FEATURES

■ Guaranteed AC performance over temperature and voltage:

- >10.7Gbps data throughput
- <60ps $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$ times
- <285ps t_{pd} (IN-to-Q)
- <20ps skew
- Low jitter:
- <10ps ${ }_{\text {pp }}$ total jitter (clock)
- $<1 \mathrm{ps}_{\mathrm{rms}}$ random jitter (data)
- $<10 \mathrm{ps}_{\mathrm{pp}}$ deterministic jitter (data)

■ Crosstalk induced jitter: $<0.7 \mathrm{ps}_{\text {rms }}$
\square Accepts an input signal as low as 100 mV

- Unique input termination and V_{T} pin accepts DCcoupled and AC-coupled differential inputs:
LVPECL, LVDS, and CML
- 50Ω source terminated CML outputs

■ Fully differential inputs/outputs
■ Power supply $2.5 \mathrm{~V} \pm 5 \%$ and $3.3 \mathrm{~V} \pm 10 \%$

- Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
\square Available in 16 -pin ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) MLF ${ }^{\circledR}$ package

APPLICATIONS

■ Gigabit Ethernet data/clock routing
■ SONET data/clocking routing
■ Switch fabric clock routing
■ Redundant switchover
■ Backplane redundancy

DESCRIPTION

The SY58023U is a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ precision, high-speed, fully differential CML 2×2 crosspoint switch. The SY58023U is optimized to provide two identical output copies with less than 20ps of skew and ultra-low jitter. It can route clock signals as fast as 6 GHz or data up to 10.7 Gbps .

The differential input includes Micrel's unique, 3-pin input termination architecture that allows the SY58023U to directly interface to LVPECL, LVDS, and CML differential signals (AC- or DC-coupled) as small as $100 \mathrm{mV}(200 \mathrm{mV}$ pp $)$ without any level-shifting or termination resistor networks in the signal path. The CML outputs features 400 mV typical swing into 50Ω loads, and provide an extremely fast rise/fall time guaranteed to be less than 60ps.

The SY58023U operates from a $+2.5 \mathrm{~V} \pm 5 \%$ supply or $+3.3 \mathrm{~V} \pm 10 \%$ supply and is guaranteed over the full industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. For applications that require high speed dual CML switches, consider the SY58024U. The SY58023U is part of Micrel's high-speed, Precision Edge ${ }^{\circledR}$ product line.

Datasheets and support documentation can be found on Micrel's website at www.micrel.com.

FUNCTIONAL BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

16-Pin MLF ${ }^{\circledR}$ (MLF-16)

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY58023UMI	MLF-16	Industrial	023 U	Sn -Pb
SY58023UMITR $^{(2)}$	MLF-16	Industrial	023 U	$\mathrm{Sn}-\mathrm{Pb}$
SY58023UMG				
SY5	MLF-16	Industrial	$023 U$ with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY8023UMGTR ${ }^{(2,3)}$	MLF-16	Industrial	023U with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, DC electricals only.
2. Tape and Reel.
3. Pb -Free package recommended for new designs.

PIN DESCRIPTION

$\left.\begin{array}{|c|c|l|}\hline \text { Pin Number } & \text { Pin Name } & \text { Pin Function } \\ \hline 1,2, & \text { IN0, /IN0, } \\ 3,4 \\ \text { /IN1, IN1 }\end{array} \begin{array}{l}\text { Differential Signal Input: Each pin of this pair internally terminates with } 50 \Omega \text { to the VT pin. } \\ \text { Note that this input will default to an indeterminate state if left open. } \\ \text { See "Input Interface Applications" section. }\end{array}, \begin{array}{l}\text { Input Termination Center-Tap: Each input terminates to this pin. The VT pin provides a } \\ \text { center-tap for each input (IN, /IN) to a termination network for maximum interface } \\ \text { flexibility. See "Input Interface Applications" section. }\end{array}\right]$

TRUTH TABLE

SEL0	SEL1	Q0	Q1
L	L	IN0	IN0
L	H	IN0	IN1
H	L	IN1	IN0
H	H	IN1	IN1

Absolute Maximum Ratings ${ }^{(1)}$Supply Voltage (V_{CC})
\qquad -0.5 V to +4.0 V
Input Voltage (V_{IN}) -0.5 V to V_{Cc}
CML Output Voltage ($\mathrm{V}_{\mathrm{OUT}}$)......... $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$Current (V_{T})
Source or Sink Current on V_{T} pin $\pm 100 \mathrm{~mA}$
Input Current $\left(\mathrm{V}_{\mathrm{T}}\right)$
Source or Sink Current on IN, /IN $\pm 50 \mathrm{~mA}$
Lead Temperature (soldering, 20 sec .) $260^{\circ} \mathrm{C}$
Storage Temperature (T_{S}) $-65^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{CC}) +2.375 V to +3.60 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$.......................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(3)}$

$$
\operatorname{MLF}^{\circledR}\left(\theta_{\mathrm{JA}}\right)
$$

Still-Air $60^{\circ} \mathrm{C} / \mathrm{W}$
500lfpm
$54^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{MLF}^{\circledR}\left(\psi_{\mathrm{JB}}\right)$
Junction-to-board ... $38^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS(4)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{CC}	Power Supply Voltage	2.5 V nominal	2.375	2.5	2.625	V
		3.3 V nominal	3.0	3.3	3.60	V
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ max., current through internal 50Ω source termination resistor included.		100	130	mA
$\mathrm{~V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{IN}, / \mathrm{IN}$, Note 5	$\mathrm{~V}_{\mathrm{CC}}-1.6$		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input LOW Voltage	$\mathrm{IN}, / \mathrm{IN}$	0		$\mathrm{~V}_{\mathrm{IH}}-0.1$	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage Swing	$\mathrm{IN}, / \mathrm{IN}$; see Figure 1a.	0.1		1.7	V
$\mathrm{~V}_{\text {DIFF_IN }}$	Differential Input Swing	$\mathrm{IN}, / \mathrm{IN}$; see Figure 1b.	0.2			V
$\mathrm{R}_{\text {IN }}$	IN-to- V_{T} Resistance		40	50	60	Ω
IN to V_{T}					1.28	V

LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(4)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Condition	Min	Typ	Max
V_{IH}	Input HIGH Voltage		2.0		
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage			V	
I_{IH}	Input HIGH Current			0.8	V
I_{IL}	Input LOW Current		-300		40

Notes:

1. Permanent device damage may occur if ratings in the "Absolute Maximum Ratings" section are exceeded. This is a stress rating only and functional operation is not implied for conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Thermal performance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. $\theta_{\text {JA }}$ uses 4 -layer in still-air, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ not lower than 1.2 V .

CML OUTPUT DC ELECTRICAL CHARACTERISTICS(6)

$\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%$ or $+2.5 \mathrm{~V} \pm 5 \% ; \mathrm{R}_{\mathrm{L}}=100 \Omega$ across each output pair; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Q0, /Q0; Q1, /Q1	$\mathrm{V}_{\mathrm{CC}}-0.020$		$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	Q0, /Q0; Q1, /Q1; see Figure 1a.	325	400	500	mV
$\mathrm{V}_{\text {DIFF_OUT }}$	Differential Voltage Swing	Q0, /Q0; Q1, /Q1; see Figure 1b.	650	800	1000	mV
$\mathrm{R}_{\text {OUT }}$	Output Source Impedance	Q0, /Q0; Q1, /Q1	40	50	60	Ω

Notes:

6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established

AC ELECTRICAL CHARACTERISTICS(7)

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \mathrm{~V} \pm 10 \%$; $\mathrm{R}_{\mathrm{L}}=100 \Omega$ across each output pair; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$\mathrm{V}_{\text {IN }} \geq 100 \mathrm{mV}$; $\mathrm{V}_{\text {OUT }} \geq 200 \mathrm{mV}$ (${ }^{\text {a }}$ (lock	6			GHz
		NRZ Data	10.7			Gbps
$t_{\text {pd }}$	Propagation Delay	IN-to-Q	135		285	ps
		SEL-to-Q	100		400	ps
$\mathrm{t}_{\text {SKEW }}$	Channel-to-Channel Skew (Within Bank)	Note 8			20	ps
	Part-to-Part Skew	Note 9			75	ps
$\mathrm{t}_{\text {JITTER }}$	Clock \quad Cycle-to-Cycle JitterTotal Jitter	Note 10			1	$\mathrm{ps}_{\text {RMS }}$
		Note 11			10	pS ${ }_{\text {PP }}$
	Random Jitter Deterministic Jitter	Note 12			1	$\mathrm{ps}_{\text {RMS }}$
		Note 13			10	pSpp
	Crosstalk Induced Jitter (Adjacent Channel)	Note 14			0.7	$\mathrm{ps}_{\text {RMS }}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Time	20\% to 80%, at full swing.	25		60	ps

Notes:

7. Measured with 100 mV input swing. High frequency AC-parameters are guaranteed by design and characterization.
8. Skew is measured between outputs of the same bank under identical transitions.
9. Skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
10. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.
11. Total jitter definition: With an ideal clock input of frequency $\leq f_{\text {MAX }}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
12. Random jitter is measured with a K28.7 comma detect character pattern, measured at $2.5 \mathrm{Gbps}-3.2 \mathrm{Gbps}$.
13. Deterministic jitter is measured at $2.5 \mathrm{Gbps}-3.2 \mathrm{Gbps}$ with both K 28.5 and $2^{23}-1$ PRBS pattern.
14. Crosstalk induced jitter is defined as the added jitter that results from signals applied to two adjacent channels. It is measured at the output while applying similar, differential clock frequencies that are asynchronous with respect to each other at inputs.

SINGLE-ENDED AND DIFFERENTIAL SWINGS

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

TIMING DIAGRAM

Figure 2a. AC Timing Diagram IN-to-Q

Figure 2b. AC Timing Diagram SEL-to-Q

TYPICAL OPERATING CHARACTERISTICS

$V_{C C}=2.5 \mathrm{~V}, \mathrm{~V}_{I N}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

FUNCTIONAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

TIME (50ps/div.)

TIME (100ps/div.)

INPUT STAGE

Figure 3. Simplified Differential Input Buffer

INPUT INTERFACE APPLICATIONS

Option: may connect V_{T} to $V_{C C}$
Figure 4a. DC-Coupled CML Input Interface

For $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=50 \Omega, \mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=1.1 \mathrm{k} \Omega$.
For $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=100 \Omega, \mathrm{R} 1=649 \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega$.
Figure 4d. AC-Coupled LVPECL Input Interface

For $2.5 \mathrm{~V}, \mathrm{R} 1=1 \mathrm{k} \Omega, R 2=1.1 \mathrm{k} \Omega$. For $3.3 \mathrm{~V}, \mathrm{R} 1=649 \Omega, R 2=1 \mathrm{k} \Omega$.

Figure 4b. AC-Coupled CML Input Interface

For $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{pd}}=19 \Omega$.
For $V_{C C}=3.3 V, R_{p d}=50 \Omega$.
Figure 4c. DC-Coupled LVPECL Input Interface

Figure 4e. LVDS Input Interface

CML OUTPUT TERMINATION

Figures 5 and Figure 6 illustrates how to terminate a CML output using both the AC-coupled and DC-coupled

Figure 5. CML DC-Coupled Termination
configuration. All outputs of the SY58023U are 50Ω with a 16 mA current source.

Figure 6. CML AC-Coupled Termination

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY58023U	Ultra-low Jitter 2×2 Crosspoint Switch w/CML Outputs and Internal I/O Termination	http://www.micrel.com/product-info/products/sy58023u.shtml
SY58024U	Ultra-low Jitter Dual 2×2 Crosspoint Switch w/CML Outputs and Internal I/O Termination	http://www.micrel.com/product-info/products/sy58024u.shtml
	$16-M L F$ Exposed Pad Application Note	www.amkor.com/products/notes_papers/MLF_AppNote.pdf
	HBW Solutions	http://www.micrel.com/product-info/as/solutions.shtml

16-PIN MicroLeadFrame ${ }^{\circledR}$ (MLF-16)

PCB Thermal Consideration for 16-Pin MLF ${ }^{\circledR}$ Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

1. Package meets Level 2 qualification.
2. All parts are dry-packaged before shipment.
3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

$$
\text { © } 2005 \text { Micrel, Incorporated. }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog \& Digital Crosspoint ICs category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
MT093APR1 MT093AE1 MT8808AE1 ADV3203ASWZ ADV3202ASWZ AD8177ABPZ VSC3308YKU MT8806AE1 CBTL08GP053EVY PI3USB31532ZLEX ISPGDX240VA-4BN388 CBTL04GP043EXJ ADV3200ASWZ AD8114ASTZ AD8113JSTZ MAX9393EHJ+ MAX9152ESE+ MAX4550CWI MAX4550EWI+ DS90CP22MX-8/NOPB NB6L72MNG LX256EV-5FN484C AD8112JSTZ AD8115ASTZ SN65LVCP22D NB4N840MMNR4G SY58023UMG TUSB546AI-DCIRNQT TUSB546-DCIRNQR VSC3340XJJ-01 VSC3303YHV-01 ADV3205JSTZ AD75019JPZ AD75019JPZ-REEL AD8106ASTZ AD8107ASTZ AD8108ASTZ AD8109ASTZ AD8110ASTZ AD8111ASTZ AD8116JSTZ AD8117ABPZ AD8152JBPZ AD8153ACPZ AD8155ACPZ AD8158ACPZ AD8159ASVZ ADG2188BCPZ-HS-RL7 ADG2108YCPZ-REEL7 ADG2108BCPZ-REEL7

