## Compact \& Powerful Inverter Starvert iG5A

0.4~1.5kW 1phase 200~230Volts
0.4~22kW 3Phase 200~230Volts
0.4~22kW 3Phase 380~480Volts


Drive Solution


## STIndustrial Systems

## Inverter STARVERT iG5A

LS Starvert iG5A is very competitive in its price and shows an upgraded functional strength. User-friendly interface, extended inverter ranges up to 22 kW , superb torque competence and small size of iG5A provides an optimum use environment.


Compactness



## Powerful \& Upgraded Performance

iG5A provides sensorless vector control, PID control, and ground-fault protection through powerful built-in functions.

## Sensorless vector control

The built-in sensorless vector control provides the superb speed control and powerful high torque.

Ground-fault protection during running

The ground-fault protection of output terminal is possible during running.

## Analog control from -10V to 10V

Inputting analog signals from -10 V to 10 V provides user-friendly operation.


## Built-in PID control

The built-in PID function enables to control flow-rate, oil-pressure, temperature, etc without any extra controller.


Built-in dynamic braking circuit
The built-in dynamic braking circuit minimizes deceleration time via braking resistors.

## Built-in 485 communication



The built-in RS-485 communication supports remote control and monitoring between iG5A and other equipment.

Wide product range
iG5A consists of the product range from 0.4 to 22 KW .


## User-friendly Interface \& Easy Maintenance

The parameter setting becomes easier by adopting the 4 directions key. And iG5A supports easy maintenance via diagnosis and fan changeable structure.

## Diagnosis of output module

Through easy parameter setting, iG5A can diagnose the status of output module.

## Easy change of fan

iG5A is designed to be the fan changeable structure in preparation for a fan breakdown.


## Cooling fan control

By controlling the cooling fan, iG5A provides a virtually quiet environment according to the status of operation.

## User-friendly interface

The 4 directions key provides easy handling and monitoring.

## External loader (Optional)

The external loader away from a panel enables to control and monitor conveniently. And the parameters made by external loader can be copied and applicable to other Inverters.


## Compact Size

The compact size achieves cost-efficiency and various applications.

Same height from 0.4 to 4.0 kW ( 128 mm )


Global standard
iG5A series complies with CE and UL standards.

- PNP/NPN input

Both PNP and NPN inputs become possible and these enable to use the outer power.
To do so, users will be given wider choices of selecting the controller.

## Model \& Type

Applicable motor ranges


## Standard Specifications

## : 1 Phase 200V

| SV $\square \square \square$ iG5A-1 $\square \square$ |  | 004 | 008 | 015 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Max. } \\ & \text { capacity 1) } \end{aligned}$ | (HP) | 0.5 | 1 | 2 |
|  | (kW) | 0.4 | 0.75 | 1.5 |
| Output rating | Capacity (kVA) ${ }^{2}$ | 0.95 | 1.9 | 3.0 |
|  | FLA (A) ${ }^{3)}$ | 2.5 | 5 | 8 |
|  | Max frequency | $400[\mathrm{~Hz}]{ }^{4}$ |  |  |
|  | Max voltage | 3 phase 200~230V 5) |  |  |
| Input <br> rating | Rated voltage | 1phase 200~230 VAC (+10\%, -15\%) |  |  |
|  | Rated frequency | $50 \sim 60[\mathrm{~Hz}]( \pm 5 \%)$ |  |  |
| Cooling method |  | Forced air cooling |  |  |
| Weight (kg) |  | 0.76 | 1.12 | 1.84 |

## : 3 Phase 200V

| SV $\square \square \square$ iG5A-2 $\square \square$ |  | 004 | 008 | 015 | 022 | 037 | 040 | 055 | 075 | 110 | 150 | 185 | 220 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. capacity ${ }^{1)}$ | (HP) | 0.5 | 1 | 2 | 3 | 5 | 5.4 | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  | (kW) | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Output rating | Capacity (kVA) ${ }^{2)}$ | 0.95 | 1.9 | 3.0 | 4.5 | 6.1 | 6.5 | 9.1 | 12.2 | 17.5 | 22.9 | 28.2 | 33.5 |
|  | FLA (A) ${ }^{3)}$ | 2.5 | 5 | 8 | 12 | 16 | 17 | 24 | 32 | 46 | 60 | 74 | 88 |
|  | Max frequency | $400[\mathrm{~Hz}]$ 4) |  |  |  |  |  |  |  |  |  |  |  |
|  | Max voltage | 3 phase 200~230V 5) |  |  |  |  |  |  |  |  |  |  |  |
| Input rating | Rated voltage | 3 phase 200~230 ( $+10 \%$, $-15 \%$ ) |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated frequency | $50 \sim 60[\mathrm{~Hz}]( \pm 5 \%)$ |  |  |  |  |  |  |  |  |  |  |  |
| Cooling method |  | $\mathrm{N} / \mathrm{C}^{6)}$ | Forced air cooling |  |  |  |  |  |  |  |  |  |  |
| Weight (kg) |  | 0.76 | 0.77 | 1.12 | 1.84 | 1.89 | 1.89 | 3.66 | 3.66 | 9.0 | 9.0 | 13.3 | 13.3 |

: 3 Phase 400V

| SV $\square \square \square$ iG5A-4 $\square \square$ |  | 004 | 008 | 015 | 022 | 037 | 040 | 055 | 075 | 110 | 150 | 185 | 220 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. capacity 1) | (HP) | 0.5 | 1 | 2 | 3 | 5 | 5.4 | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  | (kW) | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Output rating | Capacity (kVA) ${ }^{\text {2) }}$ | 0.95 | 1.9 | 3.0 | 4.5 | 6.1 | 6.5 | 9.1 | 12.2 | 18.3 | 22.9 | 29.7 | 34.3 |
|  | FLA (A) ${ }^{3}$ | 1.25 | 2.5 | 4 | 6 | 8 | 9 | 12 | 16 | 24 | 30 | 39 | 45 |
|  | Max frequency | $400[\mathrm{~Hz}]$ 4) |  |  |  |  |  |  |  |  |  |  |  |
|  | Max voltage | 3 phase 380~480V ${ }^{5}$ |  |  |  |  |  |  |  |  |  |  |  |
| Input <br> rating | Rated voltage | 3 phase 380~480 VAC (+10\%, -15\%) |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated frequency | $50 \sim 60[\mathrm{~Hz}]( \pm 5 \%)$ |  |  |  |  |  |  |  |  |  |  |  |
| Cooling method |  | N/C ${ }^{6}$ | Forced air cooling |  |  |  |  |  |  |  |  |  |  |
| Weight (kg) |  | 0.76 | 0.77 | 1.12 | 1.84 | 1.89 | 1.89 | 3.66 | 3.66 | 9.0 | 9.0 | 13.3 | 13.3 |

1) Indicate the maximum applicable motor capacity when using 4 pole LS standard motor.
2) Rated capacity is based on 220 V for 200 V series and 440 V for 400 V series.
3) Refer to $15-3$ of user's manual when carrier frequency setting (39) is above 3 kHz .
4) Max. frequency setting range is extended to 300 Hz when H 40 (Control mode select) is set to 3 (Sensorless vector control).
5) Max. output voltage cannot be higher than the input voltage. It can be programmable below input voltage.
6) Self-Cooling

## Standard Specifications



[^0]
## Wiring

: 0.4~7.5kW


## Wiring

: 11.0~22.0kW


## Terminal Configuration

## : Specifications for power terminal block wiring



- $5.5 \mathrm{~kW} \sim 7.5 \mathrm{~kW}$ (3 phase)

- 1.5kW (1 phase)

- 2.2~4.0kW (3 phase)

- 11~22kW (3 phase)


|  | $\mathrm{R}, \mathrm{S}, \mathrm{T}$ wire |  | U, V, W wire |  | Ground wire |  | Terminal Screw Size | Screw Torque (kgf.cm)/ lb-in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{mm}^{2}$ | AWG | $\mathrm{mm}^{2}$ | AWG | mm ${ }^{2}$ | AWG |  |  |
| SV004iG5A-1 | 2 | 14 | 2 | 14 | 3.5 | 12 | M3.5 | 10/8.7 |
| SV008iG5A-1 | 2 | 14 | 2 | 14 | 3.5 | 12 | M3.5 | 10/8.7 |
| SV015iG5A-1 | 2 | 14 | 2 | 14 | 3.5 | 12 | M4 | 15/13 |
| SV004iG5A-2 | 2 | 14 | 2 | 14 | 3.5 | 12 | M3.5 | 10/8.7 |
| SV008iG5A-2 | 2 | 14 | 2 | 14 | 3.5 | 12 | M3.5 | 10/8.7 |
| SV015iG5A-2 | 2 | 14 | 2 | 14 | 3.5 | 12 | M3.5 | 10/8.7 |
| SV022iG5A-2 | 2 | 14 | 2 | 14 | 3.5 | 12 | M4 | 15/13 |
| SV037iG5A-2 | 3.5 | 12 | 3.5 | 12 | 3.5 | 12 | M4 | 15/13 |
| SV040iG5A-2 | 3.5 | 12 | 3.5 | 12 | 3.5 | 12 | M4 | 15/13 |
| SV055iG5A-2 | 5.5 | 10 | 5.5 | 10 | 5.5 | 10 | M5 | 32/28 |
| SV075iG5A-2 | 8 | 8 | 8 | 8 | 5.5 | 10 | M5 | 32/28 |
| SV110iG5A-2 | 14 | 6 | 14 | 6 | 14 | 6 | M6 | 30.7/26.6 |
| SV150iG5A-2 | 22 | 4 | 22 | 4 | 14 | 6 | M6 | 30.7/26.6 |
| SV185iG5A-2 | 30 | 2 | 30 | 2 | 22 | 4 | M8 | 30.5/26.5 |
| SV220iG5A-2 | 38 | 2 | 30 | 2 | 22 | 4 | M8 | 30.5/26.5 |
| SV004iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M3.5 | 10/8.7 |
| SV008iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M3.5 | 10/8.7 |
| SV015iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M4 | 15/13 |
| SV022iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M4 | 15/13 |
| SV037iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M4 | 15/13 |
| SV040iG5A-4 | 2 | 14 | 2 | 14 | 2 | 14 | M4 | 15/13 |
| SV055iG5A-4 | 3.5 | 12 | 2 | 14 | 3.5 | 12 | M5 | 32/28 |
| SV075iG5A-4 | 3.5 | 12 | 3.5 | 12 | 3.5 | 12 | M5 | 32/28 |
| SV110iG5A-4 | 5.5 | 10 | 5.5 | 10 | 8 | 8 | M5 | 30.7/26.6 |
| SV150iG5A-4 | 14 | 6 | 8 | 8 | 8 | 8 | M5 | 30.7/26.6 |
| SV185iG5A-4 | 14 | 6 | 8 | 8 | 14 | 6 | M6 | 30.5/26.5 |
| SV220iG5A-4 | 22 | 4 | 14 | 6 | 14 | 6 | M6 | 30.5/26.5 |

## Terminal Configuration

## : Control terminal specifications



| $\oplus$ | $\oplus$ | $\oplus$ |
| :--- | :--- | :--- |
| 3A | 3B | 3C | | $\oplus$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Terminal | Description | Wire size ( $\mathrm{mm}^{2}$ ) |  | Screw size | $\text { Torque }(\mathrm{Nm})^{1}$ | Specification |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Single wire | Stranded |  |  |  |
| P1~P8 | Multi-function input T/M 1-8 | 1.0 | 1.5 | M2.6 | 0.4 |  |
| CM | Common terminal | 1.0 | 1.5 | M2.6 | 0.4 |  |
| VR | Power supply for external potentiometer | 1.0 | 1.5 | M2.6 | 0.4 | Output voltage: 12V <br> Max. output current: 100 mA <br> Potentiometer: 1~5kohm |
| V1 | Input terminal for voltage operation | 1.0 | 1.5 | M2.6 | 0.4 | Max. input voltage: <br> $-12 \mathrm{~V} \sim+12 \mathrm{~V}$ input |
| I | Input terminal for current operation | 1.0 | 1.5 | M2.6 | 0.4 | 0~20mA input Internal resistor: 500ohm |
| AM | Multi-function analog output terminal | 1.0 | 1.5 | M2.6 | 0.4 | Max. output voltage: 11 V <br> Max. output current: 100 mA |
| MO | Multi-function terminal for open collector | 1.0 | 1.5 | M2.6 | 0.4 | Below DC 26V,100mA |
| MG | Ground terminal for external power supply | 1.0 | 1.5 | M2.6 | 0.4 |  |
| 24 | 24 V external power supply | 1.0 | 1.5 | M2.6 | 0.4 | Max. output current: 100 mA |
| 3A | Multi-function relay output A contact | 1.0 | 1.5 | M2.6 | 0.4 | Below AC 250V, 1A |
| 3B | Multi-function relay output B contact | 1.0 | 1.5 | M2.6 | 0.4 | Below DC 30V, 1A |
| 3 C | Common for multi-function relays | 1.0 | 1.5 | M2.6 | 0.4 |  |

1) Use the recommended tightening torque when securing terminal screws.

* When you use external power supply (24V) for multi-function input terminal (P1~P8), apply voltage higher than 12 V to activate.
* Tie the control wires more than 15 cm away from the control terminals. Otherwise, it interferes front cover reinstallation.



## Keypad Features



|  | Display | Term | Description |
| :---: | :---: | :---: | :---: |
| KEY | RUN | Run key | Run command |
|  | STOP/RESET | STOP/RESET key | STOP: Stop command during operation, RESET: Reset command when a fault occurs. |
|  | A | Up key | Used to scroll through codes or increase parameter value |
|  | $\nabla$ | Down key | Used to scroll through codes or decrease parameter value |
|  | $\checkmark$ | Right key | Used to jump to other parameter groups or move a cursor to the right to change the parameter value |
|  | 4 | Left key | Used to jump to other parameter groups or move a cursor to the left to change the parameter value |
|  | $\bullet$ | Enter key | Used to set the parameter value or save the changed parameter value |
| LED ${ }^{1)}$ | FWD | Forward run | Lit during forward run |
|  | REV | Reverse run | Lit during reverse run |
|  | RUN | Run key | Lit during operation |
|  | SET | Setting | Lit during parameter setting |

1) 4 LEDs above are set to blink when a fault occurs.


## Moving to Other Groups

## $\because$ Parameter groups

There are 4 different parameter groups in iG5A series as shown below.


| Parameter group | Description |
| :--- | :--- |
| Drive group | Basic parameters necessary for the inverter to run. Parameters such as Target frequency, Acce//Decel time settable. |
| Function group 1 | Basic function parameters to adjust output frequency and voltage. |
| Function group 2 | Advanced function parameters to set parameters for such as PID Operation and second motor operation. |
| I/O (Input/Output) group | Parameters necessary to make up a sequence using multi-function input/output terminal. |

## Moving to other groups



[^1]
## When changing ACC time from 5.0 sec to 16.0 sec



| 1 | $\begin{aligned} & 171717 \\ & 10.101 \end{aligned}$ | - In the first code "0.00", press the Up ( $\mathbf{\Delta}$ ) key once to go to the second code. |
| :---: | :---: | :---: |
| 2 | (19518 | - ACC [Accel time] is displayed. <br> - Press the Ent ( $\bullet$ ) key once. |
| 3 | 0 11 <br> 0  <br> 0 11 | - Preset value is 5.0 , and the cursor is in the digit 0 . <br> - Press the Left ( $\mathbf{4}$ ) key once to move the cursor to the left. |
| 4 | 4, $\begin{array}{r}508 \\ 0.008\end{array}$ | - The digit 5 in 5.0 is active. Then press the Up( $\mathbf{\Delta})$ key once. |
| 5 | 508 | - The value is increased to 6.0 <br> - Press the Left ( $\mathbb{4}$ ) key to move the cursor to the left. |
| 6 |  | - 0.60 is displayed. The first 0 in 0.60 is active. <br> - Press the Up ( $\mathbf{\Delta}$ ) key once. |
| 7 | 10  <br> 10 0 <br> 10 10 <br> 10000  | - 16.0 is set. <br> - Press the Ent ( $\bullet$ ) key once. <br> - 16.0 is blinking. ${ }^{1)}$ <br> - Press the Ent ( $\bullet$ ) key once again to return to the parameter name. |
| 8 | 91 <br> 101 <br> 15 | - ACC is displayed. Accel time is changed from 5.0 to 16.0 sec. |

1) Pressing the Left $(\boldsymbol{\backslash}) / \operatorname{Right}(\boldsymbol{\nabla}) / \mathrm{Up}(\mathbf{\Delta}) /$ Down $(\boldsymbol{\nabla})$ key while a cursor is blinking will cancel the parameter value change.

Pressing the Ent ( $\bullet$ ) key in this status will enter the value into memory.
※ In step 7, pressing the Left ( $\langle$ ) or Right $(>)$ key while 16.0 is blinking will disable the setting.

## Code change in Drive group




## Trial Run

## : : Multi-step operation + Run/Stop via FX/RX + Max. frequency change

## Operation condition

Operation command:
Run/Stop via FX/RX

Frequency command: Multi-step operation [Low (20), Middle (30), High (80)]

Max. frequency change:
From 60 Hz to 80 Hz

## Wiring



1. Please make sure that R, S, T are connected to 3 phase AC input, and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are also motor connection terminals.
2. After supplying the power, please set the frequency of multi-step among Low, Middle, and High.
3. If P1 (FX) turns on, the motor operates in forward. And after turning off, it stops according to the deceleration time.
4. If $\mathrm{P} 2(\mathrm{RX})$ turns on, the motor operates in reverse. And after turning off, it stops according to the deceleration time.

## Parameter setting

| Step | Command | Code | Description | Default | After change |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1}$ | Max. frequency change (FU1) | F21 | Change Max. frequency. | 60 Hz | 80 Hz |
| $\mathbf{2}$ | Multi-step frequency (DRV) | st1 | Set 'Low' step. | 10 Hz | 20 Hz |
| $\mathbf{3}$ | Multi-step frequency (DRV) | st2 | Set 'Middle' step. | 20 Hz | 30 Hz |
| $\mathbf{4}$ | Multi-step frequency (I/O) | I30 | Set 'High' step. | 30 Hz | 80 Hz |
| $\mathbf{5}$ | Forward run (P1: FX) | $\mathbf{I 1 7}$ | The default is FX. This value may change. | FX | FX |
| $\mathbf{6}$ | Reverse run (P2: RX) | I18 | The default is RX. This value may change. | RX | RX |

## Potentiometer (Volume) + Run/Stop via FX/RX + Accel/Decel time change

## Operation condition

Operation command:
Run/Stop via FX/RX

Frequency command:
$0 \sim 60 \mathrm{~Hz}$ analog input via potentiometer

Accel/Decel time:
Accel-10sec, Decel-20sec

## Wiring



## Parameter setting

| Step | Command | Code | Description | Default | After change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Operation command (DRV group) | Drv | Turn on/off motor via terminal. | 1 (FX/RX-1) | 1 (FX/RX-1) |
| 2 | Analog input (DRV group) | Frq | Change keypad command to analog voltage command. | 0 (Keypad-1) | 3 (V1: 0~10V) |
| 3 | Accel/Decel time (DRV group) | $\begin{aligned} & \text { ACC } \\ & \text { dEC } \end{aligned}$ | Set Accel time to 10 sec in ACC <br> Set Decel time to 20 sec in dEC. | $5 \sec$ (Accel) <br> 10sec (Decel) | 10sec (Accel) <br> 20sec (Decel) |
| 4 | Forward run (P1: FX) | I17 | The default is FX. This value may change | FX | FX |
| 5 | Reverse run (P2: RX) | I18 | The default is RX. This value may change. | RX | RX |

## ic5A

## Dimensions

## :: SV004iG5A-2 / SV008iG5A-2, SV004iG5A-4 / SV008iG5A-4


mm (inches)

| Inverter model | $\mathbf{( k W )}$ | $\mathbf{W}(\mathbf{m m})$ | $\mathbf{W} \mathbf{( m m )}$ | $\mathbf{H}(\mathbf{m m})$ | $\mathbf{H 1}(\mathbf{m m})$ | $\mathbf{D}(\mathbf{m m})$ | $\varnothing$ | $\mathbf{A}(\mathbf{m m})$ | $\mathbf{B}(\mathbf{m m})$ | $\mathbf{( k g})$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SV004IG5A-2 | 0.4 | 70 | 65.5 | 128 | 119 | 130 | 4.0 | 4.5 | 4.0 | 0.76 |
| SV008IG5A-2 | 0.75 | 70 | 65.5 | 128 | 119 | 130 | 4.0 | 4.5 | 4.0 | 0.77 |
| SV004IG5A-4 | 0.4 | 70 | 65.5 | 128 | 119 | 130 | 4.0 | 4.5 | 4.0 | 0.76 |
| SV008IG5A-4 | 0.75 | 70 | 65.5 | 128 | 119 | 130 | 4.0 | 4.5 | 4.0 | 0.77 |

## : SV015iG5A-2 / SV015iG5A-4


mm (inches)

| Inverter model | $\mathbf{( k W )}$ | $\mathbf{W}(\mathbf{m m})$ | $\mathbf{W} \mathbf{( m m )}$ | $\mathbf{H}(\mathbf{m m})$ | $\mathbf{H 1}(\mathbf{m m})$ | $\mathbf{D}(\mathbf{m m})$ | $\varnothing$ | $\mathbf{A}(\mathbf{m m})$ | $\mathbf{B}(\mathbf{m m})$ | $\mathbf{( k g})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SV015IG5A-2 | 1.5 | 100 | 95.5 | 128 | 120 | 130 | 4.5 | 4.5 | 4.5 | 1.12 |
| SV015IG5A-4 | 1.5 | 100 | 95.5 | 128 | 120 | 130 | 4.5 | 4.5 | 4.5 | 1.12 |

## :: SV022iG5A-2 / SV037iG5A-2 / SV040iG5A-2, SV022iG5A-4 / SV037iG5A-4 / SV040iG5A-4


: SV055iG5A-2 / SV075iG5A-2, SV055iG5A-4 / SV075iG5A-4


| Inverter model | (kW) | W (mm) | W1 (mm) | H (mm) | H1 (mm) | D (mm) | $\emptyset$ | A (mm) | B (mm) | (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SV055IG5A-2 | 5.5 | 180 | 170 | 220 | 210 | 170 | 4.5 | 5 | 4.5 | 3.66 |
| SV075IG5A-2 | 7.5 | 180 | 170 | 220 | 210 | 170 | 4.5 | 5 | 4.5 | 3.66 |
| SV055IG5A-4 | 5.5 | 180 | 170 | 220 | 210 | 170 | 4.5 | 5 | 4.5 | 3.66 |
| SV075IG5A-4 | 7.5 | 180 | 170 | 220 | 210 | 170 | 4.5 | 5 | 4.5 | 3.66 |

## Dimensions

## : SV110iG5A-2 / SV150iG5A-2 / SV110iG5A-4 / SV150iG5A-4



| Inverter model | $\mathbf{( k W})$ | $\mathbf{W}(\mathbf{m m})$ | $\mathbf{W 1}(\mathbf{m m})$ | $\mathbf{H}(\mathbf{m m})$ | $\mathbf{H 1}(\mathbf{m m})$ | $\mathbf{D}(\mathbf{m m})$ | $\varnothing$ | $\mathbf{A ( m m )}$ | $\mathbf{B}(\mathbf{m m})$ | $\mathbf{( k g})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SV110iG5A-2 | 11.0 | 235 | 219 | 320 | 304 | 189.5 | 7.0 | 8.0 | 7.0 | 9.00 |
| SV150iG5A-2 | 15.0 | 235 | 219 | 320 | 304 | 189.5 | 7.0 | 8.0 | 7.0 | 9.00 |
| SV110iG5A-4 | 11.0 | 235 | 219 | 320 | 304 | 189.5 | 7.0 | 8.0 | 7.0 | 9.00 |
| SV150iG5A-4 | 15.0 | 235 | 219 | 320 | 304 | 189.5 | 7.0 | 8.0 | 7.0 | 9.00 |

: SV185iG5A-2 / SV220iG5A-2 / SV185iG5A-4 / SV220iG5A-4

mm (inches)

| Inverter model | $\mathbf{( k W})$ | $\mathbf{W}(\mathbf{m m})$ | $\mathbf{W 1}(\mathbf{m m})$ | $\mathbf{H}(\mathbf{m m})$ | $\mathbf{H 1}(\mathbf{m m})$ | $\mathbf{D}(\mathbf{m m})$ | $\boldsymbol{\varnothing}$ | $\mathbf{A}(\mathbf{m m})$ | $\mathbf{B}(\mathbf{m m})$ | $\mathbf{( k g )}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SV185iG5A-2 | 18.5 | 260 | 240 | 410 | 392 | 208.5 | 10.0 | 10.0 | 10.0 | 13.3 |
| SV220iG5A-2 | 22.0 | 260 | 240 | 410 | 392 | 208.5 | 10.0 | 10.0 | 10.0 | 13.3 |
| SV185iG5A-4 | 18.5 | 260 | 240 | 410 | 392 | 208.5 | 10.0 | 10.0 | 10.0 | 10.0 |
| SV220iG5A-4 | 22.0 | 260 | 240 | 410 | 392 | 208.5 | 10.0 | 10.0 | 10.0 | 10.0 |

## Braking Resistors and Peripheral Devices

## : Braking resistors

| Voltage | Inverter | 100\% braking |  | 150\% braking |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Resistor [ $\Omega$ ] | Watt [W] ${ }^{1}$ | Resistor [ $\Omega$ ] | Watt [W] ${ }^{1)}$ |
| 200V Series | 0.4 | 400 | 50 | 300 | 100 |
|  | 0.75 | 200 | 100 | 150 | 150 |
|  | 1.5 | 100 | 200 | 60 | 300 |
|  | 2.2 | 60 | 300 | 50 | 400 |
|  | 3.7 | 40 | 500 | 33 | 600 |
|  | 5.5 | 30 | 700 | 20 | 800 |
|  | 7.5 | 20 | 1,000 | 15 | 1,200 |
|  | 11.0 | 15 | 1,400 | 10 | 2,400 |
|  | 15.0 | 11 | 2,000 | 8 | 2,400 |
|  | 18.5 | 9 | 2,400 | 5 | 3,600 |
|  | 22.0 | 8 | 2,800 | 5 | 3,600 |
| 400V Series | 0.4 | 1,800 | 50 | 1,200 | 100 |
|  | 0.75 | 900 | 100 | 600 | 150 |
|  | 1.5 | 450 | 200 | 300 | 300 |
|  | 2.2 | 300 | 300 | 200 | 400 |
|  | 3.7 | 200 | 500 | 130 | 600 |
|  | 5.5 | 120 | 700 | 85 | 1,000 |
|  | 7.5 | 90 | 1,000 | 60 | 1,200 |
|  | 11.0 | 60 | 1,400 | 40 | 2,000 |
|  | 15.0 | 45 | 2,000 | 30 | 2,400 |
|  | 18.5 | 35 | 2,400 | 20 | 3,600 |
|  | 22.0 | 30 | 2,800 | 20 | 3,600 |

1) The wattage is based on Enable Duty (\%ED) with continuous braking time 15 sec .

## : Breakers

| Model | Breaker |  | Model | Breaker |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Current [A] | Voltage [V] |  | Current [A] | Voltage [V] |
| 004iG5A-1 | ABS33b,EBs33 | GMC-12 | 185iG5A-2 | ABS203b,EBs53 | GMC-85 |
| 008iG5A-1 | ABS33b,EBs33 | GMC-12 | 220iG5A-2 | ABS203b,EBs53 | GMC-100 |
| 015iG5A-1 | ABS33b,EBs33 | GMC-12 | 004iG5A-4 | ABS33b,EBs33 | GMC-12 |
| 004iG5A-2 | ABS33b,EBs33 | GMC-12 | 008iG5A-4 | ABS33b,EBs33 | GMC-12 |
| 004iG5A-2 | ABS33b,EBs33 | GMC-12 | 015iG5A-4 | ABS33b,EBs33 | GMC-12 |
| 008iG5A-2 | ABS33b,EBs33 | GMC-12 | 022iG5A-4 | ABS33b,EBs33 | GMC-22 |
| 015iG5A-2 | ABS33b,EBs33 | GMC-12 | 037iG5A-4 | ABS33b,EBs33 | GMC-22 |
| 022iG5A-2 | ABS33b,EBs33 | GMC-18 | 040iG5A-4 | ABS33b,EBs33 | GMC-22 |
| 037iG5A-2 | ABS33b,EBs33 | GMC-22 | 055iG5A-4 | ABS33b,EBs33 | GMC-22 |
| 040iG5A-2 | ABS33b,EBs33 | GMC-22 | 075iG5A-4 | ABS33b,EBs33 | GMC-22 |
| 055iG5A-2 | ABS53b,EBs53 | GMC-22 | 110iG5A-4 | ABS53b,EBs53 | GMC-22 |
| 075iG5A-2 | ABS103b,EBs53 | GMC-32 | 150iG5A-4 | ABS103b,EBs53 | GMC-25 |
| 110iG5A-2 | ABS103b,EBs53 | GMC-50 | 185iG5A-4 | ABS103b,EBs53 | GMC-40 |
| 150iG5A-2 | ABS203b,EBs53 | GMC-65 | 220iG5A-4 | ABS103b,EBs53 | GMC-50 |

## Braking Resistors and Peripheral Devices

## : Fuses \& AC reactors

| Model | AC external fuse |  | AC reactor | DC reactor |
| :---: | :---: | :---: | :---: | :---: |
|  | Current [ A ] | Voltage [V] |  |  |
| 004iG5A-1 | 10 A | 500 V | $4.20 \mathrm{mH}, 3.5 \mathrm{~A}$ | - |
| 008iG5A-1 | 10 A | 500 V | $2.13 \mathrm{mH}, 5.7 \mathrm{~A}$ | - |
| 015iG5A-1 | 15 A | 500 V | $1.20 \mathrm{mH}, 10 \mathrm{~A}$ | - |
| 004iG5A-2 | 10 A | 500 V | $4.20 \mathrm{mH}, 3.5 \mathrm{~A}$ | - |
| 008iG5A-2 | 10 A | 500 V | $2.13 \mathrm{mH}, 5.7 \mathrm{~A}$ | - |
| 015iG5A-2 | 15 A | 500 V | $1.20 \mathrm{mH}, 10 \mathrm{~A}$ | - |
| 022iG5A-2 | 25 A | 500 V | $0.88 \mathrm{mH}, 14 \mathrm{~A}$ | - |
| 037iG5A-2 | 30 A | 500 V | $0.56 \mathrm{mH}, 20 \mathrm{~A}$ | - |
| 040iG5A-2 | 30 A | 500 V | $0.56 \mathrm{mH}, 20 \mathrm{~A}$ | - |
| 055iG5A-2 | 30 A | 500 V | $0.39 \mathrm{mH}, 30 \mathrm{~A}$ | - |
| 075iG5A-2 | 50 A | 500 V | $0.28 \mathrm{mH}, 40 \mathrm{~A}$ | - |
| 110iG5A-2 | 70 A | 500 V | $0.20 \mathrm{mH}, 59 \mathrm{~A}$ | $0.74 \mathrm{mH}, 56 \mathrm{~A}$ |
| 150iG5A-2 | 100 A | 500 V | $0.15 \mathrm{mH}, 75 \mathrm{~A}$ | $0.57 \mathrm{mH}, 71 \mathrm{~A}$ |
| 185iG5A-2 | 100 A | 500 V | $0.12 \mathrm{mH}, 96 \mathrm{~A}$ | $0.49 \mathrm{mH}, 91 \mathrm{~A}$ |
| 220iG5A-2 | 125 A | 500 V | $0.10 \mathrm{mH}, 112 \mathrm{~A}$ | $0.42 \mathrm{mH}, 107 \mathrm{~A}$ |
| 004iG5A-4 | 5 A | 500 V | 18.0 mH, 1.3 A | - |
| 008iG5A-4 | 10 A | 500 V | $8.63 \mathrm{mH}, 2.8 \mathrm{~A}$ | - |
| 015iG5A-4 | 10 A | 500 V | $4.81 \mathrm{mH}, 4.8 \mathrm{~A}$ | - |
| 022iG5A-4 | 10 A | 500 V | $3.23 \mathrm{mH}, 7.5 \mathrm{~A}$ | - |
| 037iG5A-4 | 20 A | 500 V | $2.34 \mathrm{mH}, 10 \mathrm{~A}$ | - |
| 040iG5A-4 | 20 A | 500 V | $2.34 \mathrm{mH}, 10 \mathrm{~A}$ | - |
| 055iG5A-4 | 20 A | 500 V | $1.22 \mathrm{mH}, 15 \mathrm{~A}$ | - |
| 075iG5A-4 | 30 A | 500 V | $1.14 \mathrm{mH}, 20 \mathrm{~A}$ | - |
| 110iG5A-4 | 35 A | 500 V | $0.81 \mathrm{mH}, 30 \mathrm{~A}$ | $2.76 \mathrm{mH}, 29 \mathrm{~A}$ |
| 150iG5A-4 | 45 A | 500 V | $0.61 \mathrm{mH}, 38 \mathrm{~A}$ | $2.18 \mathrm{mH}, 36 \mathrm{~A}$ |
| 185iG5A-4 | 60 A | 500 V | $0.45 \mathrm{mH}, 50 \mathrm{~A}$ | $1.79 \mathrm{mH}, 48 \mathrm{~A}$ |
| 220iG5A-4 | 70 A | 500 V | $0.39 \mathrm{mH}, 58 \mathrm{~A}$ | $1.54 \mathrm{mH}, 55 \mathrm{~A}$ |

## Function List

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range | Description |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | A100 | [Frequency command] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter sets the frequency that the inverter is commanded to output. <br> During Stop: Frequency Command <br> During Run: Output Frequency <br> During Multi-step operation: <br> Multi-step frequency 0 . <br> It cannot be set greater than F21- [Max frequency]. |  |  | 0.00 | 0 |
| ACC | A101 | [Accel time] | $\begin{gathered} 0 \sim 6000 \\ {[\mathrm{Sec}]} \end{gathered}$ | During Multi-Accel/Decel operation, this parameter serves as Accel/Decel time 0. |  |  | 5.0 | 0 |
| dEC | A102 | [Decel time] |  |  |  |  | 10.0 | 0 |
| drv | A103 | [Drive mode] | 0~3 | 0 | Run/Stop via Run/Stop key on the keypad |  | 1 | $\times$ |
|  |  |  |  | 1 | Terminal operation | FX: Motor forward run |  |  |
|  |  |  |  |  |  | RX: Motor reverse run |  |  |
|  |  |  |  | 2 |  | FX: Run/Stop enable |  |  |
|  |  |  |  |  |  | RX: Reverse rotation select |  |  |
|  |  |  |  | 3 | RS485 communication |  |  |  |
|  |  |  |  | 4 | Set to Field Bus com | munication 1) |  |  |
| Frq | A104 | [Frequency setting method] | $0 \sim 7$ | 0 |  | Keypad setting 1 | 0 | $\times$ |
|  |  |  |  | 1 |  | Keypad setting 2 |  |  |
|  |  |  |  | 2 | Analog | V1 1: -10 ~ +10 [V] |  |  |
|  |  |  |  | 3 |  | V1 2: $0 \sim+10$ [V] |  |  |
|  |  |  |  | 4 |  | Terminal l: $0 \sim 20[\mathrm{~mA}]$ |  |  |
|  |  |  |  | 5 |  | Terminal V1 setting $1+$ Terminal I |  |  |
|  |  |  |  | 6 |  | Terminal V1 setting 2+ Terminal I |  |  |
|  |  |  |  | 7 | RS485 communication |  |  |  |
|  |  |  |  | 8 | Digital Volume |  |  |  |
|  |  |  |  | 9 | Set to Field Bus communication 1) |  |  |  |
| St1 | A105 | [Multi-Step frequency 1] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets Multi-Step frequency 1 during Multi-step operation. |  |  | 10.00 | 0 |
| St2 | A106 | [Multi-Step frequency 2] |  | Sets Multi-Step frequency 2 during Multi-step operation. |  |  | 20.00 | 0 |
| St3 | A107 | [Multi-Step frequency 3] |  | Sets Multi-Step frequency 3 during Multi-step operation. |  |  | 30.00 | 0 |
| CUr | A108 | [Output current] |  | Displays the output current to the motor. |  |  | - | - |
| rPM | A109 | [Motor RPM] |  | Displays the number of Motor RPM. |  |  | - | - |
| dCL | A10A | [Inverter DC <br> link voltage] |  | Displays DC link voltage inside the inverter. |  |  | - | - |
| vOL | A10B | [User display select] |  | This parameter displays the item selected at H73- [Monitoring item select]. |  |  | vOL | - |
|  |  |  |  | vOL | Output voltage |  |  |  |
|  |  |  |  | POr | Output power |  |  |  |
|  |  |  |  | tOr | Torque |  |  |  |

[^2]
## Function List

: Drive Group

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | $\begin{aligned} & \text { Parameter } \\ & \text { name } \end{aligned}$ | Min/Max range | Description |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nOn | A10C | [Fault Display] |  | Displays the types of faults, frequency and operating status at the time of the fault |  |  | - | - |
| drC | A10D | [Direction of motor rotation select] | F, r | Sets the direction of motor rotation when drv - [Drive mode] is set to either 0 or 1 . |  |  | F | 0 |
|  |  |  |  | F ${ }^{\text {Forward }}$ |  |  |  |  |
|  |  |  |  | r | Reverse |  |  |  |
| drv2 | A10E | [Drive mode 2] | 0~3 | 0 | Run/Stop via Run/Stop key on the keypad |  | 1 | $\times$ |
|  |  |  |  | 1 | Terminal operation | FX: Motor forward run |  |  |
|  |  |  |  |  |  | RX: Motor reverse run |  |  |
|  |  |  |  | 2 |  | FX: Run/Stop enable |  |  |
|  |  |  |  |  |  | RX: Reverse rotation select |  |  |
|  |  |  |  | 3 | RS-485 communication |  |  |  |
|  |  |  |  | 4 | Set to Filed Bus Communication 3) |  |  |  |
| Frq2 ${ }^{1)}$ | A10F | [Frequency <br> setting method 2] | 0~7 | 0 | DigitalAnalog | Keypad setting 1 | 0 | $\times$ |
|  |  |  |  | 1 |  | Keypad setting 2 |  |  |
|  |  |  |  | 2 |  | V1 1: -10 ~ +10 [V] |  |  |
|  |  |  |  | 3 |  | V1 2: $0 \sim+10$ [V] |  |  |
|  |  |  |  | 4 |  | Terminal I: $0 \sim 20[\mathrm{~mA}]$ |  |  |
|  |  |  |  | 5 |  | Terminal V1 setting $1+$ Terminal I |  |  |
|  |  |  |  | 6 |  | Terminal V1 setting $2+$ Terminal I |  |  |
|  |  |  |  | 7 | RS485 communication |  |  |  |
|  |  |  |  | 8 | Digital Volume |  |  |  |
|  |  |  |  | 9 | Set to Filed Bus Communication 3) |  |  |  |
| rEF ${ }^{2)}$ | A110 | PID control <br> standard <br> value setting |  | If H 58 is 0 , it is expressed as a $[\mathrm{Hz}]$ unit. <br> If H 58 is 1 , it is expressed as a [\%] unit. <br> In $[\mathrm{Hz}]$ unit, you can't set Max. frequency more than (F21). <br> In [\%] unit, 100\% means Max. frequency. |  |  | 0.00 | 0 |
| Fbk ${ }^{\text {2) }}$ | A111 | PID control feedback amount |  | It indicates a feedback amount in PID control. If H 58 is 0 , it is expressed as a [ Hz$]$ unit. |  |  | - | - |

1) Only displayed when one of the Multi-function input terminals $1-8[117 \sim \mid 24]$ is set to " 22 ".
2) It is indicated when H49(PID control selection) is 1.
3) This function can be available with iG5A Communication Option Module.

## : Function group 1

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F 0 | A200 | [Jump code] | 0~71 | Sets the parameter code number to jump. |  | 1 | 0 |
| F1 | A201 | [Forward/ <br> Reverse run disable] | 0~2 | 0 | Fwd and rev run enable | 0 | $\times$ |
|  |  |  |  | 1 | Forward run disable |  |  |
|  |  |  |  | 2 | Reverse run disable |  |  |
| F 2 | A202 | [Accel pattern] | 0~1 | 0 | Linear | 0 | $\times$ |
| F3 | A203 | [Decel pattern] |  | 1 | S-curve |  |  |

## : Function group 1

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F 4 | A204 | [Stop modeselect] | 0~3 | 0 | Decelerate to stop | 0 | x |
|  |  |  |  | 1 | DC brake to stop |  |  |
|  |  |  |  | 2 | Free run to stop |  |  |
|  |  |  |  | 3 | Power Braking stop |  |  |
| F 8 1) | A208 | [DC Brake start frequency] | $\begin{gathered} 0.1 \sim 60 \\ {[H z]} \end{gathered}$ | This parameter sets $D C$ brake start frequency. It cannot be set below F23-[Start frequency]. |  | 5.00 | x |
| F 9 | A209 | [DC Brake wait time] | $\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$ | When $D C$ brake frequency is reached, the inverter holds the output for the setting time before starting DC brake. |  | 0.1 | $\times$ |
| F10 | A20A | [DC Brake voltage] | $\begin{gathered} 0 \sim 200 \\ {[\%]} \end{gathered}$ | This parameter sets the amount of DC voltage applied to a motor. It is set in percent of H33-[Motor rated current]. |  | 50 | × |
| F11 | A20B | [DC Brake time] | $\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$ | This parameter sets the time taken to apply DC current to a motor while motor is at a stop. |  | 1.0 | $\times$ |
| F12 | A20C | [DC Brake start voltage] | $\begin{gathered} 0 \sim 200 \\ {[\%]} \end{gathered}$ | This parameter sets the amount of DC voltage before a motor starts to run. <br> It is set in percent of H33 - [Motor rated current]. |  | 50 | x |
| F13 | A20D | [DC Brake start time] | $\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$ | DC voltage is applied to the motor for DC Brake start time before motor accelerates. |  | 0 | x |
| F14 | A20E | [Time for magnetizing a motor] | $\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$ | This parameter applies the current to a motor for the set time before motor accelerates during Sensorless vector control. |  | 0.1 | $\times$ |
| F20 | A214 | [Jog frequency] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter sets the frequency for Jog operation. It cannot be set above F21 - [Max frequency]. |  | 10.00 | 0 |
| F21 ${ }^{\text {2) }}$ | A215 | [Max frequency] | $\begin{gathered} 40 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter sets the highest frequency the inverter can output. It is frequency reference for Accel/Decel (See H70) |  | 60.00 | $\times$ |
|  |  |  |  |  | Caution |  |  |
|  |  |  |  | Any frequency cannot be set above Max frequency except Base frequency |  |  |  |
| F22 | A216 | [Base frequency] | $\begin{gathered} 30 \sim 400 \\ {[H z]} \end{gathered}$ | The inverter outputs its rated voltage to the motor at this frequency (see motor nameplate). |  | 60.00 | $\times$ |
| F23 | A217 | [Start frequency] | $\begin{gathered} 0.1 \sim 10 \\ {[H z]} \end{gathered}$ | The inverter starts to output its voltage at this frequency. It is the frequency low limit. |  | 0.50 | $\times$ |
| F24 | A218 | [Frequency high /low limit select] | 0~1 | This parameter sets high and low limit of run frequency. |  | 0 | x |
| F25 ${ }^{\text {3) }}$ | A219 | [Frequency high limit] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter sets high limit of the run frequency. It cannot be set above F21 - [Max frequency]. |  | 60.00 | x |
| F26 | A21A | [Frequency low limit] | $\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter sets low limit of the run frequency. It cannot be set above F25-[Frequency high limit] and below F23 - [Start frequency]. |  | 0.50 | x |
| F27 | A21B | [Torque Boost select] | $0 \sim 1$ | 0 | Manual torque boost | 0 | $\times$ |
| F27 |  |  |  | 1 | Auto torque boost |  |  |
| F28 | A21C | [Torque boost in forward direction] | $\begin{gathered} 0 \sim 15 \\ {[\%]} \end{gathered}$ | This parameter sets the amount of torque boost applied to a motor during forward run. It is set in percent of Max output voltage. |  | 2 | x |
| F29 | A21D | [Torque boost in reverse direction] |  | This parameter sets the amount of torque boost applied to a motor during reverse run. It is set as a percent of Max output voltage. |  | 2 | x |

[^3]
## Function List

## :\% Function group 1

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F30 | A21E | [V/F pattern] | 0~2 | 0 | \{Linear\} | 0 | $\times$ |
|  |  |  |  | 1 | \{Square\} |  |  |
|  |  |  |  | 2 | \{User V/F\} |  |  |
| F31 ${ }^{\text {1) }}$ | A21F | [User V/F <br> frequency 1] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | It is used only when V/F pattern is set to 2(User V/F) It cannot be set above F21 - [Max frequency]. |  | 15.00 | x |
| F32 | A220 | [User V/F ] voltage 1 | $\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$ | The value of voltage is set in percent of $\mathrm{H} 70-[$ Motor rated voltage]. <br> The values of the lower-numbered parameters cannot be set above those of higher-numbered. |  | 25 | $\times$ |
| F33 | A221 | [User V/F frequency 2] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ |  |  | 30.00 | $\times$ |
| F34 | A222 | [User V/F voltage 2] | $\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$ |  |  | 50 | $\times$ |
| F35 | A223 | [User V/F <br> frequency 3] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ |  |  | 45.00 | $\times$ |
| F36 | A224 | [User V/F voltage 3] | $\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$ |  |  | 75 | $\times$ |
| F37 | A225 | [User V/F frequency 4] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ |  |  | 60.00 | $\times$ |
| F38 | A226 | [User V/F voltage 4] | $\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$ |  |  | 100 | $\times$ |
| F39 | A227 | [Output voltage adjustment] | $\begin{gathered} 40 \sim 110 \\ {[\%]} \end{gathered}$ |  | parameter adjusts the amount of output voltage. et value is the percentage of input voltage. | 100 | $\times$ |
| F40 | A228 | [Energy-saving level] | $\begin{gathered} 0 \sim 30 \\ {[\%]} \end{gathered}$ |  | parameter decreases output voltage according to load | 0 | 0 |
| F50 | A232 | [Electronic thermal select] | 0~1 |  | arameter is activated when the motor is overheated (time- <br> e). | 0 | 0 |
| F51 ${ }^{2)}$ | A233 | [Electronic thermal level for 1 minute] | $\begin{gathered} 50 \sim 200 \\ {[\%]} \end{gathered}$ |  | arameter sets max current capable of flowing to the motor uously for 1 minute. <br> et value is the percentage of H33- [Motor rated current]. not be set below F52-[Electronic thermal level for uous]. | 150 | 0 |
| F52 | A234 | [Electronic thermal level for continuous] | $\begin{gathered} 50 \sim 150 \\ {[\%]} \end{gathered}$ | This runn It ca min | arameter sets the amount of current to keep the motor g continuously. <br> not be set higher than F51 - [Electronic thermal level for 1 ]. | 100 | 0 |
| F53 | A235 | [Motor cooling | $0 \sim 1$ | 0 | Standard motor having cooling fan directly connected to the shaft | 0 | 0 |
|  |  |  |  | 1 | A motor using a separate motor to power a cooling fan. |  |  |
| F54 | A236 | [Overload warning level] | $\begin{gathered} 30 \sim 150 \\ {[\%]} \end{gathered}$ |  | parameter sets the amount of current to issue an alarm at a relay or multi-function output terminal (see 154,155 ). et value is the percentage of H 33 - [Motor rated current]. | 150 | 0 |
| F55 | A237 | [Overload warning time] | $\begin{gathered} 0 \sim 30 \\ {[\mathrm{Sec}]} \end{gathered}$ | This <br> than <br> [Ov | arameter issues an alarm signal when the current greater 54- [Overload warning level] flows to the motor for F55oad warning time]. | 10 | 0 |

[^4]
## $::$ Function group 1

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range | Description |  |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F56 | A238 | [Overload trip select] | 0~1 | This parameter turns off the inverter output when motor is overloaded. |  |  |  | 1 | 0 |
| F57 | A239 | [Overload trip level] | $\begin{gathered} 30 \sim 200 \\ {[\%]} \end{gathered}$ | This parameter sets the amount of overload current. The value is the percentage of H 33 - [Motor rated current]. |  |  |  | 180 | 0 |
| F58 | A23A | [Overload trip time] | $\begin{gathered} 0 \sim 60 \\ {[\mathrm{Sec}]} \end{gathered}$ | This parameter turns off the inverter output when the F57[Overload trip level] of current flows to the motor for F58[Overload trip time]. |  |  |  | 60 | 0 |
| F59 | A23B | [Stall prevention select] | 0~7 | This parameter stops accelerating during acceleration, decelerating during constant speed run and stops decelerating during deceleration. |  |  |  | 0 | $\times$ |
|  |  |  |  |  | During Decel | During constant run | During Accel |  |  |
|  |  |  |  |  | Bit 2 | Bit 1 | Bit 0 |  |  |
|  |  |  |  | 0 | - | - | - |  |  |
|  |  |  |  | 1 | - | - | $\checkmark$ |  |  |
|  |  |  |  | 2 | - | $\checkmark$ | - |  |  |
|  |  |  |  | 3 | - | $\checkmark$ | $\checkmark$ |  |  |
|  |  |  |  | 4 | $\checkmark$ | - | - |  |  |
|  |  |  |  | 5 | $\checkmark$ | - | $\checkmark$ |  |  |
|  |  |  |  | 6 | $\checkmark$ | $\checkmark$ |  |  |  |
|  |  |  |  | 7 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| F60 | A23C | [Stall prevention level] | $\begin{gathered} 30 \sim 200 \\ {[\%]} \end{gathered}$ | This parameter sets the amount of current to activate stall prevention function during Accel, Constant or Decel run. The set value is the percentage of the H33- [Motor rated current]. |  |  |  | 150 | $\times$ |
| F61 ${ }^{\text {1) }}$ | A23D | [When Stall prevention during deceleration, voltage limit select | 0~1 | In Stall prevention run during deceleration, if you want to limit output voltage, select 1 |  |  |  |  |  |
| F63 | A23F | [Save up/down frequency select] | 0~1 | This parameter decides whether to save the specified frequency during up/down operation. <br> When 1 is selected, the up/down frequency is saved in F64. |  |  |  | 0 | x |
| F64 2) | A240 | [Save up/down frequency] |  | If 'Save up/down frequency' is selected at F63, this parameter saves the frequency before the inverter stops or decelerated. |  |  |  | 0.00 | $\times$ |
| F65 | A241 | [Up-down mode select] | 0~2 | We can select up-down mode among three thing |  |  |  | 0 | x |
|  |  |  |  | 0 | Increases go frequency/Min | uency as a standard uency | of Max. |  |  |
|  |  |  |  | 1 | Increases as m | s step frequency acco | rding to edge input |  |  |
|  |  |  |  | 2 | Available to c | e 1 and 2 |  |  |  |
| F66 | A242 | [Up-down step frequency] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | In case of choosing F65 as a 1 or 2, it means increase or decrease of frequency according to up-down input |  |  |  | 0.00 | $\times$ |
| F70 | A246 | [Draw run mode select] | 0~3 | 0 | Inverter doesn | as a draw mode |  | 0 | $\times$ |
|  |  |  |  | 1 | V1(0~10V) inp | raw run |  |  |  |
|  |  |  |  | 2 | $1(0 \sim 20 \mathrm{~mA})$ inp | aw run |  |  |  |
|  |  |  |  | 3 | V1(-10~10V) | draw run |  |  |  |
| F71 | A247 | [Draw rate] | 0~100[\%] | Sets rate of draw |  |  |  | 0.00 | 0 |

[^5]
## Function List

## : Function group 2

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range | Description |  |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H 0 | A300 | [Jump code] | 0~95 | Sets the code number to jump. |  |  |  | 1 | 0 |
| H 1 | A301 | [Fault history 1] |  | Stores information on the types of faults, the frequency, the current and the Accel/Decel condition at the time of fault. The latest fault is automatically stored in the H 1 - [Fault history 1]. |  |  |  | nOn | - |
| H2 | A302 | [Fault history 2] | - |  |  |  |  | nOn | - |
| H3 | A303 | [Fault history 3] | - |  |  |  |  | nOn | - |
| H4 | A304 | [Fault history 4] | - |  |  |  |  | nOn | - |
| H5 | A305 | [Fault history 5] | - |  |  |  |  | nOn | - |
| H6 | A306 | [Reset fault history] | 0~1 | Clears the fault history saved in H 1-5. |  |  |  | 0 | 0 |
| H7 | A307 | [Dwell frequency] | $\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$ | When run frequency is issued, motor starts to accelerate after dwell frequency is applied to the motor during H 8 - [Dwell time]. [Dwell frequency] can be set within the range of F21- [Max frequency] and F23- [Start frequency]. |  |  |  | 5.00 | x |
| H 8 | A308 | [Dwell time] | $0 \sim 10$ [sec] | Sets the time for dwell operation. |  |  |  | 0.0 | $\times$ |
| H10 | A30A | [Skip frequency select] | 0~1 | Sets the frequency range to skip to prevent undesirable resonance and vibration on the structure of the machine. |  |  |  | 0 | $\times$ |
| H11 ${ }^{1)}$ | A30B | [Skip frequency low limit 1] | $\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$ | Run frequency cannot be set within the range of H 11 thru H 16 . The frequency values of the low numbered parameters cannot be set above those of the high numbered ones. Settable within the range of F21 and F23. |  |  |  | 10.00 | $\times$ |
| H12 | A30C | [Skip frequency high limit 1] |  |  |  |  |  | 15.00 | $\times$ |
| H13 | A30D | [Skip frequency low limit 2] |  |  |  |  |  | 20.00 | $\times$ |
| H14 | A30E | [Skip frequency high limit 2] |  |  |  |  |  | 25.00 | $\times$ |
| H15 | A30F | [Skip frequency low limit 3] |  |  |  |  |  | 30.00 | $\times$ |
| H16 | A310 | [Skip frequency high limit 3] |  |  |  |  |  | 35.00 | $\times$ |
| H17 | A311 | [S-Curve accel/ decel start side] | $\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$ | Set the speed reference value to form a curve at the start during accel/decel. If it is set higher, linear zone gets smaller. |  |  |  | 40 | $\times$ |
| H18 | A312 | [S-Curve accel/ decel end side] | $\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$ | Set the speed reference value to form a curve at the end during accel/decel. If it is set higher, linear zone gets smaller. |  |  |  | 40 | x |
|  |  | [Input/output |  | 0 | Disabled | 1 | Output phase protection |  |  |
| H19 | A313 | phase loss protection select] | 0~3 | 2 | Input phase protection | 3 | Input/output phase protection | 0 | 0 |
| H2O | A314 | [Power On <br> Start select] | 0~1 | This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). <br> Motor starts acceleration after AC power is applied while FX or RX terminal is ON . |  |  |  | 0 | 0 |
| H21 | A315 | [Restart after <br> fault reset selection] | $0 \sim 1$ | This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). <br> Motor accelerates after the fault condition is reset while the FX or RX terminal is ON . |  |  |  | 0 | 0 |

[^6]Function group 2

| LED display | Address for communication | Parameter name | Min/Max range | Description |  |  |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H} 22{ }^{\text {1) }}$ | A316 | [Speed Search Select] | 0~15 | This parameter is active to prevent any possible fault when the inverter outputs its voltage to the running motor. |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 1. H2O- <br> [Power On start] | 2. Restart after instant power failure | 3. Operation after fault | 4. Normal accel |  |  |
|  |  |  |  | 0 | - | - | - | - |  |  |
|  |  |  |  | 1 | - | - | - | $\checkmark$ |  |  |
|  |  |  |  | 2 | - | - | $\checkmark$ | - |  |  |
|  |  |  |  | 3 | - | - | $\checkmark$ | $\checkmark$ |  |  |
|  |  |  |  | 4 | - | $\checkmark$ | - | - |  |  |
|  |  |  |  |  | 1. H2O- <br> [Power On start] | 2. Restart after instant power failure | 3. Operation after fault | 4. Normal accel |  |  |
|  |  |  |  |  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |
|  |  |  |  | 5 | - | $\checkmark$ | - | $\checkmark$ |  |  |
|  |  |  |  | 6 | - | $\checkmark$ | $\checkmark$ | - |  |  |
|  |  |  |  | 7 | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
|  |  |  |  | 8 | $\checkmark$ | - | - | - |  |  |
|  |  |  |  | 9 | $\checkmark$ | - | - | $\checkmark$ |  |  |
|  |  |  |  | 10 | $\checkmark$ | - | $\checkmark$ | - |  |  |
|  |  |  |  | 11 | $\checkmark$ | - | $\checkmark$ | $\checkmark$ |  |  |
|  |  |  |  | 12 | $\checkmark$ | $\checkmark$ | - | - |  |  |
|  |  |  |  | 13 | $\checkmark$ | $\checkmark$ | - | $\checkmark$ |  |  |
|  |  |  |  | 14 | $\checkmark$ |  | $\checkmark$ | - |  |  |
|  |  |  |  | 15 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| H23 | A317 | [Current level during Speed search] | $\begin{gathered} \text { 80~200 } \\ {[\%]} \end{gathered}$ | This parameter limits the amount of current during speed search. The set value is the percentage of the H 33 - [Motor rated current]. |  |  |  |  | 100 | 0 |
| H24 | A318 | [ P gain during Speed search] | 0~9999 | It is the Proportional gain used for Speed Search PI controller. |  |  |  |  | 100 | 0 |
| H25 | A319 | [I gain during speed search] | 0~9999 | It is the Integral gain used for Speed search PI controller. |  |  |  |  | 200 | 0 |
| H26 | A31A | [Number of Auto Restart try] | $0 \sim 10$ | This parameter sets the number of restart tries after a fault occurs. Auto Restart is deactivated if the fault outnumbers the restart tries. This function is active when [drv] is set to 1 or 2 \{Run/Stop via control terminal\}. Deactivated during active protection function (OHT, LVT, EXT, HWT etc.). |  |  |  |  | 0 | 0 |
| H27 | A31B | [Auto Restart time] | $\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{sec}]} \end{aligned}$ | This parameter sets the time between restart tries. |  |  |  |  | 1.0 | 0 |
|  | A31E | [Motor type select] | 0.2~ 22.0 | 0.2 |  |  | 0.2 kW |  | 7.52) | $\times$ |
| H30 |  |  |  | ~ |  |  | ~ |  |  |  |
|  |  |  |  | 22.0 |  |  | 22.0 kW |  |  |  |
| H31 | A31F | [Number of motor poles] | $2 \sim 12$ | This setting is displayed via rPM in drive group. |  |  |  |  | 4 | $\times$ |

[^7]
## Function List

## : Function group 2

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H32 | A320 | [Rated slip frequency] | $\begin{gathered} 0 \sim 10 \\ {[H z]} \end{gathered}$ | $f_{s}=f r-\left[\frac{r p m \times p}{120}\right]$ <br> Where, $f s=$ Rated slip frequency $f r=$ Rated frequency $r p m=$ Motor nameplate RPM $p=$ Number of Motor poles |  | 2.33 1) | $\times$ |
| H33 | A321 | [Motor rated current] | $\begin{gathered} 0.5 \sim 150 \\ {[A]} \end{gathered}$ | Enter motor rated current on the nameplate. |  | 26.3 | $\times$ |
| H34 | A322 | [No Load Motor Current] | $\begin{gathered} 0.1 \sim 50 \\ {[A]} \end{gathered}$ | Enter the current value detected when the motor is rotating in rated rpm after the load connected to the motor shaft is removed. Enter the $50 \%$ of the rated current value when it is difficult to measure H34-[No Load Motor Current]. |  | 11 | $\times$ |
| H36 | A324 | [Motor efficiency] | $\begin{gathered} \text { 50~100 } \\ {[\%]} \end{gathered}$ | Enter the motor efficiency (see motor nameplate). |  | 87 | $\times$ |
| H37 | A325 | [Load inertia rate] | 0~2 | Select one of the following according to motor inertia. |  | 0 | $\times$ |
|  |  |  |  | 0 | Less than 10 times |  |  |
|  |  |  |  | 1 | About 10 times |  |  |
|  |  |  |  | 2 | More than 10 times |  |  |
| H39 | A327 | [Carrier frequency select] | $\begin{aligned} & 1 \sim 15 \\ & {[\mathrm{kHz}]} \end{aligned}$ | This parameter affects the audible sound of the motor, noise emission from the inverter, inverter temp, and leakage current. If the set value is higher, the inverter sound is quieter but the noise from the inverter and leakage current will become greater. |  | 3 | 0 |
| H40 | A328 | [Control mode select] | 0~3 | 0 | \{Volts/frequency Control\} | 0 | $\times$ |
|  |  |  |  | 1 | \{Slip compensation control\} |  |  |
|  |  |  |  | 3 | \{Sensorless vector control\} |  |  |
| H41 | A329 | [Auto tuning] | 0~1 | If this parameter is set to 1 , it automatically measures parameters of the H 42 and H 44 . |  | 0 | $\times$ |
| H42 | A32A | [Stator resistance (Rs)] | $\begin{gathered} 0 \sim 28 \\ {[\Omega]} \end{gathered}$ | This is the value of the motor stator resistance. |  | - | $\times$ |
| H44 | A32C | [Leakage inductance (L $\sigma$ )] | $\begin{gathered} 0 \sim 300.0 \\ {[\mathrm{mH}]} \end{gathered}$ | This is leakage inductance of the stator and rotor of the motor. |  | - | $\times$ |
| H45 ${ }^{\text {2) }}$ | A32D | [Sensorless P gain] | 0~32767 | P gain for Sensorless control |  | 1000 | 0 |
| H46 | A32E | [Sensorless <br> I gain] |  | I gain for Sensorless control |  | 100 | 0 |
| H47 | A32F | [Sensorless torque limit] | $\begin{gathered} 100 \sim 220 \\ {[\%]} \end{gathered}$ | Limits output torque in sensorless mode. |  | 180.0 | $\times$ |
| H48 | A330 | PWM mode select | 0~1 | If you want to limit a inverter leakage current, select 2 phase PWM mode. <br> It has more noise in comparison to Normal PWM mode. |  | 0 | x |
|  |  |  |  | 0 | Normal PWM mode |  |  |
|  |  |  |  | 1 | 2 phase PWM mode |  |  |
| H49 | A331 | PID select | 0~1 | Selects whether using PID control or not |  | 0 | $\times$ |

[^8]2) Set H 40 to 3 (Sensorless vector control) to display this parameter.
$:$ Function group 2

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H50 ${ }^{\text {1) }}$ | A332 | [PID F/B select] | 0~1 | 0 | Terminal I input (0 ~ 20 mA ) | 0 | $\times$ |
|  |  |  |  | 1 | Terminal V1 input ( $0 \sim 10 \mathrm{~V}$ ) |  |  |
| H51 | А333 | [P gain for PID] | $\begin{gathered} 0 \sim 999.9 \\ {[\%]} \end{gathered}$ | This parameter sets the gains for the PID controller. |  | 300.0 | 0 |
| H52 | A334 | [Integral time for PID | $\begin{gathered} 0.1 \sim 32.0 \\ {[\mathrm{sec}]} \end{gathered}$ |  |  | 1.0 | 0 |
| H53 | A335 | [Differential time for PID (D gain)] | $\begin{gathered} 0 \sim 30.0 \\ {[\mathrm{sec}]} \end{gathered}$ |  |  | 0.0 | 0 |
| H54 | A336 | [PID control mode select] | 0~1 | Selects PID control mode |  | 0 | $\times$ |
|  |  |  |  | 0 | Normal PID control |  |  |
|  |  |  |  | 1 | Process PID control |  |  |
| H55 | A337 | [PID output frequency high limit] | $\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$ | This parameter limits the amount of the output frequency through the PID control. <br> The value is settable within the range of F 21 ? [Max frequency] and F23-[Start frequency]. |  | 60.00 | 0 |
| H56 | A338 | [PID output frequency low limit] | $\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$ |  |  | 0.50 | 0 |
| H57 | A339 | [PID standard value select] | 0~4 | Selects PID standard value. <br> Standard value is indicated in "rEF" of Drive group. |  | 0 | $\times$ |
|  |  |  |  | 0 | Loader digital setting 1 |  |  |
|  |  |  |  | 1 | Loader digital setting 2 |  |  |
|  |  |  |  | 2 | V1 terminal setting 2: 0~10V |  |  |
|  |  |  |  | 3 | I terminal setting: 0~20mA |  |  |
|  |  |  |  | 4 | Setting as a RS-485 communication |  |  |
| H58 | A33A | PID control unit select | 0~1 | Selects a unit of the standard value or feedback amount. |  | 0 | x |
|  |  |  |  | 0 | Frequency[Hz] |  |  |
|  |  |  |  | 1 | Percentage[\%] |  |  |
| H60 | A33C | [Self-diagnostic select] | 0~3 | 0 | Self-diagnostic disabled | 0 | $\times$ |
|  |  |  |  | 1 | IGBT fault/Ground fault |  |  |
|  |  |  |  | 2 | Output phase short \& open/ Ground fault |  |  |
|  |  |  |  | 3 | Ground fault (This setting is unable when more than 11 kW ) |  |  |
| H61 ${ }^{2}$ | A33D | [Sleep delay time] | 0~2000[s] | Sets a sleep delay time in PID drive. |  | 60.0 | $\times$ |
| H62 | A33E | [Sleep frequency] | 0~400[Hz] | Sets a sleep frequency when executing a sleep function in PID control drive. <br> You can't set more than Max. frequency(F21) |  | 0.00 | 0 |
| H63 | A33F | [Wake up level] | 0~100[\%] | Sets a wake up level in PID control drive. |  | 35.0 | 0 |
| H64 | A340 | [KEB drive select] | 0~1 | Sets KEB drive. |  | 0 | $\times$ |
| H65 | A341 | [KEB action start level] | $\begin{gathered} \text { 110~140 } \\ {[\%]} \end{gathered}$ | Sets KEB action start level according to level. |  | 125.0 | x |
| H66 | A342 | [KEB action stop level] | $\begin{gathered} \text { 110~145 } \\ {[\%]} \end{gathered}$ | Sets KEB action stop level according to level. |  | 130.0 | $\times$ |
| H67 | A343 | [KEB action gain] | 1~20000 | Sets KEB action gain. |  | 1000 | $\times$ |
| H70 | A346 | [Frequency | $0 \sim 1$ | 0 | Based on Max freq (F21) | 0 | x |
|  |  | Accel/Decel] |  | 1 | Based on Delta freq. |  |  |

[^9]2) Set H49 as a 1
3): it is indicated when setting H64(KEB drive select) as a 1 (KEB does not operate when cut power after loading ting input (about $10 \%$ ).

## Function List

## : Function group 2

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H71 | A347 | [Accel/Decel time scale] | 0~2 | 0 | Settable unit: 0.01 second. | 1 | 0 |
|  |  |  |  | 1 | Settable unit: 0.1 second. |  |  |
|  |  |  |  | 2 | Settable unit: 1 second. |  |  |
| H72 | A348 | [Power on display] | 0~15 | This parameter selects the parameter to be displayed on the keypad when the input power is first applied. |  | 0 | 0 |
|  |  |  |  | 0 | Frequency command |  |  |
|  |  |  |  | 1 | Accel time |  |  |
|  |  |  |  | 2 | Decel time |  |  |
|  |  |  |  | 3 | Drive mode |  |  |
|  |  |  |  | 4 | Frequency mode |  |  |
|  |  |  |  | 5 | Multi-Step frequency 1 |  |  |
|  |  |  |  | 6 | Multi-Step frequency 2 |  |  |
|  |  |  |  | 7 | Multi-Step frequency 3 |  |  |
|  |  |  |  | 8 | Output current |  |  |
|  |  |  |  | 9 | Motor rpm |  |  |
|  |  |  |  | 10 | Inverter DC link voltage |  |  |
|  |  |  |  | 11 | User display select (H73) |  |  |
|  |  |  |  | 12 | Fault display |  |  |
|  |  |  |  | 13 | Direction of motor rotation select |  |  |
|  |  |  |  | 14 | Output current 2 |  |  |
|  |  |  |  | 15 | Motor rpm 2 |  |  |
|  |  |  |  | 16 | Inverter DC link voltage 2 |  |  |
|  |  |  |  | 17 | User display select 2 |  |  |
| H73 | A349 | [Monitoring item select] | 0~2 | One of the following can be monitored via vOL - [User display select]. |  | 0 | 0 |
|  |  |  |  | 0 | Output voltage [V] |  |  |
|  |  |  |  | 1 | Output power [kW] |  |  |
|  |  |  |  | 2 | Torque [kgf $\cdot \mathrm{m}$ ] |  |  |
| H74 | A34A | [Gain for Motor rpm display] | $\begin{gathered} 1 \sim 1000 \\ {[\%]} \end{gathered}$ |  | parameter is used to change the motor rotating speed to mechanical speed ( $\mathrm{m} / \mathrm{mi}$ ) and display it. | 100 | 0 |
| H75 | A34B | [DB resistor operating rate limit select] | 0~1 | 0 | Unlimited | 1 | 0 |
|  |  |  |  | 1 | Use DB resistor for the H76 set time. |  |  |
| H76 | A34C | [DB resistor operating rate] | $\begin{gathered} 0 \sim 30 \\ {[\%]} \end{gathered}$ | Set the percent of DB resistor operating rate to be activated during one sequence of operation. |  | 10 | 0 |
|  |  | [Cooling fan control] | 0~1 | 0 | Always ON | 0 | 0 |
| H77 1) | A34D |  |  | 1 | Keeps ON when its temp is higher than inverter protection limit temp. Activated only during operation when its temp is below that of inverter protection limit. |  |  |
|  | A34E | [Operating method select when cooling fan malfunctions] | 0~1 | 0 | Continuous operation when cooling fan malfunctions. | 0 | 0 |
| H78 |  |  |  | 1 | Operation stopped when cooling fan malfunctions. |  |  |
| H79 | A34F | [S/W version] | 0~10.0 | This parameter displays the inverter software version. |  | 1.0 | $\times$ |

[^10]
## :: Function group 2

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range | Description |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H81 ${ }^{1)}$ | A351 | [2 ${ }^{\text {nd }}$ motor <br> Accel time] | $\begin{gathered} 0 \sim 6000 \\ {[\mathrm{sec}]} \end{gathered}$ | This parameter actives when the selected terminal is ON after I17-I24 is set to 12 \{2 $2^{\text {nd }}$ motor select \}. |  |  | 5.0 | 0 |
| H82 | A352 | $\left[2^{\text {nd }}\right. \text { motor }$ <br> Decel time] |  |  |  |  | 10.0 | 0 |
| H83 | A353 | $\left[2^{n d}\right. \text { motor }$ base frequency] | $\begin{gathered} 30 \sim 400 \\ {[H z]} \end{gathered}$ |  |  |  | 60.00 | $\times$ |
| H84 | A354 | [2 $2^{\text {nd }}$ motor V/F pattern] | 0~2 |  |  |  | 0 | x |
| H85 | A355 | [2 ${ }^{\text {nd }}$ motor forward torque boost] | $\begin{gathered} 0 \sim 15 \\ {[\%]} \end{gathered}$ |  |  |  | 5 | $\times$ |
| H86 | A356 | [2 ${ }^{n d}$ motor reverse torque boost] |  |  |  |  | 5 | $\times$ |
| H87 | A347 | [2nd motor stall prevention level] | $\begin{gathered} 30 \sim 150 \\ {[\%]} \end{gathered}$ |  |  |  | 150 | $\times$ |
| H88 | A358 | $\quad\left[2^{\text {nd }}\right.$ motor Electronic thermal level for 1 min$]$ | $\begin{gathered} \text { 50~200 } \\ {[\%]} \end{gathered}$ |  |  |  | 150 | 0 |
| H89 | A359 | [2 $2^{\text {nd }}$ motor <br> Electronic thermal level for continuous] | $\begin{gathered} \text { 50~150 } \\ {[\%]} \end{gathered}$ |  |  |  | 100 | 0 |
| H90 | A35A | $\begin{aligned} & {\left[2^{\text {nd }}\right. \text { motor }} \\ & \text { rated current] } \end{aligned}$ | $\begin{gathered} 0.1 \sim 100 \\ {[A]} \end{gathered}$ |  |  |  | 26.3 | $\times$ |
| H91 ${ }^{2}$ | A35B | [Parameter read] | 0~1 |  | the parameters | and save them into remote | 0 | $\times$ |
| H92 | A35C | [Parameter write] | 0~1 | Cor inve | the parameters er. | loader and save them into | 0 | $\times$ |
| H93 | A35D | [Parameter initialize] | 0~5 |  | parameter is used lt value. | parameters back to the factor | 0 | $\times$ |
|  |  |  |  | 0 | - |  |  |  |
|  |  |  |  | 1 | All parameter gr value. | itialized to factory default |  |  |
|  |  |  |  | 2 | Only Drive group |  |  |  |
|  |  |  |  | 3 | Only Function g | tialized. |  |  |
|  |  |  |  | 4 | Only Function g | tialized. |  |  |
|  |  |  |  | 5 | Only I/O group is |  |  |  |
| H94 | A35E | [Password register] | $0 \sim$ FFFF |  | word for H95-[Param <br> Hexa value. |  | 0 | 0 |
| H95 | A35F | [Parameter lock] | $0 \sim$ FFFF | This parameter is able to lock or unlock parameters by typing password registered in H94. |  |  | 0 | 0 |
|  |  |  |  |  | UL (Unlock) | Parameter change enable |  |  |
|  |  |  |  |  | L (Lock) | Parameter change disable |  |  |

1) It is indicated when choosing I17~124 as a 12 (2nd motor select).
2) H91,H92 parameters are displayed when Remote option is installed.

## Function List

## :: Input/output group

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | A400 | [Jump code] | 0~87 | Sets the code number to jump. |  | 1 | 0 |
| 12 | A402 | [ NV input Min voltage] | $\begin{gathered} 0 \sim-10 \\ {[\mathrm{~V}]} \end{gathered}$ | Sets the minimum voltage of the NV (-10V $\sim 0 \mathrm{~V})$ input. |  | 0.00 | 0 |
| 13 | A403 | [Frequency corresponding to 12 2 | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output minimum frequency at minimum voltage of the NV input. |  | 0.00 | 0 |
| 14 | A404 | [NV input <br> Max voltage] | $\begin{gathered} 0 \sim-10 \\ {[\mathrm{~V}]} \end{gathered}$ | Sets the maximum voltage of the NV input. |  | 10.0 | 0 |
| 15 | A405 | [Frequency corresponding to 14 ] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output maximum frequency at maximum voltage of the NV input. |  | 60.00 | 0 |
| 16 | A406 | [Filter time constant for V1 input] | 0~9999 | Adjusts the responsiveness of V1 input ( $0 \sim+10 \mathrm{~V}$ ). |  | 10 | 0 |
| 17 | A407 | [V1 input Min voltage] | $\begin{gathered} 0 \sim 10 \\ {[\mathrm{~V}]} \end{gathered}$ | Sets the minimum voltage of the V1 input. |  | 0 | 0 |
| 18 | A408 | [Frequency corresponding to 17 ] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output minimum frequency at minimum voltage of the V1 input. |  | 0.00 | 0 |
| 19 | A409 | [V1 input Max voltage] | $\begin{gathered} 0 \sim 10 \\ {[\mathrm{~V}]} \end{gathered}$ | Sets the maximum voltage of the V1 input. |  | 10 | 0 |
| 110 | A40A | [Frequency corresponding to 19 ] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output maximum frequency at maximum voltage of the V1 input. |  | 60.00 | 0 |
| 111 | A40B | [Filter time constant for I input] | $0 \sim 9999$ | Sets the input section's internal filter constant for I input. |  | 10 | 0 |
| 112 | A40C | [l input Min current] | $\begin{gathered} 0 \sim 20 \\ {[\mathrm{~mA}]} \end{gathered}$ | Sets the minimum current of $I$ input. |  | 4.00 | 0 |
| 113 | A40D | [Frequency corresponding to I 12] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output minimum frequency at minimum current of I input. |  | 0.00 | 0 |
| 114 | A40E | [l input Max current] | $\begin{gathered} 0 \sim 20 \\ {[\mathrm{~mA}]} \end{gathered}$ | Sets the Maximum current of I input. |  | 20.00 | 0 |
| 115 | A40F | [Frequency corresponding to I 14] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | Sets the inverter output maximum frequency at maximum current of I input. |  | 60.00 | 0 |
| 116 | A410 | [Criteria for Analog Input Signal loss] | 0~2 | 0 | Disabled | 0 | 0 |
|  |  |  |  | 1 | activated below half of set value. |  |  |
|  |  |  |  | 2 | activated below set value. |  |  |
| 117 | A411 | [Multi-function input terminal P1 define] | 0~27 | 0 | Forward run command | 0 | 0 |
|  |  |  |  | 1 | Reverse run command |  |  |
| 118 | A412 | [Multi-function input terminal P2 define] |  | 2 | Emergency Stop Trip | 1 | 0 |
|  |  |  |  | 3 | Reset when a fault occurs \{RST\} |  |  |
| 119 | A413 | [Multi-function input terminal P3 define] |  | 4 | Jog operation command | 2 | 0 |
|  |  |  |  | 5 | Multi-Step freq - Low |  |  |
| 120 | A414 | [Multi-function input terminal P4 define] |  | 6 | Multi-Step freq - Mid | 3 | 0 |
|  |  |  |  | 7 | Multi-Step freq - High |  |  |

[^11]$\because$ Input/output group

| $\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$ | Address for communication | Parameter name | Min/Max range | Description |  |  |  |  |  |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 121 | A415 | [Multi-function input terminal P5 define] |  | 8 | Multi Accel/Decel - Low |  |  |  |  |  |  | 4 | 0 |
|  |  |  |  | 9 | Multi Accel/Decel - Mid |  |  |  |  |  |  |  |  |
| 122 | A416 | [Multi-function input terminal P6 define] | $0 \sim 27$ | 10 | Multi Accel/Decel - High |  |  |  |  |  |  | 5 | 0 |
|  |  |  |  | 11 | DC brake during stop |  |  |  |  |  |  |  |  |
| 123 | A417 | [Multi-function input terminal P7 define] |  | 12 | 2nd motor select |  |  |  |  |  |  | 6 | 0 |
|  |  |  |  | 13 | -Reserved- |  |  |  |  |  |  |  |  |
| 124 | A418 | [Multi-function input terminal P8 define] |  | 14 | -Reserved- |  |  |  |  |  |  | 7 | 0 |
|  |  |  |  | 15 | Up-down |  | requen | y incre | (UP) | omma |  |  |  |
|  |  |  |  | 16 |  |  | requen | y decr | e com | and (D | WN) |  |  |
|  |  |  |  | 17 | 3-wire operation |  |  |  |  |  |  |  |  |
|  |  |  |  | 18 | External trip: A Contact (EtA) |  |  |  |  |  |  |  |  |
|  |  |  |  | 19 | External trip: B Contact (EtB) |  |  |  |  |  |  |  |  |
|  |  |  |  | 20 | Self-diagnostic function |  |  |  |  |  |  |  |  |
|  |  |  |  | 21 | Change from PID operation to V/F operation |  |  |  |  |  |  |  |  |
|  |  |  |  | 22 | 2nd Source |  |  |  |  |  |  |  |  |
|  |  |  |  | 23 | Analog Hold |  |  |  |  |  |  |  |  |
|  |  |  |  | 24 | Accel/Decel Disable |  |  |  |  |  |  |  |  |
|  |  |  |  | 25 | Up/Down Save Freq. Initialization |  |  |  |  |  |  |  |  |
|  |  |  |  | 26 | JOG-FX |  |  |  |  |  |  |  |  |
|  |  |  |  | 27 | JOG-RX |  |  |  |  |  |  |  |  |
| 125 | A419 | [Input terminal status display] |  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 | 0 | 0 |
|  |  |  |  | P8 | P7 | P6 | P5 | P4 | P3 | P2 | P1 |  |  |
| 126 | A41A | [Output terminal status display] |  | BIT1 |  |  |  | BIT0 |  |  |  | 0 | 0 |
|  |  |  |  | 3AC |  |  |  | MO |  |  |  |  |  |
| 127 | A41B | [Filtering time constant for Multi-function Input terminal] | 1 ~ 15 | If the value is set higher, the responsiveness of the Input terminal is getting slower. |  |  |  |  |  |  |  | 4 | 0 |
| 130 | A41E | [Multi-Step frequency 4] | $\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$ | It cannot be set greater than F21-[Max frequency]. |  |  |  |  |  |  |  | 30.00 | 0 |
| 131 | A41F | [Multi-Step frequency 5] |  |  |  |  |  |  |  |  |  | 25.00 | 0 |
| 132 | A420 | [Multi-Step frequency 6] |  |  |  |  |  |  |  |  |  | 20.00 | 0 |
| 133 | A421 | [Multi-Step frequency 7 ] |  |  |  |  |  |  |  |  |  | 15.00 | 0 |
| 134 | A422 | [Multi-Accel time 1] | $\begin{gathered} 0 \sim 6000 \\ {[\mathrm{sec}]} \end{gathered}$ |  |  |  |  |  |  |  |  | 3.0 | 0 |
| 135 | A423 | [Multi-Decel time 1] |  |  |  |  |  |  |  |  |  | 3.0 |  |
| 136 | A424 | [Multi-Accel <br> time 2] |  |  |  |  |  |  |  |  |  | 4.0 |  |

## Function List

: Input/output group

: Input/output group

| LED display | Address for communication | Parameter name | Min/Max range | Description |  |  |  | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 155 | A437 | [Multi-function relay select] | $0 \sim 19$ | 10 | Inverter Overheat (OHt) |  |  | 17 | 0 |
|  |  |  |  | 11 | Command loss |  |  |  |  |
|  |  |  |  | 12 | During Run |  |  |  |  |
|  |  |  |  | 13 | During Stop |  |  |  |  |
|  |  |  |  | 14 | During constant run |  |  |  |  |
|  |  |  |  | 15 | During speed searching |  |  |  |  |
|  |  |  |  | 16 | Wait time for run signal input |  |  |  |  |
|  |  |  |  | 17 | Multi-function relay select |  |  |  |  |
|  |  |  |  | 18 | Warning for cooling fan trip |  |  |  |  |
|  |  |  |  | 19 | Brake signal select |  |  |  |  |
| 156 | A438 | [Fault relay output] | 0~7 |  | When setting the H26-[Number of auto restart try] | When the trip other than low voltage trip occurs | When the low voltage trip occurs | 2 | 0 |
|  |  |  |  |  | Bit 2 | Bit 1 | Bit 0 |  |  |
|  |  |  |  | 0 | - | - | - |  |  |
|  |  |  |  | 1 | - | - | $\checkmark$ |  |  |
|  |  |  |  | 2 | - | $\checkmark$ | - |  |  |
|  |  |  |  | 3 | - | $\checkmark$ | $\checkmark$ |  |  |
|  |  |  |  | 4 | $\checkmark$ | - | - |  |  |
|  |  |  |  | 5 | $\checkmark$ | - | $\checkmark$ |  |  |
|  |  |  |  | 6 | $\checkmark$ | $\checkmark$ | - |  |  |
|  |  |  |  | 7 | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| 157 | A439 | [Output terminal select when communication error occurs] | $0 \sim 3$ |  | Multi-function relay |  | tion output terminal | 0 | 0 |
|  |  |  |  |  | Bit $1 \times$ Bit 0 |  |  |  |  |
|  |  |  |  | 0 | - |  |  |  |  |
|  |  |  |  | 1 | - |  |  |  |  |
|  |  |  |  | 2 | $\checkmark$ |  |  |  |  |
|  |  |  |  | 3 | $\checkmark$ |  |  |  |  |
| 159 | A43B | [Communication protocol select] | $0 \sim 1$ | Set communication protocol. |  |  |  | 0 | $\times$ |
|  |  |  |  | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Modbus RTU |  |  |  |  |
|  |  |  |  |  | LS BUS |  |  |  |  |
| 160 | A43C | [Inverter number] | 1 ~ 250 | Set for RS485 communication |  |  |  | 1 | 0 |
| 161 | A43D | [Baud rate] | 0~4 | Select the Baud rate of the RS485. |  |  |  | 3 | 0 |
|  |  |  |  | 0 | 1200 [bps] |  |  |  |  |
|  |  |  |  | 1 | 2400 [bps] |  |  |  |  |
|  |  |  |  | 2 | 4800 [bps] |  |  |  |  |
|  |  |  |  | 3 | 9600 [bps] |  |  |  |  |
|  |  |  |  | 4 | 19200 [bps] |  |  |  |  |
| 162 | A43E | [Drive mode select after loss of frequency command] | 0~2 | It is used when freq command is given via V1 /I terminal or RS485. |  |  |  | 0 | 0 |
|  |  |  |  | 0 | Continuous operation at the frequency before its command is lost. |  |  |  |  |
|  |  |  |  | 1 | Free Run stop (Output cut-off) |  |  |  |  |
|  |  |  |  | 2 | Decel to stop |  |  |  |  |

## Function List

: Input/output group

| LED display | Address for communication | Parameter name | Min/Max range |  | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 163 | A43F | [Wait time after loss of frequency command] | $\begin{gathered} 0.1 \sim 120 \\ {[\mathrm{sec}]} \end{gathered}$ | This is the time inverter determines whether there is the input frequency command or not. If there is no frequency command input during this time, inverter starts operation via the mode selected at 162. |  | 1.0 | 0 |
| 164 | A440 | [Communication time setting] | $\begin{gathered} 2 \sim 100 \\ {[\mathrm{~ms}]} \end{gathered}$ | Frame communication time |  | 5 | 0 |
| 165 | A441 | [Parity/stop bit setting] | 0~3 | When the protocol is set, the communication format can be set. |  | 0 | 0 |
|  |  |  |  | 0 | Parity: None, Stop Bit: 1 |  |  |
|  |  |  |  | 1 | Parity: None, Stop Bit: 2 |  |  |
|  |  |  |  | 2 | Parity: Even, Stop Bit: 1 |  |  |
|  |  |  |  | 3 | Parity: Odd, Stop Bit: 1 |  |  |
| 166 | A442 | [Read address register 1] | 0~42239 | The user can register up to 8 discontinuous addresses and read them all with one Read command. |  | 5 | 0 |
| 167 | A443 | [Read address register 2] |  |  |  | 6 |  |
| 168 | A444 | [Read address register 3] |  |  |  | 7 |  |
| 169 | A445 | [Read address register 4] |  |  |  | 8 |  |
| 170 | A446 | [Read address register 5] |  |  |  | 9 |  |
| 171 | A447 | [Read address register 6] |  |  |  | 10 |  |
| 172 | A448 | [Read address register 7] |  |  |  | 11 |  |
| 173 | A449 | [Read address register 8] |  |  |  | 12 |  |
| 174 | A44A | [Write address register 1] | 0~42239 | The user can register up to 8 discontinuous addresses and write them all with one Write command |  | 5 | 0 |
| 175 | A44B | [Write address register 2] |  |  |  | 6 |  |
| 176 | A44C | [Write address register 3] |  |  |  | 7 |  |
| 177 | A44D | [Write address register 4] |  |  |  | 8 |  |
| 178 | A44E | [Write address register 5] |  |  |  | 5 |  |
| 179 | A44F | [Write address register 6] |  |  |  | 6 |  |
| 180 | A450 | [Write address register 7] |  |  |  | 7 |  |
| 181 | A451 | [Write address register 8] |  |  |  | 8 |  |
| 182 1) | A452 | [Brake open current] | $0 \sim 180$ <br> [\%] |  | current level to open the brake. <br> according to H33's (motor rated current) size | 50.0 | 0 |

[^12]$\because$ Input/output group

| $\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$ | Address for communication | Parameter name | Min/Max range | Description | Factory defaults | Adj. during run |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 183 | A453 | [Brake open delay time] | $\begin{gathered} 0 \sim 10 \\ {[s]} \end{gathered}$ | Sets Brake open dely time. | 1.00 | $\times$ |
| 184 | A454 | [Brake open FX frequency] | $\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$ | Sets FX frequency to open the brake | 1.00 | $\times$ |
| 185 | A455 | [Brake open RX frequency] | $\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$ | Sets RX frequency to open the brake | 1.00 | $\times$ |
| 186 | A456 | [Brake close delay time] | $\begin{gathered} 0 \sim 19 \\ {[s]} \end{gathered}$ | Sets delay time to close the brake | 1.00 | $\times$ |
| 187 | A457 | [Brake close frequency | $\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$ | Sets frequency to close the brake | 2.00 | $\times$ |

## Protective Functions

| Keypad display | Protective functions | Descriptions |
| :---: | :---: | :---: |
| 111 1115 | Overcurrent | The inverter turns off its output when the output current of the inverter flows more than $200 \%$ of the inverter rated current. |
| FEE | Ground fault current | The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter. |
| 1 171 <br> 1 1811 | Inverter Overload | The inverter turns off its output when the output current of the inverter flows more than the rated level ( $150 \%$ for 1 minute). |
| $\begin{array}{lll}171 & 1 \\ 111 & 5\end{array}$ | Overload trip | The inverter turns off its output if the output current of the inverter flows at $150 \%$ of the inverter rated current for more than the current limit time (1min). |
|  | Heat sink overheat | The inverter turns off its output if the heat sink overheats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink. |
|  | Output Phase loss | The inverter turns off its output when the one or more of the output ( $U, V, W$ ) phase is open. The inverter detects the output current to check the phase loss of the output. |
| $\begin{array}{lll} 17 & 1 \\ 1012 & 1 \\ \hline \end{array}$ | Over voltage | The inverter turns off its output if the DC voltage of the main circuit increases higher than 400 V when the motor decelerates. This fault can also occur due to a surge voltage generated at the power supply system. |
| $\begin{array}{lll} 1 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$ | Low voltage | The inverter turns off its output if the DC voltage is below 180 V because insufficient torque or overheating of the motor can occur when the input voltage of the inverter drops. |
| EE B | Electronic Thermal | The internal electronic thermal of the inverter determines the overheating of the motor. If the motor is overloaded, the inverter turns off the output. The inverter cannot protect the motor when driving a motor having more than 4 poles or multi motors. |
| $\begin{array}{lll} 1 & 171 \\ 1 & 1 & 1 \\ \hline \end{array}$ | Input phase loss | Inverter output is blocked when one of R, S, T is open or the electrolytic capacitor needs to be replaced. |
| (1) 1 1 1 | Self-diagnostic malfunction | Displayed when IGBT damage, output phase short, output phase ground fault or output phase open occurs. |
| EEE | Parameter save error | Displayed when user-setting parameters fails to be entered into memory. |
| 11118 | Inverter hardware fault | Displayed when an error occurs in the control circuitry of the inverter. |
| ETE | Communication Error | Displayed when the inverter cannot communicate with the keypad. |
| EF | Remote keypad communication error | Displayed when the inverter and the remote keypad do not communicate with each other. It does not stop inverter operation. |
| $\begin{array}{llll} 5 & 17 & 2 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$ | Keypad error | Displayed after the inverter resets the keypad when a keypad error occurs and this .... |
| EFin | Cooling fan fault | Displayed when a fault condition occurs in the inverter cooling fan. |
| E5E | Instant cut off | Used for the emergency stop of the inverter. The inverter instantly turns off the output when the EST terminal is turned on. Caution: The inverter starts to regular operation when turning off the EST terminal while FX or RX terminal is ON. |
| $\begin{array}{lll} E & 5 \\ E & 5 & 0 \end{array}$ | External fault A contact input | When multi-function input terminal (I20-I24) is set to 19 <br> \{External fault signal input A: (Normal Open Contact)\}, the inverter turns off the output. |
| $\begin{array}{lll} E & E & E \\ E & E \end{array}$ | External fault B contact input | When multi-function input terminal (I20-I24) is set to 19 <br> \{External fault signal input B: (Normal Close Contact)\}, the inverter turns off the output. |
| 1 -1 | Operating method when the frequency command is lost | When inverter operation is set via analog input ( $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$ input) or option (RS-485) and no signal is applied, operation is done according to the method set in I62 (Operating method when the frequency reference is lost). |

## Fault Remedy

| Remedy |
| :--- | :--- | :--- | :--- |

## Leading Innovation, Creating Tomorrow

- For your safety, please read user's manual thoroughly before operating.
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance.
Do not disassemble or repair by yourself!
- Any maintenance and inspection shall be performed by the personnel having expertise concerned.
(C) 2005.5 LS Industrial Systems Co.,Ltd. All rights reserved.


## LS Industrial Systems Co., Ltd.

## www.Isis.biz

## HEAD OFFICE

LS Tower 1026-6, Hogye-dong, Dongan-gu,
Anyang-si, Gyeonggi-do 431-848, Korea

| ■Europe | $+82-2-2034-4376 /$ ywsohn@Isis.biz |
| :--- | :--- |
| ■Middle East | $+82-2-2034-4901 /$ bonseongk@Isis.biz |
| ■South West Asia | $+82-2-2034-4645 /$ sungkyup@Isis.biz |
| ■South East Asia | $+82-2-2034-4707$ / ohpark@Isis.biz |
| -CIS | $+82-2-2034-4913$ / jinhkang@Isis.biz |
| ■America | $+82-2-2034-4377 /$ younsupI@Isis.biz |



Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

## Global Network

- LS Industrial Systems (Middle East) FZE >>Dubai, U.A.E.

Address: LOB 19 JAFZA VIEW TOWER Room 205, Jebel Ali Freezone P.O. Box 114216, Dubai, United Arab Emirates Tel: 971-4-886 5360 Fax: 971-4-886-5361 e-mail: jungyongl@lsis.biz
Dalian LS Industrial Systems Co., Ltd. >> Dalian, China
Address: No.15, Liaohexi 3-Road, Economic and Technical Development zone, Dalian 116600, China Tel: 86-411-8273-7777 Fax: 86-411-8730-7560 e-mail: lixk@|sis.com.cn

- LS Industrial Systems (Wuxi) Co., Ltd. >> Wuxi, China

Address: 102-A , National High \& New Tech Industrial Development Area, Wuxi, Jiangsu, 214028, P.R.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078 e-mail: xuhg@ @sis.com.cn

- LS-VINA Industrial Systems Co., Ltd. >> Hanoi, Vietnam Address: Nguyen Khe - Dong Anh - Ha Noi - Viet Nam
Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: srjo@lsisvina.com
- LS-VINA Industrial Systems Co., Ltd. >> Hochiminh , Vietnam

Address: 41 Nguyen Thi Minh Khai Str. Yoco Bldg 4th Floor, Hochiminh City, Vietnam
Tel: 84-8-3822-7941 Fax: 84-8-3822-7942 e-mail: sbpark@Isisvina.com

- LS Industrial Systems Tokyo Office >> Tokyo, Japan

Address: 16FL, Higashi-Kan, Akasaka Twin Tower 17-22, 2-chome, Akasaka, Minato-ku Tokyo 107-8470, Japan Tel: 81-3-3582-9128 Fax: 81-3-3582-2667 e-mail: jschuna@|sis.biz

- LS Industrial Systems Shanghai Office >>Shanghai, China

Address: Room E-G, 12th Floor Huamin Empire Plaza, No.726, West Yan'an Road Shanghai 200050, P.R. China Tel: 86-21-5237-9977 (609) Fax: 89-21-5237-7191 e-mail: jinhk@Isis.com.cn

- LS Industrial Systems Beijing Office $\gg$ Beijing, China

Address: B-Tower 17FL.Beiijing Global Trade Center B/D. No.36, BeiSanHuanDong-Lu, DongCheng-District, Beijing 100013, P.R. China
Tel: 86-10-5825-6025,7 Fax: 86-10-5825-6026 e-mail: cuixiaorong@|sis.com.cn

- LS Industrial Systems Guangzhou Office >> Guangzhou, China Address: Room 1403,14F,New Poly Tower,2 Zhongshan Liu Road,Guangzhou, P.R. China Tel: 86-20-8326-6764 Fax: 86-20-8326-6287 e-mail: linsz@|sis.biz
- LS Industrial Systems Chengdu Office $\gg$ Chengdu, China

Address: Room 1701 17Floor, huanminhanjun internationnal Building, No1 Fuxing Road Chengdu, 610041, P.R. China Tel: 86-28-8670-3101 Fax: 86-28-8670-3203 e-mail: yangct@|sis.com.cn

- LS Industrial Systems Qingdao Office >> Qingdao, China

Address: 7B40,Haixin Guangchang Shenye Building B, No.9, Shandong Road Qingdao 26600, P.R. China Tel: 86-532-8501-6568 Fax: 86-532-583-3793 e-mail: lirj@|sis.com.cn

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Line Filters category:
Click to view products by LG manufacturer:
Other Similar products are found below :
5B1 6609019-3 6609026-5 6609030-6 6609063-2 6609973-2 7-1609090-5 F1500CA06 F7382Z F7863Z FAHAV3100ZC000 806276
FMAC-0FIA-6400 FN2020B-1-06 FN2080B-10-06 FN2090A-1-06 FN2410H-32-33 FN2410H-80-34 FN2412H-16-44 FN420-1-13 FP144 8-6609089-0 12-MMB-030-11-D B84144A0050R120 B84144A90R120 20B1 RSEL-2001A 2B1 LP183 1-6609070-1 F1500CA10 1B1 FN2020A-10-06 FN2020B-3-06 FN2060A-3-06 FN2070A-16-06 FN2070B-16-08 FN2090A-20-06 FN2090B-12-06 FN2090Z-1-06
FN2410H-25-33 FN2410H-60-34 FN2410H-8-44 FN2412H-25-33 FN2412H-8-44 FN610R-3-06 20EHZ7 20K1 30B6 30BCF10R


[^0]:    1) Means average braking torque during Decel to stop of a motor.
    2) Refer to Chapter 16 of user's manual for DB resistor specification.
[^1]:    1) Target frequency can be set at 0.0 (the 1st code of drive group). Even though the preset value is 0.0 , it is user-settable.

    The changed frequency will be displayed after it is changed.

[^2]:    1) This function can be available with iG5A Communication Option Module.
[^3]:    1) Only displayed when $F 4$ is set to 1 (DC brake to stop).
    2) If H40 is set to 3 (Sensorless vector), Max. frequency is settable up to 300 Hz .
    3) Only displayed when F24 (Frequency high/low limit select) is set to 1.
[^4]:    1) Set $F 30$ to 2(User V/F) to display this parameter.
    2) Set F50 to 1 to display this parameter.
[^5]:    1) It is indicated when setting bit 2 of F59 as
    2) Set F63 to 1 to display this parameter.
[^6]:    1) only displayed when H 10 is set to 1 . \# $\mathrm{H} 17, \mathrm{H} 18$ are used when F 2 , F 3 are set to 1 (S-curve)
[^7]:    1) Normal acceleration has first priority. Even though \#4 is selected along with other bits, Inverter performs Speed search \#4
    2) H30 is preset based on inverter rating.
[^8]:    1) H32 ~ H36 factory default values are set based on OTIS-LG motor.
[^9]:    1) Set H 49 to 1 (PID control) to display this parameter.
[^10]:    1) Exception: Since SV004iG5A-2/SV004iG5A-4 is Natural convection type, this code is hidden.
[^11]:    * See ${ }^{\circ} \infty$ Chapter 14 Troubleshooting and maintenance ${ }^{\circ} \pm$ for External trip $A / B$ contact.
    * Each multi-function input terminal must be set differently.

[^12]:    1) It is indicated when choosing I54~155 as a 19 (Brake signal).
