

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

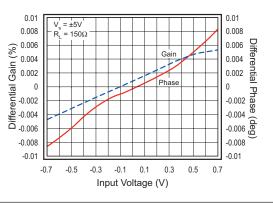
October 2006

FHP3130, FHP3230, FHP3430 Single, Dual, and Quad, High-Speed, 2.7V to 12V, Rail-to-Rail Amplifiers

Features at ±5V

- 2.5mA supply current per amplifier
- 0.008%/0.01° differential gain/phase
- 10MHz 0.1dB bandwidth
- Output voltage range at R_L = 150Ω: -4.8V to 4.8V
- Input includes negative rail
- 110V/µs slew rate
- ±100mA output current
- 17nV/√Hz input voltage noise
- >100dB PSRR, CMRR, and open-loop gain
- FHP3130 improved replacement for KM4100
- FHP3230 improved replacement for KM4200
- FHP3130 lead-free package options (SOT23-5, SOIC-8)
- FHP3230 lead-free package options (MSOP-8, SOIC-8)
- FHP3430 lead-free package options (TSSOP-14, SOIC-14)
- RoHS compliant
- Fully specified at +3V, +5V, and ±5V supplies

Applications

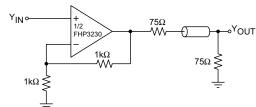

- A/D driver
- Active filters
- CCD imaging systems
- CD/DVD ROM
- Coaxial cable drivers
- Portable/battery-powered applications
- Twisted-pair driver
- Video driver

Description

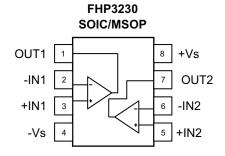
The FHP3130 (single), FHP3230 (dual), and FHP3430 (quad) are low-cost, high-performance, voltage feedback amplifiers that consume only 2.5mA of supply current per channel, while providing ± 100 mA of output current. These amplifiers are designed to operate from 2.7V to 12V (± 6 V) supplies. The common mode voltage range includes the negative rail and the output provides rail-to-rail performance.

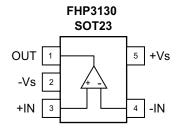
The FHP3130, FHP3230, and FHP3430 are designed on a complimentary bipolar process and provide 170MHz of bandwidth and 110V/ μ s of slew rate at a supply voltage of ±5V. The combination of low power, rail-to-rail performance, low-voltage operation, and tiny package options make these amplifiers well suited for use in many general-purpose, high-speed applications.

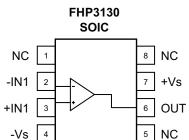
These amplifiers also provide excellent video specifications. They offer extremely low differential gain and phase (0.008%/0.01°) and 0.1dB gain flatness to 10MHz for superb standard definition video performance. Their output drive capability effortlessly supports four video loads.

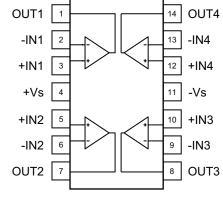


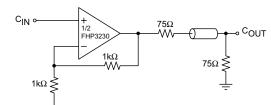
Ordering Information


Part Number	Part Number Package Pb-Free		Operating Temperature Range	Packaging Method
FHP3130IS5X	SOT23-5	Yes	-40°C to +85°C	Reel
FHP3130IM8X	SOIC-8	Yes	-40°C to +85°C	Reel
FHP3230IMU8X	MSOP-8	Yes	-40°C to +85°C	Reel
FHP3230IM8X	SOIC-8	Yes	-40°C to +85°C	Reel
FHP3430IMTC14X	TSSOP-14	Yes	-40°C to +85°C	Reel
FHP3430IM14X	SOIC-14	Yes	-40°C to +85°C	Reel


Moisture sensitivity level for all parts is MSL-1.


Typical Application - YC Video Line Driver


Pin Configurations



Pin Assignments

	FHP3230				
Pin #	Pin # Name Description				
1	OUT1	Output, channel 1			
2	-IN1	Negative Input, channel 1			
3	+IN1	Positive Input, channel 1			
4	-Vs	Negative supply			
5	+IN2	Positive Input, channel 2			
6	-IN2	Negative Input, channel 2			
7	OUT2	Output, channel 2			
8	+Vs	Positive supply			

FHP3130				
Pin # SOT/SOIC Name Descr		Description		
1/6	OUT	Output		
2/4	-Vs	Negative supply		
3/3	+IN	Positive Input		
4/2	-IN	Negative Input		
5/7	+Vs	Positive supply		
na / 1, 5, 8	NC	No Connect		

	FHP3430				
Pin #	Name	Description			
1	OUT1	Output, channel 1			
2	-IN1	Negative Input, channel 1			
3	+IN1	Positive Input, channel 1			
4	+Vs	Positive supply			
5	+IN2	Positive Input, channel 2			
6	-IN2	Negative Input, channel 2			
7	OUT2	Output, channel 2			
8	OUT3	Output, channel 3			
9	-IN3	Negative Input, channel 3			
10	+IN3	Positive Input, channel 3			
11	-Vs	Negative supply			
12	+IN4	Positive Input, channel 4			
13	-IN4	Negative Input, channel 4			
14	OUT4	Output, channel 4			

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Parameter	Min.	Max.	Unit
Supply Voltage	0	13.3	V
Input Voltage Range	-V _s -0.5V	+V _s +0.5V	V

Reliability Information

Parameter	Min.	Тур.	Max.	Unit
Junction Temperature			150	°C
Storage Temperature Range	-65		150	°C
Lead Temperature (Soldering, 10s)			300	°C
Thermal Resistance				
8-Lead SOIC ⁽¹⁾		155		°C/W
8-Lead MSOP ⁽¹⁾		246		°C/W
5-Lead SOT23 ⁽¹⁾		296		°C/W
14-Lead TSSOP ⁽¹⁾		140		°C/W
14-Lead SOIC ⁽¹⁾		128		°C/W

Notes:

1. Package thermal resistance ($\theta_{_{JA}}$), JDEC standard, multi-layer test boards, still air.

ESD Protection

Product	FHP3130		FHP	3230	FHP3430		
Package	SOT23	SOIC	SOIC	MSOP	SOIC	TSSOP	
Human Body Model (HBM)	3.5kV	>4kV	3.5kV	3.5kV	3kV	5kV	
Charged Device Model (CDM)	>2kV	>2kV	2kV	1.5kV	2kV	1.5kV	

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range	-40		+85	°C
Supply Voltage Range	2.7		12	V

Electrical Characteristics at +3V

 $T_A = 25^{\circ}C$, $V_s = 3V$, $R_L = 2k\Omega$ to $V_s/2$, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Frequency I	Domain Response			1	1	1
UGBW	-3dB Bandwidth	G = +1, V _{OUT} = 0.2V _{pp}		160		MHz
BWss	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		50		MHz
BW _{Ls}	Full Power Bandwidth	$G = +2, V_{OUT} = 1V_{pp}$		45		MHz
BW _{0.1dBss}	0.1dB Bandwidth	$G = +2, R_L = 150k\Omega,$ V _{OUT} = 0.2V _{pp}		11.5		MHz
GBWP	Gain Bandwidth Product	G = +6, V _{OUT} = 0.2V _{pp}		60		MHz
Time Domai	n Response	· · · · ·				
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step		12		ns
t _S	Settling Time to 0.1%	V _{OUT} = 2V step		90		ns
OS	Overshoot	V _{OUT} = 0.2V step		1		%
SR	Slew Rate	V _{OUT} = 2V step, G = -1		90		V/µs
Distortion/N	loise Response					
HD2	2nd Harmonic Distortion	V _{OUT} = 1V _{pp} , 5MHz		50		dBc
HD3	3rd Harmonic Distortion	V _{OUT} = 1V _{pp} , 5MHz		50		dBc
THD	Total Harmonic Distortion	V _{OUT} = 2V _{pp} , 5MHz, R _L = 100Ω, G = -1		50		dB
e _n	Input Voltage Noise	> 100kHz		17		nV/√Hz
X _{TALK}	Crosstalk	FHP3230, FHP3430 at 1MHz		62		dB
DC Perform	ance					
V _{IO}	Input Offset Voltage			1		mV
dV _{IO}	Average Drift			5		μV/°C
I _b	Input Bias Current			-1.8		μA
dl _b	Average Drift			4		nA/°C
I _{IO}	Input Offset Current			0.01		μA
PSRR	Power Supply Rejection Ratio	DC		100		dB
A _{OL}	Open-Loop Gain	DC, R _L = 150Ω		100		dB
I _S	Supply Current per Amplifier			2.5		mA
Input Chara	cteristics					
R _{IN}	Input Resistance			500		kΩ
C _{IN}	Input Capacitance			<1.5		pF
CMIR	Input Common Mode V Range			-0.3 to 2		V
CMRR	Common Mode Rejection Ratio	DC, V_{CM} = 0V to V_{s} - 1.5		95		dB
Output Cha	racteristics					
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$ to $V_s/2$, $G = -1$		0.05 to 2.95		V
		RL = 150 Ω to V _s /2, G = -1		0.1 to 2.9		V
I _{OUT}	Linear Output Current			±100		mA
I _{SC}	Short-Circuit Output Current	$V_{OUT} = V_s/2$		±120		mA

Electrical Characteristics at +5V

 $T_A = 25^{\circ}C$, $V_s = 5V$, $R_L = 2k\Omega$ to $V_s/2$, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Frequency I	Domain Response					
UGBW	-3dB Bandwidth	G = +1, V _{OUT} = 0.2V _{pp}		165		MHz
BW _{ss}	-3dB Bandwidth	G = +2, V _{OUT} = 0.2V _{pp}		50		MHz
BW _{Ls}	Full Power Bandwidth	$G = +2, V_{OUT} = 2V_{pp}$		30		MHz
BW _{0.1dBss}	0.1dB Bandwidth	$G = +2, R_L = 150k\Omega,$ V _{OUT} = 0.2V _{pp}		18		MHz
GBWP	Gain Bandwidth Product	G = +6, VOUT = 0.2V _{pp}		60		MHz
Time Domai	in Response					1
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step		12		ns
t _S	Settling Time to 0.1%	V _{OUT} = 2V step		90		ns
OS	Overshoot	V _{OUT} = 0.2V step		1		%
SR	Slew Rate	V _{OUT} = 2V step, G = -1		105		V/µs
Distortion /	Noise Response			1		
HD2	2nd Harmonic Distortion	V _{OUT} = 2V _{pp} , 5MHz		56		dBc
HD3	3rd Harmonic Distortion	$V_{OUT} = 2V_{pp}, 5MHz$		65		dBc
THD	Total Harmonic Distortion	$V_{OUT} = 2V_{pp}, 5MHz$		55		dB
e _n	Input Voltage Noise	> 100kHz		17		nV/√Hz
X _{TALK}	Crosstalk	FHP3230, FHP3430 at 1MHz		62		dB
DG	Differential Gain	NTSC (3.58MHz), $R_L = 150\Omega$, AC-coupled into 220µF, $V_s = \pm 2.5V$		0.02		%
DP	Differential Phase	NTSC (3.58MHz), $R_L = 150\Omega$, AC-coupled into 220µF, $V_s = \pm 2.5V$		0.04		0
DC Perform	ance			1		1
V _{IO}	Input Offset Voltage			1		mV
dV _{IO}	Average Drift			5		µV/°C
I _b	Input Bias Current			-1.8		μΑ
dl _b	Average Drift			4		nA/°C
I _{IO}	Input Offset Current			0.01		μΑ
PSRR	Power Supply Rejection Ratio	DC		100		dB
A _{OL}	Open-Loop Gain	DC, R _I = 150Ω		100		dB
Is	Supply Current per Amplifer	· _		2.5		mA
Input Chara				1		
R _{IN}	Input Resistance			500		kΩ
C _{IN}	Input Capacitance			<1.5		pF
CMIR	Input Common Mode V Range			-0.3 to 4		V
CMRR	Common Mode Rejection Ratio	DC, V_{CM} = 0V to V_{s} - 1.5		95		dB
Output Cha				1		1
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$ to $V_8/2$		0.05 to 4.95		V
		$R_L = 150\Omega$ to $V_s/2$		0.1 to 4.9		V
I _{OUT}	Linear Output Current			±100		mA
I _{SC}	Short-Circuit Output Current	$V_{OUT} = V_s/2$		±120		mA

Electrical Characteristics at ±5V

 $T_A = 25^{\circ}C$, $V_s = \pm 5V$, $R_L = 2k\Omega$ to GND, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Frequency I	Domain Response					
UGBW	-3dB Bandwidth	G = +1, V _{OUT} = 0.2V _{pp}		170		MHz
BWss	-3dB Bandwidth	$G = +2, V_{OUT} = 0.2V_{pp}$		50		MHz
BWLs	Full Power Bandwidth	$G = +2, V_{OUT} = 2V_{pp}$		30		MHz
BW _{0.1dBss}	0.1dB Bandwidth	$G = +2, R_L = 150\Omega, V_{OUT} = 0.2V_{pp}$		10		MHz
GBWP	Gain Bandwidth Product	$G = +6, V_{OUT} = 0.2V_{pp}$		60		MHz
Time Domai	in Response	FF				
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step		12		ns
t _S	Settling Time to 0.1%	V _{OUT} = 2V step		90		ns
OS	Overshoot	V _{OUT} = 0.2V step		1		%
SR	Slew Rate	V _{OUT} = 2V step, G = -1		110		V/µs
Distortion/N	loise Response			1		
HD2	2nd Harmonic Distortion	$V_{OUT} = 2V_{pp}$, 5MHz		65		dBc
HD3	3rd Harmonic Distortion	$V_{OUT} = 2V_{pp}$, 5MHz		65		dBc
THD	Total Harmonic Distortion	$V_{OUT} = 2V_{pp}$, 5MHz		54		dB
e _n	Input Voltage Noise	> 100kHz		17		nV/√Hz
X _{TALK}	Crosstalk	FHP3230, FHP3430 at 1MHz		62		dB
DG	Differential Gain	NTSC (3.58MHz), R _L = 150 Ω , AC-coupled into 220 μ F		0.008		%
DP	Differential Phase	NTSC (3.58MHz), R _L = 150 Ω , AC-coupled into 220 μ F		0.01		0
DC Perform	ance					
V _{IO}	Input Offset Voltage ⁽¹⁾		-6	1	6	mV
dV _{IO}	Average Drift			5		µV/°C
I _b	Input Bias Current ⁽¹⁾		-4	-1.8		μA
dl _b	Average Drift			4		nA/°C
l _{IO}	Input Offset Current ⁽¹⁾		-0.8	0.01	0.8	μA
PSRR	Power Supply Rejection Ratio ⁽²⁾	DC	80	100		dB
A _{OL}	Open-Loop Gain ⁽²⁾	DC, R _L = 150Ω	80	100		dB
Is	Supply Current per Amplifier ⁽¹⁾			2.5	3.5	mA
Input Chara	cteristics	I				
R _{IN}	Input Resistance			500		kΩ
C _{IN}	Input Capacitance			<1.5		pF
CMIR	Input Common Mode V Range			-5 to 4		V
CMRR	Common Mode Rejection Ratio ⁽²⁾	DC, V _{CM} = -5V to 3.5V	75	100		dB
Output Cha	racteristics	I				
		$R_L = 2k\Omega$		±4.95		V
V _{OUT}	Output Voltage Swing	$R_{L} = 150\Omega^{(1)}$	-4.65	±4.7	4.65	V
I _{OUT}	Linear Output Current			±100		mA
I _{SC}	Short-Circuit Output Current	V _{OUT} = 0V		±120		mA

1. 100% tested at 25°C

2. Min/max guaranteed by design/characterization.

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_s = 5V$, $R_L = 2k\Omega$ to $V_s/2$ for $V_s = 5V$ and 3V, $R_L = 2k\Omega$ to GND for $V_s = \pm 5V$, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

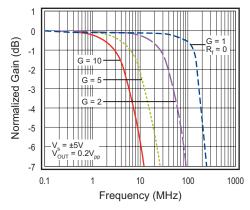


Figure 1. Non-Inverting Freq. Response (±5V)

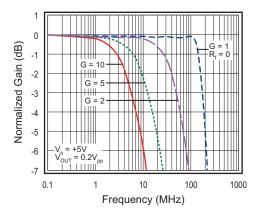


Figure 3. Non-Inverting Freq. Response (+5V)

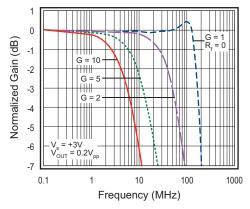


Figure 5. Non-Inverting Freq. Response (+3V)

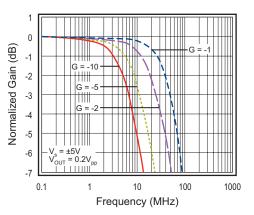


Figure 2. Inverting Freq. Response (±5V)

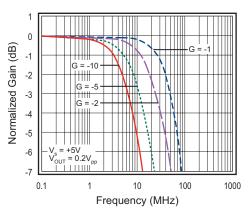


Figure 4. Inverting Freq. Response (+5V)



Figure 6. Inverting Freq. Response (+3V)

Typical Performance Characteristics - Continued

 $T_A = 25^{\circ}C$, $V_s = 5V$, $R_L = 2k\Omega$ to $V_s/2$ for $V_s = 5V$ and 3V, $R_L = 2k\Omega$ to GND for $V_s = \pm 5V$, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

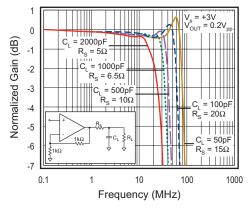


Figure 7. Frequency Response vs. C_L (+3V)

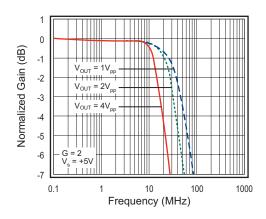


Figure 9. Large Signal Freq. Response (±5V)

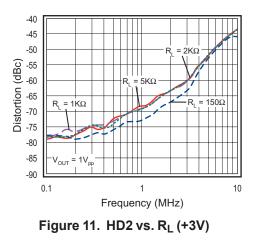


Figure 8. Frequency Response vs. R_L (+3V)

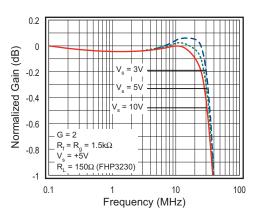
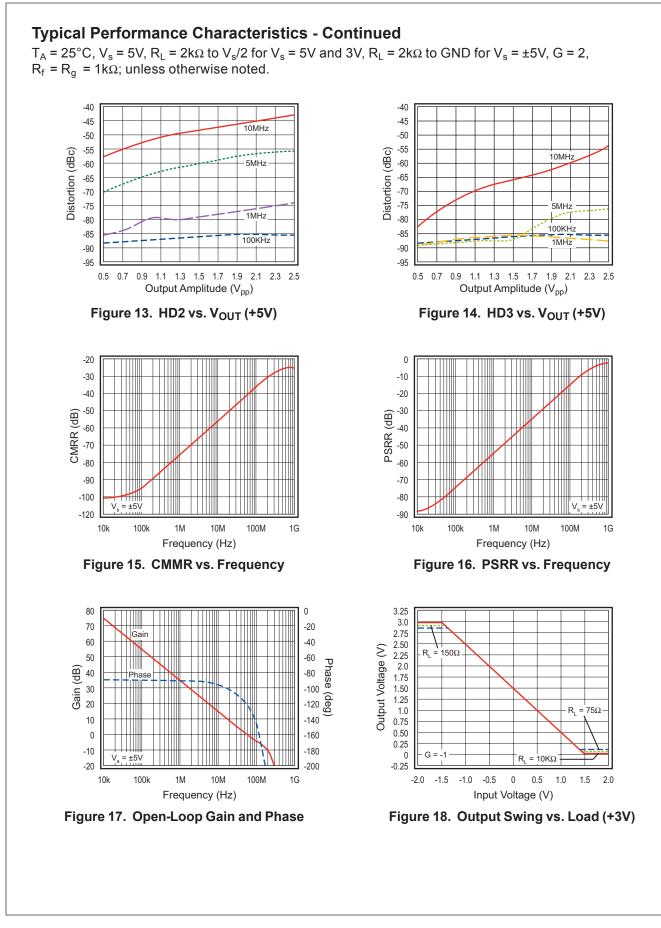



Figure 10. Gain Flatness -40 -45 -50 -55 Distortion (dBc) -60 = 5KΩ R, -65 -70 $R_1 = 2K\Omega$ -75 = 150 \, -80 -85 VOUT -90 0.1 1 10 Frequency (MHz)

Figure 12. HD2 vs. R_L (+3V)

Input Voltage Noise (nV/VHz) -35 90 -40 80

 $T_A = 25^{\circ}C$, $V_s = 5V$, $R_L = 2k\Omega$ to $V_s/2$ for $V_s = 5V$ and 3V, $R_L = 2k\Omega$ to GND for $V_s = \pm 5V$, G = 2,

Typical Performance Characteristics - Continued

 $R_f = R_g = 1k\Omega$; unless otherwise noted.

100

70

60

50

40

30

20

10

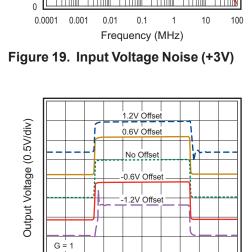


Figure 21. Pulse Resp. vs. Common Mode Voltage

Time (0.2µs/div)

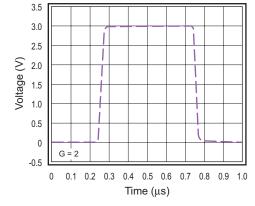


Figure 23. Large Signal Pulse Response (+5V)

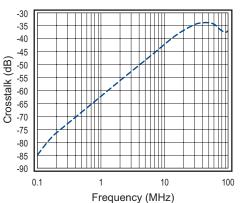


Figure 20. Crosstalk vs. Frequency (+3V)

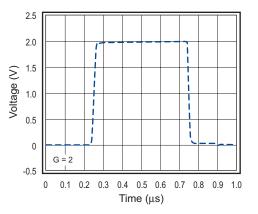


Figure 22. Large Signal Pulse Response (+3V)

Figure 24. Large Signal Pulse Response (±5V)

Typical Performance Characteristics - Continued

 $T_A = 25^{\circ}C$, $V_s = 5V$, $R_L = 2k\Omega$ to $V_s/2$ for $V_s = 5V$ and 3V, $R_L = 2k\Omega$ to GND for $V_s = \pm 5V$, G = 2, $R_f = R_g = 1k\Omega$; unless otherwise noted.

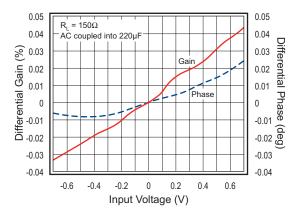


Figure 25. Differential Gain and Phase (±2.5)

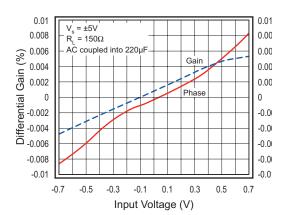


Figure 26. Differential Gain and Phase (±5)

Application Information

Driving Capacitive Loads

The FREQUENCY RESPONSE VS. C_L plot in Figure 7, illustrates the response of the FHP3230 Family. A small series resistance (R_s) at the output of the amplifier, illustrated in Figure 27, improves stability and settling performance. R_s values in the FREQUENCY RESPONSE VS. C_L plot were chosen to achieve maximum bandwidth with less than 1dB of peaking. For maximum flatness, use a larger R_s.

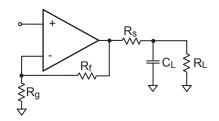


Figure 27. Typical Topology for Driving Capactive Loads

Power Dissipation

The maximum internal power dissipation allowed is directly related to the maximum junction temperature. If the maximum junction temperature exceeds 150°C for an extended time, device failure may occur.

The FHP3130, FHP3230, and FHP3430 are short-circuit protected; however, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. RMS Power Dissipation can be calculated using the following equation:

Power Dissipation = $I_s * (V_s + -V_s -) + (V_s + -V_{o(RMS)}) * I_{OUT(RMS)}$

where I_s is the supply current, V_{s+} is the positive supply pin voltage, V_{s-} is the negative supply pin voltage, V_{o(RMS)} is the RMS output voltage, and I_{OUT(RMS)} is the RMS output current delivered to the load.

Follow the maximum power derating curves shown in Figure 28 below to ensure proper operation.

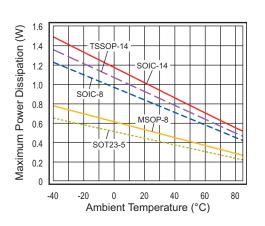


Figure 28. Maximum Power Derating

Overdrive Recovery

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The FHP3130/3230/3430 typically recovers in less than 50ns from an overdrive condition. Figure 29 shows the FHP3230 in an overdriven condition.

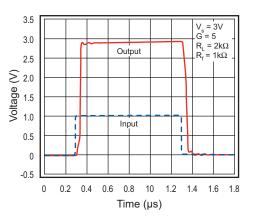
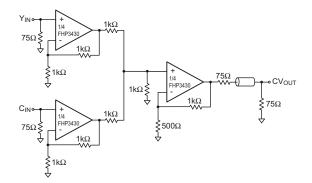



Figure 29. Overdrive Recovery

Composite Video Summer

The bandwidth and differential gain/phase performance of the FHP3130/3230/3430 amplifiers make them well suited for video applications. Figure 30 shows a typical Composite Video Summer. The high output current capability allows for driving multiple video loads. Figure 31 shows the resulting differential gain/phase of this threeamplifier configuration driving four video loads, or 37.5Ω .

Layout Considerations

General layout and supply bypassing play major roles in high-frequency performance. Fairchild has evaluation boards to guide high-frequency layout and aid device testing and characterization. Follow the guidelines below as a basis for high-frequency layout:

- Include 6.8µF and 0.01µF ceramic capacitors.
- Place the 6.8µF capacitor within 0.75 inches of the power pin.
- Place the 0.01µF capacitor within 0.1 inches of the power pin.
- Remove the ground plane under and around the part, especially near the input and output pins, to reduce parasitic capacitance.
- Minimize all trace lengths to reduce series inductances.

Refer to the evaluation board layouts shown below for more information.

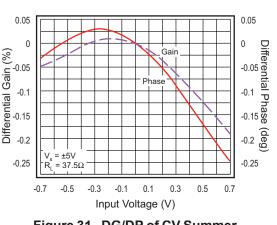


Figure 31. DG/DP of CV Summer Driving Four Video Loads

Evaluation Board Information

The following evaluation boards are available to aid testing and layout of these devices:

Evaluation Board	Products
KEB002	FHP3130IS5X
KEB003	FHP3130IM8X
KEB010	FHP3230IMU8X
KEB006	FHP3230IM8X
KEB012	FHP3430IMTC14X
KEB018	FHP3430IM14X

Evalutaion Board Schematics

Evaluation board schematics and layouts are shown in Figures 32 – 46. These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_s to ground.
- 2. Use C3 and C4 if the -V_s pin of the amplifier is not directly connected to the ground plane.

FHP3130, FHP3230, FHP3430 Single, Dual, and Quad, High-Speed, 2.7V to 12V, Rail-to-Rail Amplifiers

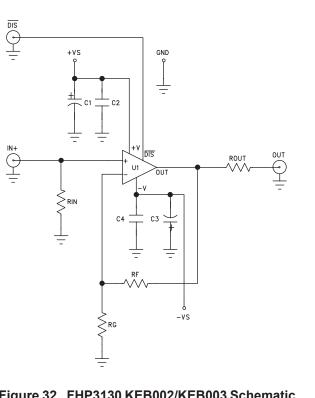


Figure 32. FHP3130 KEB002/KEB003 Schematic

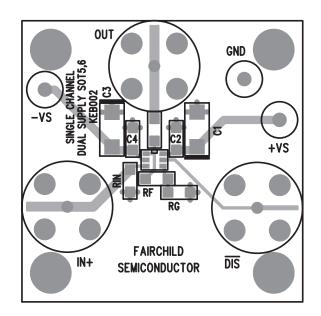


Figure 33. FHP3130 KEB002 (Top-side)

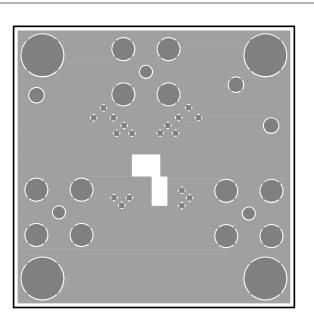


Figure 34. FHP3130 KEB002 (Bottom-side)

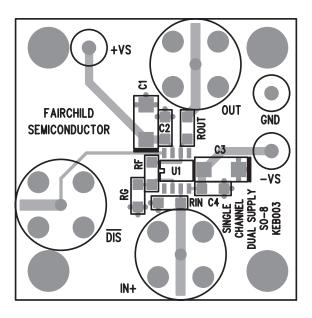


Figure 35. FHP3130 KEB003 (Top-side)

FHP3130, FHP3230, FHP3430 Single, Dual, and Quad, High-Speed, 2.7V to 12V, Rail-to-Rail Amplifiers

GND

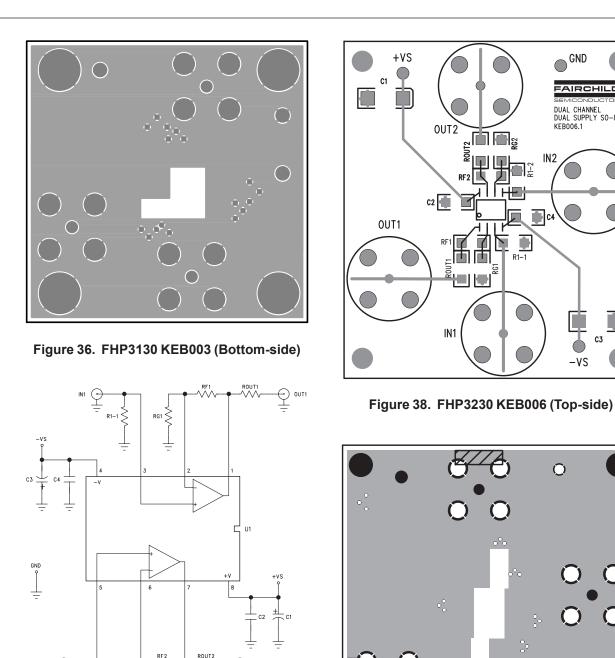
FAIRCHILD

DUAL CHANNEL DUAL SUPPLY SO-8 KEB006.1

C3 \bigcirc

-VS

O


IN2 21-2

R1-1

RG.

o°o

Figure 39. FHP3230 KEB006 (Bottom-side)

ΛΛ

OUT2

Figure 37. FHP3230 KEB006/KEB010 Schematic

IN2 C

> ≥ R1-2

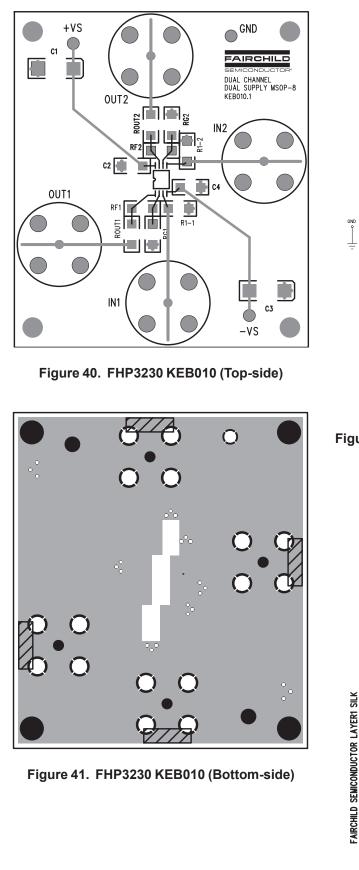
RG

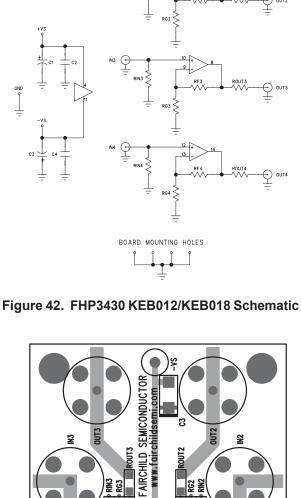
15

+VS

OUT2

C2


0UT1


IN1

ROUT2

RF

ZD

Ξ

5

ų,

SSOP SSOP

g

Figure 43. FHP3430 KEB012 (Top-side)

t0

Ť.

IN2

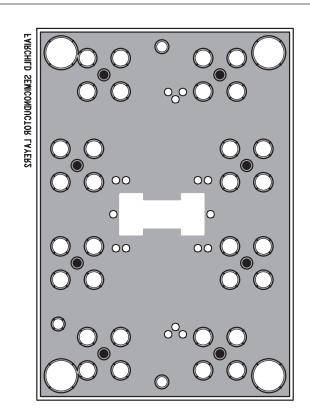
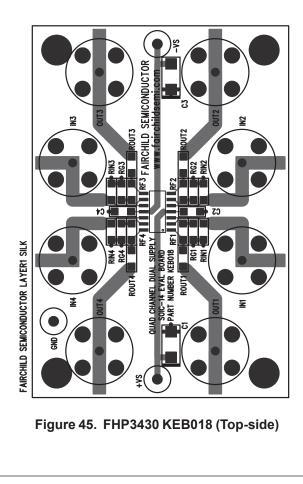



Figure 44. FHP3430 KEB012 (Bottom-side)

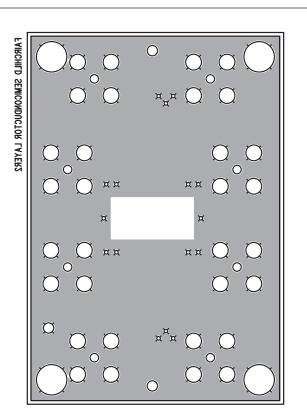
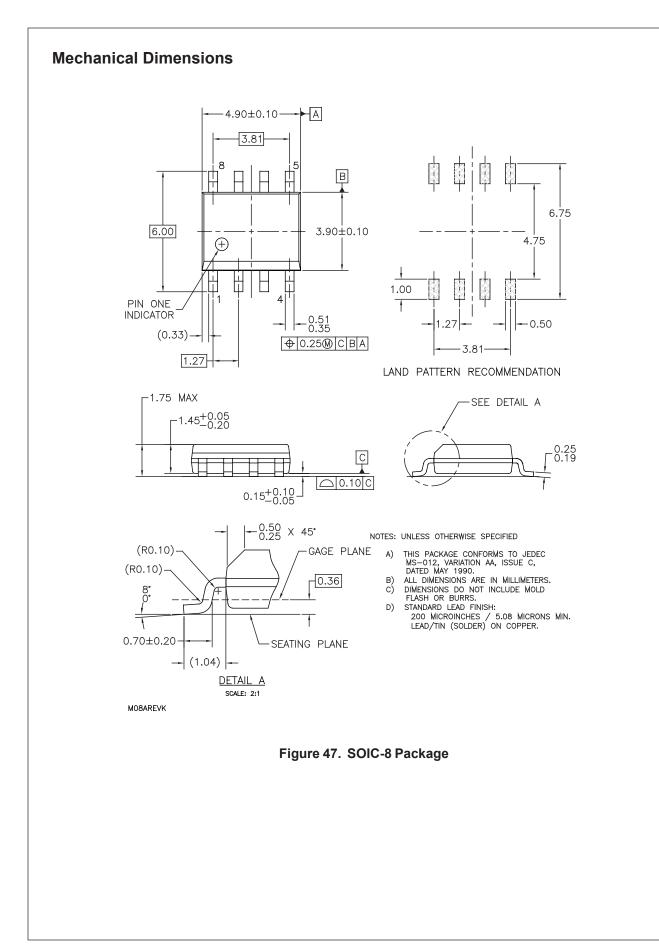
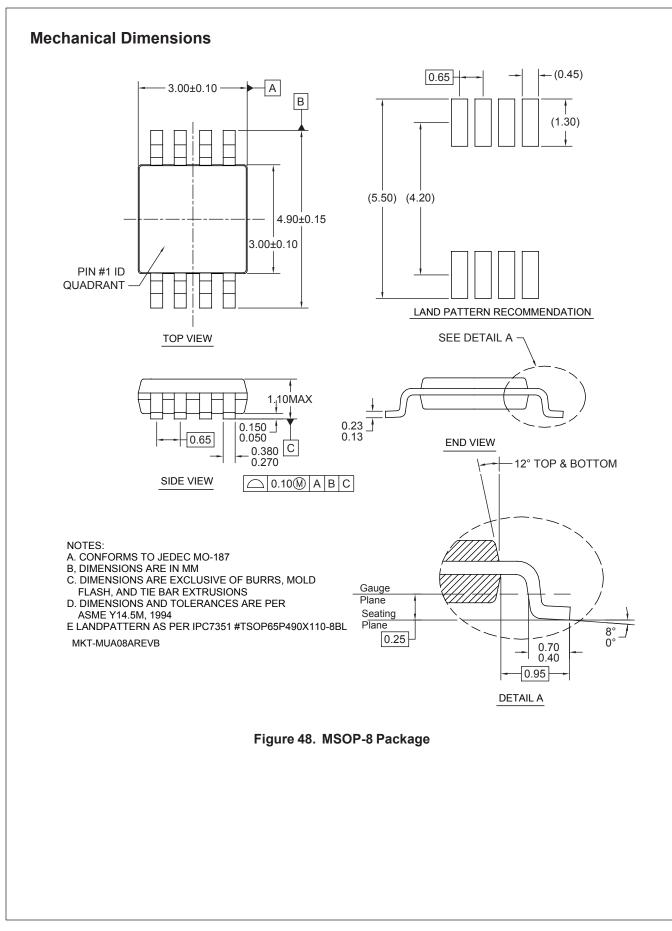
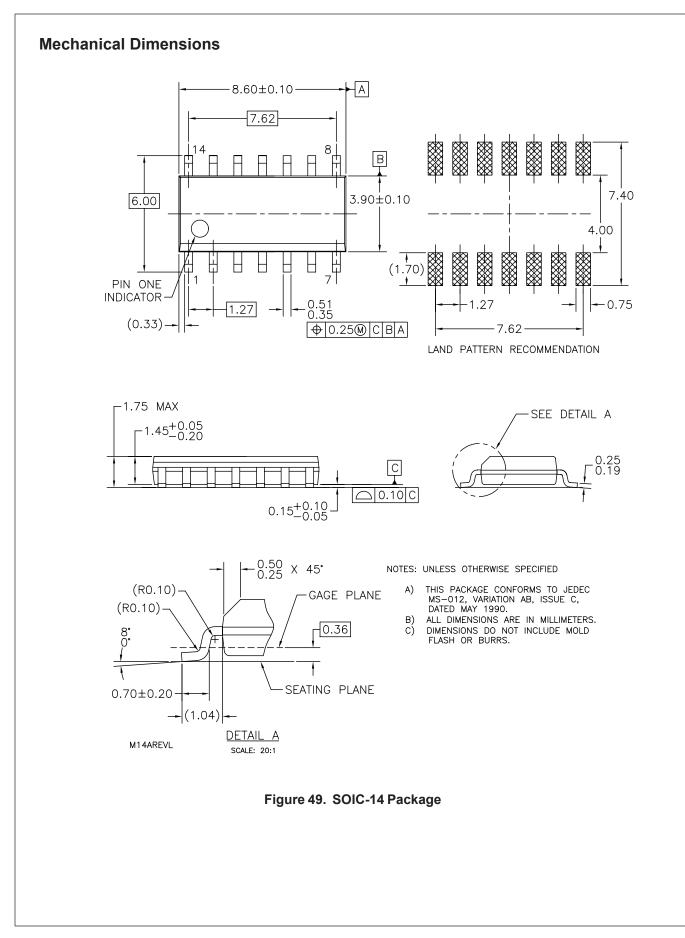
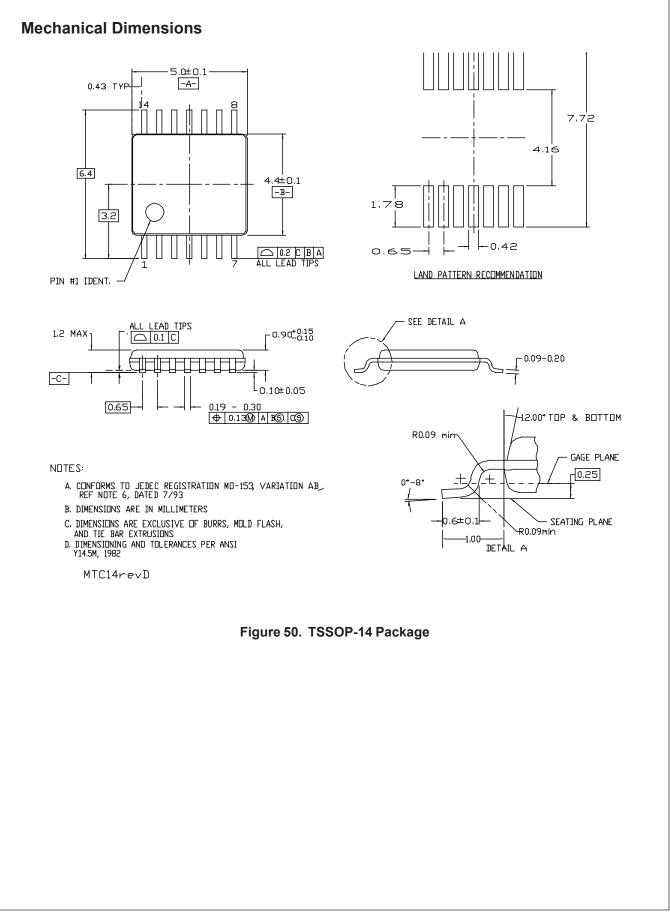






Figure 46. FHP3430 KEB018 (Bottom-side)

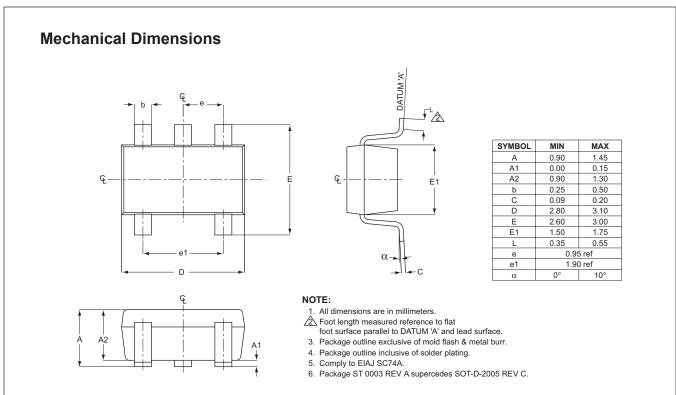


Figure 51. SOT23-5 Package

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	UltraFET ®
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™	VCX™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	Wire™
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT™	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST [®]	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. Around the world.™		µSerDes™	TruTranslation™	
The Power Franchise [®]		ScalarPump™	UHC™	
Programmable Active Droop™				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Definition **Product Status** This datasheet contains the design specifications for Advance Information Formative or In Design product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed **Full Production** This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Not In Production This datasheet contains specifications on a product Obsolete that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. 120

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Amplifier IC Development Tools category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

EVAL-ADCMP562BRQZ EVAL-ADCMP565BPZ EVAL-ADCMP566BCPZ EVAL-ADCMP607BCPZ EVAL-ADM1191EBZ EVAL-HSOPAMP-1CPZ 125932-HMC874LC3C AD8003ACP-EBZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8040AR-EBZ AD8044AR-EBZ AD8129AR-EBZ AD8225-EVALZ ADA4853-3YRU-EBZ ADA4859-3ACP-EBZ ADA4861-3YR-EBZ ADA4862-3YR-EBZ ADA4891-3AR-EBZ ADA4950-2YCP-EBZ DEM-OPA-SOT-1B OPA653EVM LMH6553SDEVAL/NOPB EVAL-ADCMP561BRQZ AD744JR-EBZ AD8004AR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8039ART-EBZ AD8040ARU-EBZ AD8054AR-EBZ AD8073JR-EBZ AD8004AR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8039ART-EBZ AD8040ARU-EBZ AD8054AR-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD8232-EVALZ AD8304-EVALZ AD8335-EVALZ AD8336-EVALZ AD848JR-EBZ ADA4850-2YCP-EBZ ADA4853-2YCP-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ ADCMP380-EVALZ ADL5390-EVALZ THS4513EVM THS7347EVM 551600075-001/NOPB 551600083-001/NOPB BUF12840EVM DEM-OPA-SO-2E