness and width) of terminal is measured before pre-soldering

Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

For general cautions for use, please refer to the "CAUTIONS FOR USE OF AUTOMOTIVE RELAYS"

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Automotive Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
896H-1AH-D1SW-001-24VDC $896 \mathrm{H}-1 \mathrm{AH}-\mathrm{D} 1 \mathrm{SW}-\mathrm{R} 1-12 \mathrm{VDC} 896 \mathrm{H}-1 \mathrm{CH}-\mathrm{C} 1-001-12 \mathrm{VDC} 896 \mathrm{H}-1 \mathrm{CH}-\mathrm{S}-24 \mathrm{VDC}$ 896HP-1AH-C-12VDC G5CE1ASIDC12 AEV31024 1393204-2 1393302-3 13Z99A115-0074 1432872-1 1617057-2 2-1617057-2 CB1F-M-12V-H15 CB1-T-R-M12V 896H-1CH-D1SF-R1-12VDC 896H-1CH-D1SF-R1-T-12VDC 898H-1AH-D-001-12VDC 24198-1 5-1616920-2 5-1617052-9 5407-0011-HS CB1AF-M-12V-H59 5-1617346-8 103-1AH-C-12VDC CF2Q-12V V23134A1052X299 CP112J 896H-1AH-S1-001-12VDC 897H-1AH-D-R1-U01-12VDC $896 \mathrm{H}-1 \mathrm{CH}-\mathrm{D}-\mathrm{U} 39-24 \mathrm{VDC}$ 896HP-1AH-C-U2120VDC $896 \mathrm{E}-1 \mathrm{CH}-\mathrm{D} 1 \mathrm{SW}-\mathrm{U} 57-12 \mathrm{VDC}$ 896H-1CH-D1SW-R1-U30-12VDC 896H-1AH-C1S-R1-24VDC 102-1CH-C-12VDC V23076A3001D142T 1-19042-6 3-1393305-1 J7TKNA9 V23234A1001X043-EV-144 V23086-R1851-A502 898H-1AH-D1SW-R1-12VDC RH4C1P2607 RE031005 V23134M0052G242 1393204-1 G8N-1L-AS DC12 V23076A3022D142 V23074A2001A402

[^0]: Note: Other pick-up voltage types are also available. Please contact us for details.

[^1]: * Dimensions (thickness and width) of terminal is measured before pre-soldering.

