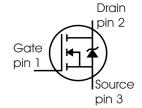


Cool MOS™ Power Transistor

Feature


- New revolutionary high voltage technology
- Ultra low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- Ultra low effective capacitances
- Improved transconductance
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC⁰⁾ for target applications

V _{DS} @ T _{imax}	560	٧
R _{DS(on)}	0.38	Ω
/ _D	11.6	Α

Туре	Package	Ordering Code	Marking
SPW12N50C3	PG-TO247	Q67040-S4580	12N50C3

Maximum Ratings

Parameter	Symbol	Value	Unit
Continuous drain current	I_{D}		Α
$T_{\rm C}$ = 25 °C		11.6	
$T_{\rm C}$ = 100 °C		7	
Pulsed drain current, t_p limited by T_{jmax}	I _{D puls}	34.8	
Avalanche energy, single pulse	E _{AS}	340	mJ
$I_{\rm D}$ = 5.5 A, $V_{\rm DD}$ = 50 V			
Avalanche energy, repetitive t_{AR} limited by T_{jmax} ¹	E _{AR}	0.6	
$I_{\rm D}$ = 11.6 A, $V_{\rm DD}$ = 50 V			
Avalanche current, repetitive t_{AR} limited by T_{jmax}	I _{AR}	11.6	Α
Reverse diode dv/dt 5)	dv/dt	15	V/ns
Gate source voltage	V_{GS}	±20	V
Gate source voltage AC (f >1Hz)	V_{GS}	±30	
Power dissipation, $T_{\rm C}$ = 25°C	P _{tot}	125	W
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$	-55 +150	°C

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain Source voltage slope	dv/dt	50	V/ns
$V_{\rm DS}$ = 400 V, $I_{\rm D}$ = 11.6 A, $T_{\rm j}$ = 125 °C			

Thermal Characteristics

Parameter	Symbol Values				Unit	
		min.	typ.	max.		
Thermal resistance, junction - case	R_{thJC}	-	-	1	K/W	
Thermal resistance, junction - ambient, leaded	R_{thJA}	-	-	62		
SMD version, device on PCB:	R_{thJA}					
@ min. footprint		-	-	62		
@ 6 cm ² cooling area ²⁾		-	35	-		
Soldering temperature, wavesoldering	T _{sold}	-	-	260	°C	
1.6 mm (0.063 in.) from case for 10s						

Electrical Characteristics, at T_j =25°C unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =0.25mA	500	-	-	V
Drain-Source avalanche	V _{(BR)DS}	V _{GS} =0V, I _D =11.6A	-	600	-	
breakdown voltage						
Gate threshold voltage	V _{GS(th)}	$I_{\rm D}$ =500 $\mu{\rm A},\ V_{\rm GS}$ = $V_{\rm DS}$	2.1	3	3.9	
Zero gate voltage drain current	I _{DSS}	V _{DS} =500V, V _{GS} =0V,				μΑ
		<i>T</i> _j =25°C,	-	0.1	1	
		<i>T</i> _j =150°C	-	-	100	
Gate-source leakage current	I_{GSS}	V _{GS} =20V, V _{DS} =0V	ı	-	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10V, I _D =7A,				Ω
	, ,	<i>T</i> _j =25°C	-	0.34	0.38	
		<i>T</i> _j =150°C	-	0.92		
Gate input resistance	R _G	f=1MHz, open Drain	-	1.4	_	

Electrical Characteristics , at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions Values			Unit	
			min.	typ.	max.	
Transconductance	<i>g</i> fs	$V_{DS} \ge 2*I_{D}*R_{DS(on)max}$	-	8	-	S
		I _D =7A				
Input capacitance	C _{iss}	V _{GS} =0V, V _{DS} =25V,	-	1200	-	pF
Output capacitance	Coss	f=1MHz	-	400	-	
Reverse transfer capacitance	C _{rss}		-	30	-	
Effective output capacitance,3)	C _{o(er)}	V _{GS} =0V,	-	45	-	pF
energy related	, ,	V _{DS} =0V to 400V				
Effective output capacitance,4)	C _{o(tr)}		-	92	-	
time related	, ,					
Turn-on delay time	t _{d(on)}	V _{DD} =380V, V _{GS} =0/10V,	-	10	-	ns
Rise time	t _r	I _D =11.6A, R _G =6.8Ω	-	8	-	
Turn-off delay time	t _{d(off)}		-	45	-	
Fall time	<i>t</i> _f		-	8	-	

Gate Charge Characteristics

Gate to source charge	Q_{gs}	V _{DD} =400V, I _D =11.6A	-	5	-	nC
Gate to drain charge	Q _{gd}		-	26	-	
Gate charge total	Qg	V _{DD} =400V, I _D =11.6A,	-	49	-	
		V _{GS} =0 to 10V				
Gate plateau voltage	V _(plateau)	V _{DD} =400V, I _D =11.6A	-	5	1	V

⁰J-STD20 and JESD22

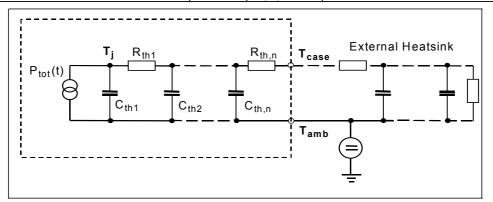
¹Repetitve avalanche causes additional power losses that can be calculated as $P_{AV} = E_{AR} * f$.

²Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical without blown air.

 $^{^3}C_{\mathrm{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

 $^{^4}C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 80% $V_{\rm DSS}$.

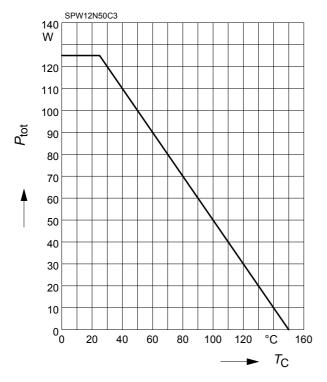
 $^{^{5}}$ I_{SD}<=I_D, di/dt<=400A/us, V_{DClink}=400V, V_{peak}<V_{BR, DSS}, T_j<T_{j,max}. Identical low-side and high-side switch.



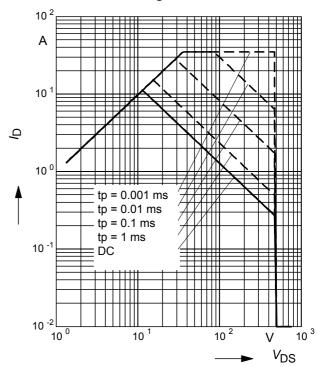
Electrical Characteristics, at T_j = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Inverse diode continuous	IS	<i>T</i> _C =25°C	-	-	11.6	Α
forward current						
Inverse diode direct current,	/ _{SM}		-	-	34.8	
pulsed						
Inverse diode forward voltage	V _{SD}	V _{GS} =0V, I _F =I _S	-	1	1.2	V
Reverse recovery time	t _{rr}	V _R =400V, I _F =I _S ,	-	380	-	ns
Reverse recovery charge	Q _{rr}	d <i>i_F</i> /d <i>t</i> =100A/μs	-	5.5	-	μC
Peak reverse recovery current	/ _{rrm}		-	38	-	Α
Peak rate of fall of reverse	di _{rr} /dt		-	1100	-	A/µs
recovery current						

Typical Transient Thermal Characteristics

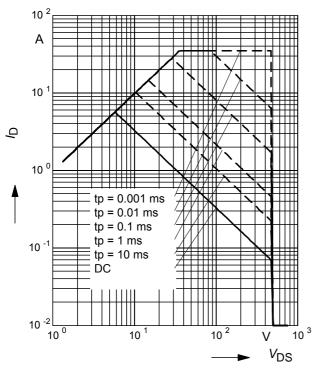

Symbol	Value	Unit	Symbol	Value	Unit
	typ.			typ.	
Thermal r	esistance	·	Thermal of	capacitance	
R _{th1}	0.015	K/W	C _{th1}	0.0001878	Ws/K
R _{th2}	0.03		C _{th2}	0.0007106	
R _{th3}	0.056		C _{th3}	0.000988	
R_{th4}	0.197		C _{th4}	0.002791	
R _{th5}	0.216		C _{th5}	0.007285	
R _{th6}	0.083		C _{th6}	0.063	

1 Power dissipation


$$P_{\text{tot}} = f(T_{\text{C}})$$

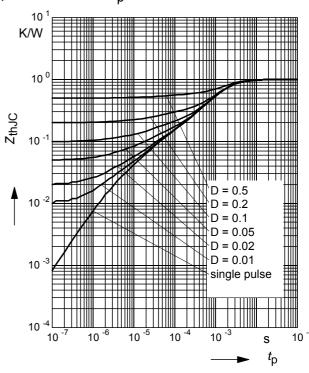
2 Safe operating area

$$I_{D} = f(V_{DS})$$


parameter : D = 0 , $T_C = 25$ °C

3 Safe operating area FullPAK

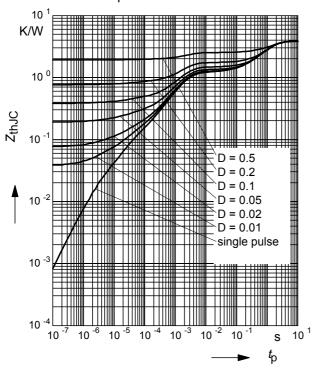
$$I_{\rm D} = f(V_{\rm DS})$$


parameter: D = 0, $T_C = 25$ °C

4 Transient thermal impedance

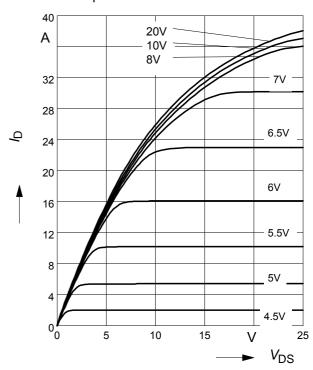
$$Z_{\mathsf{thJC}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p/T$


Rev. 2.5 Page 5 2008-02-11

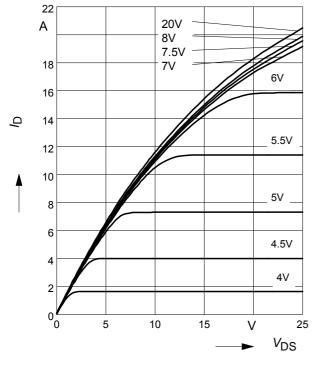
5 Transient thermal impedance FullPAK

$$Z_{\text{thJC}} = f(t_{\text{p}})$$


parameter: $D = t_D/t$

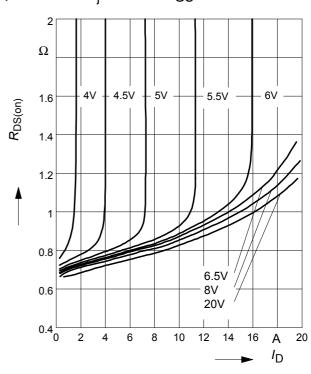
6 Typ. output characteristic

 $I_D = f(V_{DS}); T_j=25$ °C


parameter: t_p = 10 μ s, V_{GS}

7 Typ. output characteristic

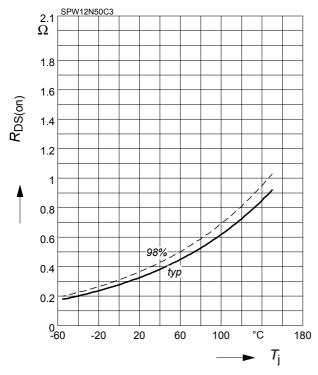
 $I_{D} = f(V_{DS}); T_{j}=150^{\circ}C$


parameter: t_p = 10 μ s, V_{GS}

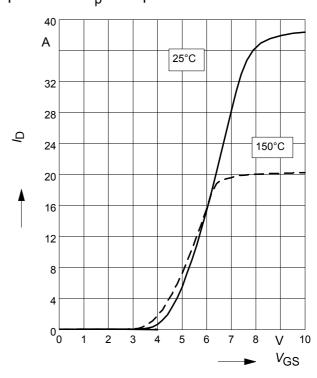
8 Typ. drain-source on resistance

 $R_{DS(on)} = f(I_D)$

parameter: T_j =150°C, V_{GS}

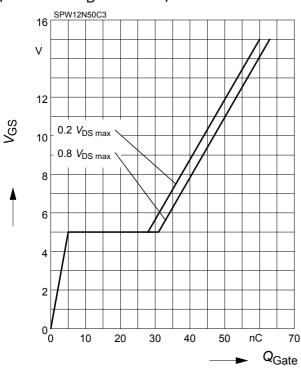

Rev. 2.5 Page 6 2008-02-11

9 Drain-source on-state resistance


 $R_{DS(on)} = f(T_i)$

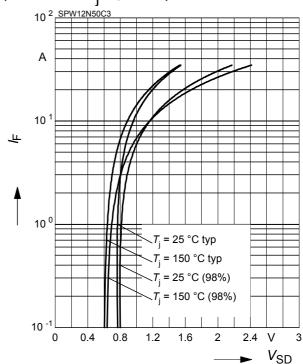
parameter : I_D = 7 A, V_{GS} = 10 V

10 Typ. transfer characteristics


 $I_{\rm D}$ = f ($V_{\rm GS}$); $V_{\rm DS}$ \geq 2 x $I_{\rm D}$ x $R_{\rm DS(on)max}$ parameter: $t_{\rm D}$ = 10 μ s

11 Typ. gate charge

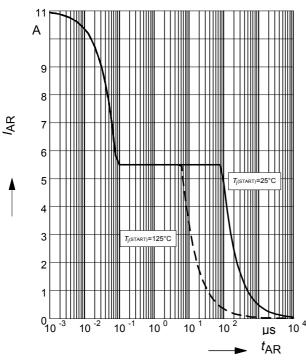
 $V_{GS} = f (Q_{Gate})$


parameter: I_D = 11.6 A pulsed

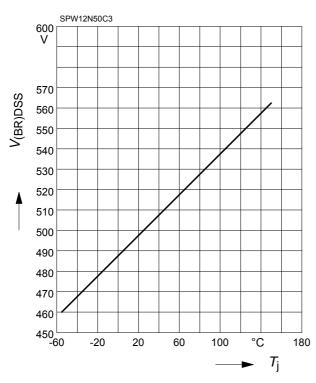
12 Forward characteristics of body diode

 $I_{\mathsf{F}} = f\left(\mathsf{V}_{\mathsf{SD}}\right)$

parameter: T_j , t_p = 10 μs

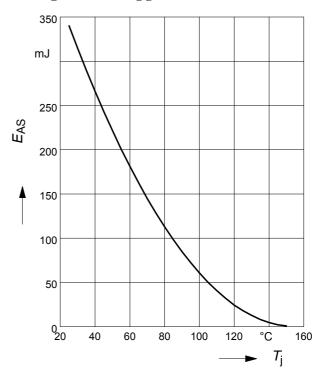

Rev. 2.5 Page 7 2008-02-11

13 Avalanche SOA


 $I_{AR} = f(t_{AR})$

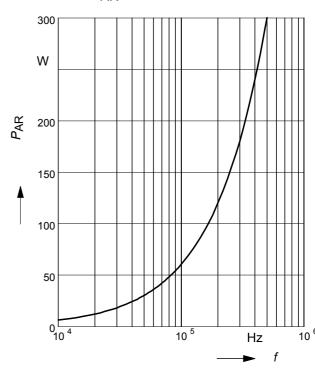
par.: *T*_i ≤ 150 °C

15 Drain-source breakdown voltage


 $V_{(BR)DSS} = f(T_j)$

14 Avalanche energy

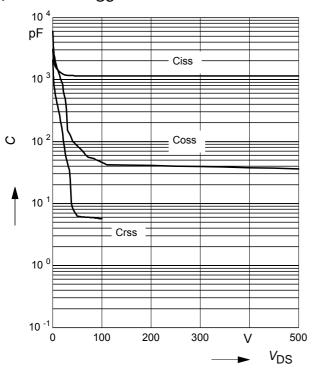
 $E_{AS} = f(T_j)$


par.: $I_D = 5.5 \text{ A}, V_{DD} = 50 \text{ V}$

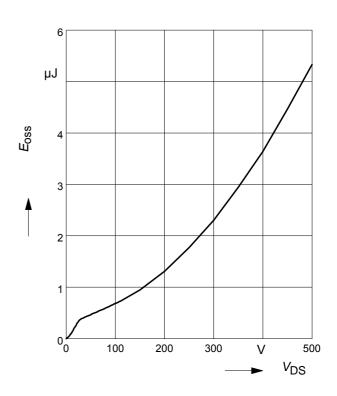
16 Avalanche power losses

 $P_{\mathsf{AR}} = f(f)$

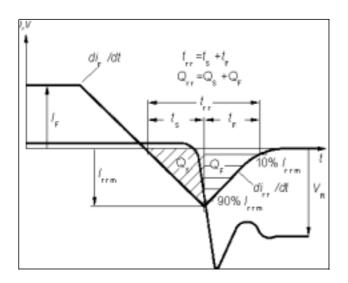
parameter: E_{AR}=0.6mJ


Rev. 2.5 Page 8 2008-02-11

17 Typ. capacitances

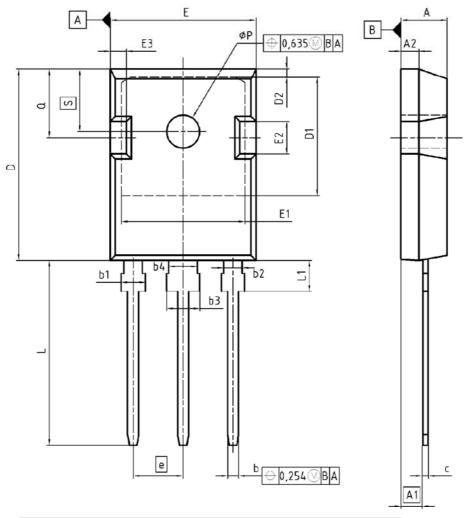

 $C = f(V_{DS})$

parameter: V_{GS} =0V, f=1 MHz

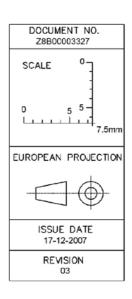


18 Typ. $C_{\rm OSS}$ stored energy

$$E_{\text{oss}} = f(V_{\text{DS}})$$



Definition of diodes switching characteristics



PG-TO-247-3-1

DIM	MILLIM	ETERS	INCH	IES
ЫМ	MIN	MAX	MIN	MAX
Α	4.90	5.16	0.193	0.203
A1	2.27	2.53	0.089	0.099
A2	1.85	2.11	0.073	0.083
Ь	1.07	1.33	0.042	0.052
b1	1.90	2.41	0.075	0.095
b2	1.90	2.16	0.075	0.085
b3	2.87	3.38	0.113	0.133
b4	2.87	3.13	0.113	0.123
С	0.55	0.68	0.022	0.027
D	20.82	21.10	0.820	0.831
D1	16.25	17.65	0.640	0.695
D2	1.05	1.35	0.041	0.053
Ε	15.70	16.03	0.618	0.631
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.68	2.60	0.066	0.102
е	5.	44	0.2	14
N		3	(3
L	19.80	20.31	0.780	0.799
L1	4.17	4.47	0.164	0.176
øP	3.50	3.70	0.138	0.146
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

New package outlines TO-247

1 New package outlines TO-247

Assembly capacity extension for CoolMOSTM technology products assembled in lead-free package PG-TO247-3 at subcontractor ASE (Weihai) Inc., China (Changes are marked in blue.)

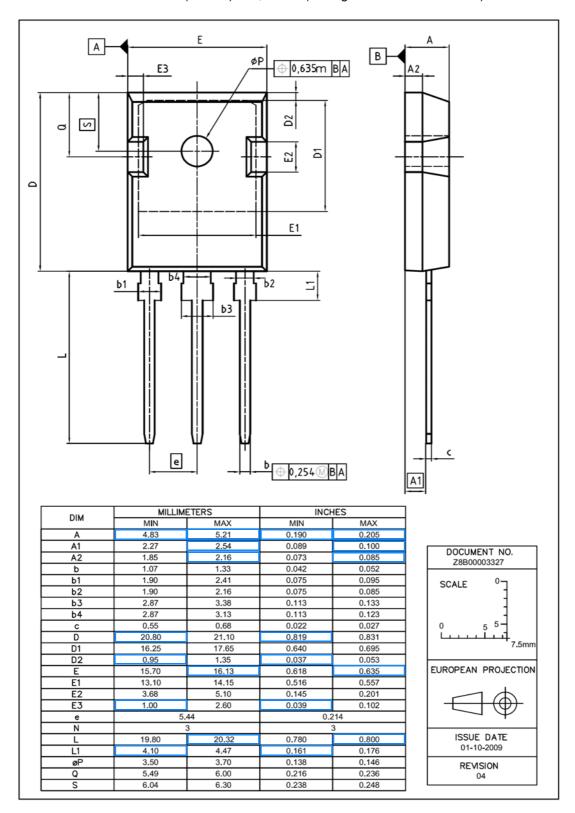


Figure 1 Outlines TO-247, dimensions in mm/inches

Final Data Sheet Erratum Rev. 2.0, 2010-02-01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3