STK433-060N-E

Thick-Film Hybrid IC

2ch class-AB Audio Power IC 50W+50W

Overview

The STK433-060N-E is a hybrid IC designed to be used in $50 \mathrm{~W} \times 2 \mathrm{ch}$ class AB audio power amplifiers.

Application

- Audio Power amplifiers

Features

- Pin-to-pin compatible outputs ranging from 40 W to 150 W .
- Miniature package.
- Output load impedance: $\mathrm{R}_{\mathrm{L}}=6 \Omega$ recommended.
- Allowable load shorted time: 0.3 second
- Allows the use of predesigned applications for standby and mute circuit.

Series model

	STK433-040N-E	STK433-060N-E	STK433-130N-E
Output1 $(10 \% / 1 \mathrm{kHz})$	$40 \mathrm{~W} \times 2 \mathrm{ch}$	$50 \mathrm{~W} \times 2 \mathrm{ch}$	$150 \mathrm{~W} \times 2 \mathrm{ch}$
Output2 $(0.4 \% / 20 \mathrm{~Hz}$ to 20 kHz$)$	$25 \mathrm{~W} \times 2 \mathrm{ch}$	$35 \mathrm{~W} \times 2 \mathrm{ch}$	$100 \mathrm{~W} \times 2 \mathrm{ch}$
Max. rating V_{CC} (quiescent)	$\pm 38 \mathrm{~V}$	$\pm 46 \mathrm{~V}$	$\pm 71.5 \mathrm{~V}$
Max. rating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 36 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 63 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 24 \mathrm{~V}$	$\pm 27 \mathrm{~V}$	$\pm 44 \mathrm{~V}$
Dimensions (excluding pin height)	$47.0 \mathrm{~mm} \times 25.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$		$67.0 \mathrm{~mm} \times 25.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$

	STK433-330N-E	STK433-840N-E	STK433-890N-E
Output1 $(10 \% / 1 \mathrm{kHz})$	$150 \mathrm{~W} \times 3 \mathrm{ch}$	$40 \mathrm{~W} \times 4 \mathrm{ch}$	$80 \mathrm{~W} \times 4 \mathrm{ch}$
Output2 $(0.4 \% / 20 \mathrm{~Hz}$ to 20 kHz$)$	$100 \mathrm{~W} \times 3 \mathrm{ch}$	$25 \mathrm{~W} \times 4 \mathrm{ch}$	$50 \mathrm{~W} \times 4 \mathrm{ch}$
Max. rating V_{CC} (quiescent)	$\pm 71.5 \mathrm{~V}$	$\pm 38 \mathrm{~V}$	$\pm 54 \mathrm{~V}$
Max. rating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 63 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 47 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{CC}}(6 \Omega)$	$\pm 44 \mathrm{~V}$	$\pm 25 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Dimensions (excluding pin height)	$64.0 \mathrm{~mm} \times 36.6 \mathrm{~mm} \times 9.0 \mathrm{~mm}$	$64.0 \mathrm{~mm} \times 31.1 \mathrm{~mm} \times 9.0 \mathrm{~mm}$	$78.0 \mathrm{~mm} \times 44.1 \mathrm{~mm} \times 9.0 \mathrm{~mm}$

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	$\mathrm{V}_{\text {CC }} \max$ (0)	Non- signal	± 46	V
	$V_{\text {CC }}$ max (1)	Signal, $\mathrm{R}_{\mathrm{L}} \geq 6 \Omega$	± 40	V
	$V_{\text {CC }}$ max (2)	Signal, $\mathrm{R}_{\mathrm{L}} \geq 4 \Omega$	± 33	V
Minimum operation supply voltage	$V_{C C}$ min		± 10	V
\#13 Operating voltage *5	VST OFF max	\#13 voltage	-0.3 to +5.5	V
Thermal resistance	өj-c	Per one power transistor	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature	Tj max	Should satisfy Tj max and Tc max	150	${ }^{\circ} \mathrm{C}$
Operating substrate temperature	Tc max		125	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-30 to +125	${ }^{\circ} \mathrm{C}$
Allowable time for load short-circuit	ts	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 27 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{f}=50 \mathrm{~Hz} \\ & \mathrm{P}_{\mathrm{O}}=35 \mathrm{~W}, 1 \mathrm{ch} \text { drive } \end{aligned}$	0.3	s

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

Operating Characteristics at $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=6 \Omega$ (Non-inductive Load), $\mathrm{Rg}=600 \Omega, \mathrm{VG}=30 \mathrm{~dB}$

Parameter	Symbol	Conditions *2					Ratings			Unit
		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ {[\mathrm{~V}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{~Hz}]} \end{gathered}$	$\begin{aligned} & \text { Po } \\ & \text { [W] } \end{aligned}$	$\begin{gathered} \text { THD } \\ \text { [\%] } \end{gathered}$		min	typ	max	
Output power *1	PO 1	± 27	20 to 20k		0.4		33	35		W
	$\mathrm{P}_{\mathrm{O}} 2$	± 27	1k		10			50		
	PO^{3}	± 22	1k		1	$\mathrm{R}_{\mathrm{L}}=4 \Omega$		35		
Total harmonic distortion *1	THD 1	± 27	20 to 20k	5.0		$\mathrm{VG}=30 \mathrm{~dB}$			0.4	\%
	THD 2	± 27	1k					0.02		
Frequency characteristics *1	$\mathrm{f}_{\mathrm{L}}, \mathrm{f}_{\mathrm{H}}$	± 27		1.0		+0-3dB	20 to 50 k			Hz
Input impedance	ri	± 27	1k	1.0				55		$\mathrm{k} \Omega$
Output noise voltage *3	V_{NO}	± 33				$\mathrm{Rg}=2.2 \mathrm{k} \Omega$			1.0	mVrms
Quiescent current	ICCO	± 33				No load	15	30	70	mA
Quiescent current at stand-by	ICST	± 33				$\mathrm{VST}=0 \mathrm{~V}$			1.0	mA
Output neutral voltage	V_{N}	± 33					-70	0	+70	mV
\#13 Stand-by ON threshold *5	VST ON	± 27				Stand-by		0	0.6	V
\#13 Stand-by OFF threshold *5	VST OFF	± 27				Operation	2.5	3.0	5.5	V

Note

*1. 1channel operation.
*2. All tests are measured using a constant-voltage supply unless otherwise specified
*3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply $(50 \mathrm{~Hz})$ should be used to eliminate the effects of AC primary line flicker noise
*4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
*5. The impression voltage of '\#13 (Stand-By) pin’ must not exceed the maximum rating.
Power amplifier operate by impressing voltage +2.5 to +5.5 V to ' $\# 13$ (Stand-By) pin'.

* Please connect - PreVCC pin (\#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
* In case of heat sink design, we request customer to design in the condition to have assumed market.
* The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).
* Weight of HIC : (typ) 12.0 g

Outer carton dimensions $(\mathrm{W} \times \mathrm{L} \times \mathrm{H}): 452 \mathrm{~mm} \times 325 \mathrm{~mm} \times 192 \mathrm{~mm}$

Specified transformer power supply
(Equivalent to MG-200)

Package Dimensions

unit : mm (typ)

RoHS directive pass

Equivalent Circuit

Application Circuit

PCB Layout Example

Top view

STK433-040N-E/060N-E/130N-E/330N-E PCB PARTS LIST

PCB Name : STK433-000Sr GEVB - A

Location No. (*2) 2ch Amp doesn't mount parts of ().		RATING	Component			
Hybrid IC\#1 Pin Position		-	STK433-			
		040N-E	060N-E	$\begin{aligned} & 130 \mathrm{~N}-\mathrm{E} / \\ & 330 \mathrm{~N}-\mathrm{E} \end{aligned}$		
			100ת, 1W	-		
R02, R03, (R04)		$1 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$	-			
R05, R06, (R07), R08, R09, (R10)		56K Ω, 1/6W	-			
R11, R12, (R13)		1.8K $\Omega, 1 / 6 \mathrm{~W}$	\bigcirc			
R14, R15, (R16)		4.7 Ω, 1/4W	-			
R17, R18, (R19)		4.7 Ω, 1W	-			
R20, R21, (R22)		0.22, 2 W	-	-	-	
		0.22, 5 , W	-	-	-	
C01, C02, C03, C23		100 $\mathrm{F}, 100 \mathrm{~V}$	-			
C04, C05, (C06)		$2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$	-			
C07, C08, (C09)		470pF, 50V	-			
C10, C11, (C12)		3 pF , 50V	\bigcirc			
C13, C14, (C15)		$10 \mu \mathrm{~F}, 16 \mathrm{~V}$	-			
C16, C17, (C18)		$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	-			
C19, C20, (C21)		${ }^{* * *} \mathrm{pF}, 50 \mathrm{~V}$	100pF	56pF	N.C.	
R34, R35, (R36)		Jumper	Short			
L01, L02, (L03)		$3 \mu \mathrm{H}$	\bigcirc			
Stand-By Control Circuit	Tr1	VCE $\geq 75 \mathrm{~V}$, IC $\geq 1 \mathrm{~mA}$	-			
	D1	Di	\bigcirc			
	R30 (*2)	2.7k Ω, 1/6W	○ (*2)			
	R31	33k Ω, 1/6W	\bigcirc			
	R32	$1 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$	-			
	R33	2k $\Omega, 1 / 6 \mathrm{~W}$	-			
	C32	$33 \mu \mathrm{~F}, 10 \mathrm{~V}$	-			
J1, J2, J3, J4, J5, J6, J8, J9		Jumper	\bigcirc			
$\begin{aligned} & \text { J7, JS2, JS3, JS4, JS5, JS7 } \\ & \text { JS8, JS9 } \end{aligned}$		-	-			
JS6, JS10		Jumper	-			
JS1 (R23)		100 2 , 1W	\bigcirc			

(*1) STK433-040N-E/060N-E/130N-E (2ch Amp) doesn't mount parts of ()
(*2) Recommended standby circuit is used.

Recommended external components

STK433-040N-E/060N-E/130N-E/330N-E

Parts Location	Recommended value	Circuit purpose	Above Recommended value	Below Recommended value
R01, R23	100ת/1W	Resistance for Ripple filter. (Fuse resistance is recommended. Ripple filter is constituted with C03, C23.)	Short-through current may decrease at high frequency.	Short-through current may increase at high frequency.
R02, R03, R04	$1 \mathrm{k} \Omega$	Resistance for input filters.	-	-
R05, R06, R07	$56 \mathrm{k} \Omega$	Input impedance is determined.	Output neutral voltage(VN) shift. (It is referred that R05=R08, R06=R09)	
R08, R09, R10	$56 \mathrm{k} \Omega$	Voltage Gain (VG) is determined with R11, R12, R13	-	-
R11, R12, R13	$1.8 \mathrm{k} \Omega$	Voltage Gain (VG) is determined with R8, R9, R10 (As for VG, it is desirable to set up by R11, R12, R13)	It may oscillate. $(\mathrm{Vg}<30 \mathrm{~dB})$	With especially no problem
R14, R15, R16	4.7 Ω	Resistance for oscillation prevention.	-	-
R17, R18, R19	4.7 Ω /1W	Resistance for oscillation prevention.	-	-
R20, R21, R22	$\begin{gathered} 0.22 \Omega / 2 \mathrm{~W} \\ (040 \mathrm{~N}-\mathrm{E}, 060 \mathrm{~N}-\mathrm{E}) \\ 0.22 \Omega / 5 \mathrm{~W} \\ (130 \mathrm{~N}-\mathrm{E}, 330 \mathrm{~N}-\mathrm{E}) \end{gathered}$	This resistance is used as detection resistance of the protection circuit application.	Decrease of Maximum output Power	It may cause thermal runaway
R30	Note *5	Select Restriction resistance, for the impression voltage of '\#17 rating.	(Stand-By) pin' must no	xceed the maximum
C01, C02	$100 \mu \mathrm{~F} / 50 \mathrm{~V}$	Capacitor for oscillation prevention. - Locate near the HIC as much as possible. - Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.)	-	-
C03, C23	$100 \mu \mathrm{~F} / 50 \mathrm{~V}$	Decoupling capacitor - The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R23.)	The change in the Ripple ingredient mixed in an input side from a power supply line	
C04, C05, C06	$2.2 \mu \mathrm{~F} / 50 \mathrm{~V}$	Input coupling capacitor.(for DC current prevention.)	-	
C07, C08, C09	470pF	Input filter capacitor - A high frequency noise is reduced with the filter constituted by R02, R03, R04	-	
C10, C11, C12	3 pF	Capacitor for oscillation prevention.	It may oscillate.	
C13, C14, C15	$10 \mu \mathrm{~F} / 10 \mathrm{~V}$	Negative feedback capacitor. The cutoff frequency of a low cycle changes. $(f L=1 /(2 \pi \cdot C 13 \cdot R 11))$	The voltage gain (VG) of low frequency is extended. However, the pop noise at the time of a power supply injection also becomes large.	The voltage gain (VG) of low frequency decreases.
C16, C17, C18	$0.1 \mu \mathrm{~F}$	Capacitor for oscillation prevention.	It may oscillate.	
C19, C20, C21	$\begin{gathered} \hline 100 \mathrm{pF}(040 \mathrm{~N}-\mathrm{E}) \\ 56 \mathrm{pF}(060 \mathrm{~N}-\mathrm{E}) \\ \text { N.C. }(130 \mathrm{~N}-\mathrm{E}, \\ 330 \mathrm{~N}-\mathrm{E}) \\ \hline \end{gathered}$	Capacitor for oscillation prevention.	It may oscillate.	
L01, L02, L03	$3 \mu \mathrm{H}$	Coil for oscillation prevention.	With especially no problem	It may oscillate.

Pin Layout

[STK433-000N/-100N/-300Nsr Pin Layout]

[STK433-000N/-100N/-800Nsr Pin Layout]

Characteristic of Evaluation Board

STK433-060N-E

A Thermal Design Tip For STK433-060N-E Amplifier

[Thermal Design Conditions]

The thermal resistance $(\theta \mathrm{c}-\mathrm{a})$ of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:
(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed $125^{\circ} \mathrm{C}$

$$
\begin{equation*}
\mathrm{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Ta}<125^{\circ} \mathrm{C} \tag{1}
\end{equation*}
$$

Where Ta : the ambient temperature for the system
(Condition 2) The junction temperature of each power transistor should not exceed $150^{\circ} \mathrm{C}$

$$
\begin{equation*}
\mathrm{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Pd} / \mathrm{N} \times \theta \mathrm{j}-\mathrm{c}+\mathrm{Ta}<150^{\circ} \mathrm{C} \tag{2}
\end{equation*}
$$

Where N : the number of transistors (two for 1 channel, ten for channel) $\theta \mathrm{j}-\mathrm{c}$: the thermal resistance of each transistor (see specification)
Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).
From the formula (1) and (2), we will obtain:

$$
\begin{aligned}
& \theta \mathrm{c}-\mathrm{a}<(150-\mathrm{Ta}) / \mathrm{Pd}-\theta \mathrm{j}-\mathrm{c} / \mathrm{N}
\end{aligned}
$$

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.
Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of
$1 / 8 \mathrm{PO}$ max. (Note that the value of $1 / 8 \mathrm{PO}$ max may be varied from the country to country.)
(Sample of STK433-060N-E ; 35W $\times 2 \mathrm{ch}$)
If V_{CC} is $\pm 27 \mathrm{~V}$, and R_{L} is 6Ω, then the total power dissipation (Pd) of inside Hybrid IC is as follow;
$\mathrm{Pd}=33 \mathrm{~W}$ (at 4.375 W output power, $1 / 8$ of P_{O} max)
There are four (4) transistors in Audio Section of this Hybrid IC, and thermal resistance ($\theta \mathrm{j}-\mathrm{c}$) of each transistor is $3.5^{\circ} \mathrm{C} / \mathrm{W}$. If the ambient temperature (Ta) is guaranteed for $50^{\circ} \mathrm{C}$, then the thermal resistance $(\theta \mathrm{c}-\mathrm{a})$ of a desired heatsink should be;

$$
\begin{array}{rlrl}
& \text { From (1)' } & \theta \mathrm{c}-\mathrm{a} & <(125-50) / 33 \\
& <2.27 \\
& \text { From (2), } & \theta \mathrm{c}-\mathrm{a} & <(150-50) / 33-3.5 / 4 \\
& & <2.16
\end{array}
$$

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be $2.16^{\circ} \mathrm{C} / \mathrm{W}$.

[Note]

Above are reference only. The samples are operated with a constant power supply. Please verify the conditions when your system is actually implemented.

STK433-000N-E/100N-E series Stand-by Control \& Mute Control \& Load-Short Protection Application

[STK433-000N-E/100N-E series Stand-By Control Example]

[Feature]

- The pop noise which occurs to the time of power supply on/off can be improved substantially by recommendation Stand-By Control Application.
- Stand-By Control can be done by additionally adjusting the limitation resistance to the voltage such as micom, the set design is easy.
(Reference circuit) STK433-000N-E/100N-E series test circuit To Stand-By Control added +5 V .

[Operation explanation] \#13pin Stand-By Control Voltage VST
(1) Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode, when 13pin (VST) voltage added above 2.5 V (typ 3.0 V).
(2) Stand-By Mode

When 13pin (VST) voltage is stopped $(=0 \mathrm{~V})$, the switching transistor in the bias circuit turn off, placing the amplifier into the standby mode.
(*1) The current limiting resistor must be used to ensure that stand-by pin (13pin) voltage does not exceed its maximum rated value VST max.
(*2) The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
(*3) Determines the time constant at which the capacitor (*2) is discharged in stand-by mode.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK433-060N-E	SIP15 (Pb-Free)	25 / Bulk Box

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
EVAL-ADCMP562BRQZ EVAL-ADCMP565BPZ EVAL-ADCMP566BCPZ EVAL-ADCMP607BCPZ EVAL-ADM1191EBZ EVAL-HSOPAMP-1CPZ 125932-HMC874LC3C AD8003ACP-EBZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8040AR-EBZ AD8044AR-EBZ AD8129AR-EBZ AD8225-EVALZ ADA4853-3YRU-EBZ ADA4859-3ACP-EBZ ADA4861-3YR-EBZ ADA4862-3YR-EBZ ADA4891-3AR-EBZ ADA4950-2YCP-EBZ DEM-OPA-SOT-1B OPA653EVM LMH6553SDEVAL/NOPB EVAL-ADCMP561BRQZ AD744JR-EBZ AD8004AR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8039ART-EBZ AD8040ARU-EBZ AD8054AR-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD8232-EVALZ AD8304-EVALZ AD8335-EVALZ AD8336-EVALZ AD848JR-EBZ ADA4850-2YCP-EBZ ADA4853-2YCP-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ ADCMP380-EVALZ ADL5390-EVALZ THS4513EVM THS7347EVM 551600075-001/NOPB 551600083-001/NOPB BUF12840EVM DEM-OPA-SO-2E

