
F2MC-16LX FAMILY EVALUATION BOARD FLASH-CAN-48P

USER GUIDE

Revision History

Date	Issue
17.10.2002	V1.0 First Release
25.10.2002	V1.1 chapter 7: Related Products updated
07/02/2003	V1.2 Disclaimer corrected

This document contains 26 pages.

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH restricts its warranties and its liability for the FLASH-CAN-48P-M26 Board and all its deliverables (eg. software include or header files, application examples, target boards, evaluation boards, engineering samples of IC's etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. Note, the FLASH-CAN-48P-M26 Board and all its deliverables are intended and must only be used in an evaluation laboratory environment.

- 1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform substantially in accordance with the accompanying written materials for a period of 90 days form the date of receipt by the customer. Concerning the hardware components of the Product, Fujitsu Microelectronics Europe GmbH warrants that the Product will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.
- 2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH's entire liability and the customer's exclusive remedy shall be, at Fujitsu Microelectronics Europe GmbH's sole discretion, either return of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu Microelectronics Europe GmbH in original packing and without further defects resulting from the customer's use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu Microelectronics Europe GmbH, or abuse or misapplication attributable to the customer or any other third party not relating to Fujitsu Microelectronics Europe GmbH.
- 3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe GmbH disclaims all other warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the Product is not designated.
- 4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH's and its supplier's liability are restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Microelectronics Europe GmbH and its suppliers be liable for any damages whatsoever (including but without limitation, consequential and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect

0 Contents

RI	EVISI	ON HISTORY	2
W	ARRA	ANTY AND DISCLAIMER	3
0	CON	TENTS	4
1	OVE	RVIEW	5
-	1.1	Abstract	
	1.2	Features	5
	1.3	General Description	6
2	INST	ALLATION	7
3	JUM	PERS AND SWITCHES	8
	3.1	Jumper Overview	8
	3.2	Operating-Mode (S2)	10
	3.3	Power Supply Voltage (JP: 29, 34)	11
	3.4	Analogue Power Supply Voltage (JP: 11, 13, 15)	12
	3.5	Subclock (JP: 36,37)	13
	3.6	UART"A" (JP: 1, 2, 31)	13
	3.7	LIN"A" (JP: 17, 18, 21, 22)	14
	3.8	CAN"A" (JP: 25, 26)	14
	3.9	Reset-Generation (JP: 3, 4, 24, 35)	15
	3.10	Buttons INT4, INT5, TIN0, IN0, ADTG, Reset (JP: 12, 14, 16, 20, 23, 24)	16
4	PRO	GRAMMING THE INTERNAL FLASH	17
	4.1	Asynchronous Mode	17
	4.2	Synchronous Mode	19
5	CON	NECTORS	20
	5.1	Power connector (X12)	20
	5.2	Edge connector (X1, X2)	20
	5.3	UART"A" (X3)	20
	5.4	LIN"A" Interface (X8)	21
	5.5	CAN"A" Interface connector (X10)	21
	5.6	USER-LEDs & LC-Display (optional)	21
	5.7	VG96 connector (X4)	22
6	SILK	-PLOT OF THE BOARD	24
7	REL	ATED PRODUCTS	25
8	INFC	DRMATION IN THE WWW	26

1 Overview

1.1 Abstract

The FLASH-CAN-48P is a low cost multifunctional evaluation board for 16-Bit Fujitsu Flash microcontrollers in a FPT-48P-M26 package.

It can be used stand alone for software development and testing or as a simple target board to work with the emulator system.

The board allows the designer immediately to start with the software development before his own final target system is available.

1.2 Features

- ➤ Supports 16-Bit microcontroller in FPT-48P-M26 package (7x7x1.5mm, 0.5 mm pitch)
 - MB90385series: MB90V495, MB90F387/S
 - ▶ MB90455series: MB90V495, MB90F455/S, MB90F456/S, MB90F457/S
- 9-12V unregulated external DC power supply usable
- ▶ 5V internal power supply, Power-LED
- ▶ In-Circuit serial Flash programming
- All resources available for evaluation
- All pins routed to connectors
- ▶ 4 MHz main-crystal, 32kHz subclock-crystal (selectable by jumpers)
- One UART Interface
- One LIN-Transceiver
- One High-Speed CAN Transceiver
- ▶ 8 User LEDs, optional: alphanumeric standard LC-Display connectable instead of LEDs
- ▶ Reset-Button, Reset-LED
- ▶ 5 User-buttons configurable for INT4, INT5, TIN0, IN0 and ADTG
- ▶ 64pin VG connector (same pin-out as Flash-CAN-64P-M09-V2)

The target board will be delivered with the MB90F387 microcontroller.

This microcontroller contains a 'burn-in'-boot loader for programming the flash.

This board must only be used for test applications in an evaluation laboratory environment.

1.3 General Description

The FLASH-CAN-48P is designed to support 16Bit microcontrollers with 48-pin LQFP package like MB90385series and MB90455series.

It can be used as a stand alone evaluation board or as a target board for emulator debugger.

The evaluation board supports following package: FPT-48P-M26 (7x7x1.5mm, 0.5mm pitch)

The board is supplied with a socketed 4MHz crystal as the main oscillation clock. Using the internal PLL of the μ C, internal clock rates up to 16MHz can be achieved.

Additionally a 32kHz crystal is mounted for use as a subclock, if this is supported by the device type.

UART1 can be used for RS232- (JP1, JP2, X3) or LIN- (JP21, JP22, X8) communication.

One separate RS232 transceiver is available to connect the on-chip UART to the 9-pin D-Sub connector (X3). The transceiver generate the adequate RS232 levels for the receive (RXD) and transmit (TXD) lines. The DTR line or the CTS line of the connector can be selected with jumpers (JP3, JP4) to generate a system reset. The RTS signal can be shortcut to CTS using the jumper JP31.

In-circuit-programming (asynchronous) can be done via UART1 (UART"A", X3) using the Burn-In Bootloader of the microcontroller.

Additionally one TLE6259 single-wire LIN-transceiver is included to drive the bus line in LIN-systems for automotive and industrial applications.

If the board provides a socket for the microcontroller than it can be used as an emulator target board. In this case the microcontroller must be removed from the socket and the corresponding probe cable has to be used:

Probe Cable: **MB2132-466**

Header Socket: NQ048sd + HQ048sd

All pins of the microcontroller are connected to the edge connectors X1 and X2 and are directly available to the user. Furthermore, the most important signals are available on the VG64 connector (X4).

The on-board voltage regulator allows the user to connect an unregulated DC input voltage between +9V to +12V. In case of any modifications of the board, care should be taken that the total power consumption will not damage the regulator.

There are six push button switches on the board, used for Reset, External Interrupts INT4 and INT5, Trigger for Reload-Timer0 (TIN0), Input-Capture (IN0) and Trigger for the A/D-converter (ADTG).

Eight user-LEDs are connected via a 1k resistor network to Port P30-P33 / P54-P57. If these LEDs are not required, the resistor network can be removed to disconnect the LEDs and to free the port. Take care of Port P30 and P31, which needs the 1k Resistor while serial incircuit programming!

The operating mode of the microcontroller can be selected by the Dip-switch S2.

2 Installation

Remove carefully the board from the shipping carton.

Check first if there are any damages before power on the evaluation board.

For the power supply a DC input voltage of 9V – 12V is recommended. The positive voltage (+) must be connected to the shield, and ground (GND) must be connected to the centre of the connector X12!

After power-on, the green 'Power'-LED (D16) should be on. If the LED does not light, than switch off the power supply and check the default jumper settings.

By default, the evaluation board is equipped with a MB90F387 and the device has been programmed with a test program. So after power-on a running light at the eight 'User'-LEDs can be seen. Furthermore, a welcome string is continuously output with 9600 baud on UART channel (UART"A"). Please use a 1:1 cable for the PC-connection.

The burn-in bootloader allows the user to program it's own application into the Flash-memory. How to program the Flash memory is described in chapter 4.

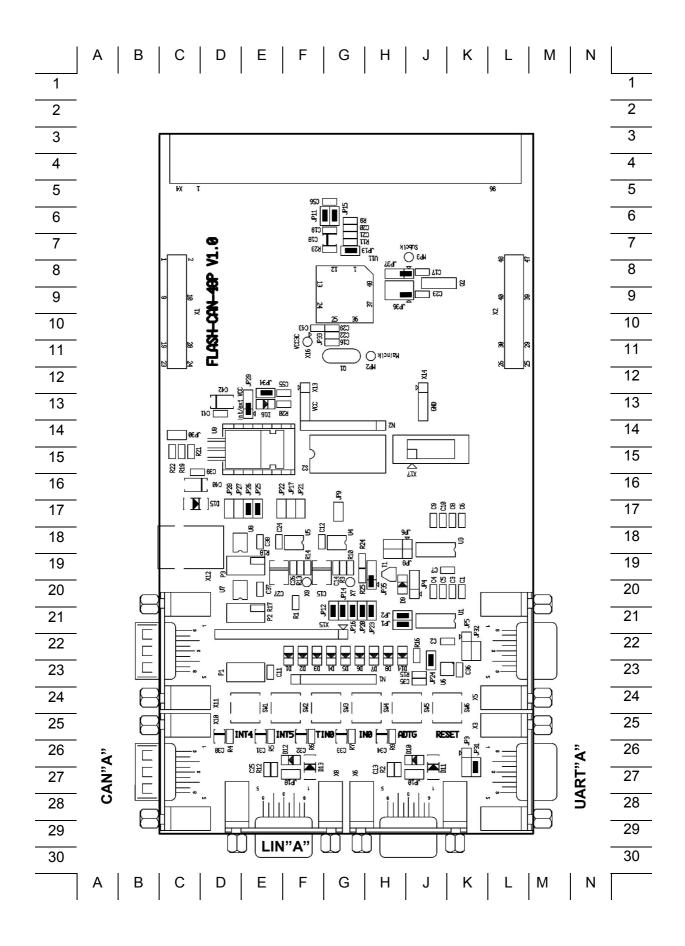
If the board is used as an emulator target board, than switch off the power supply and remove the microcontroller from the socket. Now the probe cable can be mounted into the socket. Take care of pin 1 marking onto the socket and fix the probe cable with screws.

Do not use other probe cable than for LQFP-48 package only!

Connect the probe cable to the emulation pod. Check all DIP-switch-settings of the evaluation board and the emulation pod.

For the power on sequence the emulator system must be switched on first, afterwards switch on the evaluation board. Please look at the corresponding user manual for the emulator how to set up the emulator system. After the power on the 'Reset'-LED of the emulator must be off and the 'Vcc'-LED must be on.

If the 'Reset'-LED is still lighting, check the DIP-switch-settings of the emulator system and the power supply of the evaluation board.


3 Jumpers and Switches

This chapter describes all jumpers and switches which can be modified on the evaluation board. The default setting is shown with a grey shaded area. All jumpers and switches are named directly on the board, so it is very easy to set the jumpers according to the features.

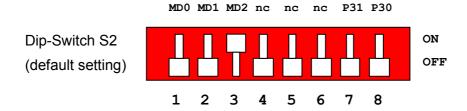
3.1 Jumper Overview

Jumper	Description / Function	Туре	Default	Coordinates
JP1	UART A (TXD)	Jumper 2 pol	closed	HJ 21
JP2	UART A (RXD)	Jumper 2 pol	closed	HJ 21
JP3	DTR/RTS	Jumper 3 pol	open	K 26
JP4	RESET UART A	Jumper 3 pol	open	J 20
JP11	AVcc	Jumper 2 pol	closed	G 5/6
JP12	SW INT4	Jumper 2 pol	closed	G 21
JP13	AVcc=AVRH	Jumper 2 pol	closed	G 7
JP14	SW INT5	Jumper 2 pol	closed	G 21
JP15	AVss	Jumper 2 pol	closed	G 5/6
JP16	SW TIN0	Jumper 2 pol	closed	GH 21
JP17	LIN A enable	Jumper 2 pol	open	F 17
JP18	Master-Mode	Jumper 2 pol	open	F 27
JP20	SW INO	Jumper 2 pol	closed	H 21
JP21	LIN A (RXD)	Jumper 2 pol	open	F 17
JP22	LIN A (TXD)	Jumper 2 pol	open	F 17
JP23	SW ADTG	Jumper 2 pol	closed	H 21
JP24	RESET	Jumper 2 pol	closed	J 23
JP25	CAN A (TXD)	Jumper 2 pol	closed	E 17
JP26	CAN A (RXD)	Jumper 2 pol	closed	E 17
JP29	int/ext VCC	Jumper 3 pol	1-2	E 13
JP30	5V/3V3	Jumper 2 pol	open	C 14
JP31	RTS-CTS	Jumper 2 pol	closed	K 27
JP33	C-Pin	sold-Jumper	open	F 10
JP34	MCU_VCC	Jumper 2pol	closed	E 12
JP35	Reset inverter	Jumper 3 pol	1-2	H 19
JP36	X0A select	Jumper 3 pol	1-4	H 9
JP37	X1A select	Jumper 3 pol	1-2	H 8

3.2 Operating-Mode (S2)

The DIP-switch S2 is used to set the operating mode of the μ C.

Ensure that the mode pin settings correspond to the operation-mode of the application.


For more detailed information please check the Hardware-Manual of the microcontroller.

DIP switch	Setting	Logical value	
S2/1 (MD0)	ON (closed)	0 (low)	
32/1 (IVIDO)	OFF (open)	1 (high)	
S2/2 (MD1)	ON (closed)	0 (low)	
32/2 (WD1)	OFF (open)	1 (high)	
S2/3 (MD2)	ON (closed)	0 (low)	
32/3 (IVID2)	OFF (open)	1 (high)	
S2/4	not connected (OFF)		
S2/5	not connected (OFF)		
S2/6	not connected (OFF)		
S2/7 (P31)	ON (closed)	1 (high)	
32// (P31)	OFF (open)	0 (low)*1	
S2/8 (P30)	ON (closed)	1 (high)	
32/0 (P30)	OFF (open)	0 (low) *1	

Default: MD0, 1, 2 = 1 1 0 P30, P31 = 0 0

By default, the Single Chip Run-Mode is selected.

Note: *1 Take care that the low-level is reached by the resistor-network N1 and the LEDs D1/D2. In case that N1 is removed in order to free the Port, then P30 and P31 have to be connected manually to GND in case of asynchronous programming (see chapter 4).

3.3 Power Supply Voltage (JP: 29, 34)

Vcc and GND (Vss) are both connected to the edge-connector (X4) in order to supply additional circuitry. In this case take care of not to exceed the maximum ratings of the on board voltage regulator LM317T.

JP29 Power Supply selection

JP30 Power Supply voltage selection: +5V or +3.3V

JP34 This Jumper is used to connect the Vcc supply voltage to the μ C. Connecting an Ampere-meter instead of the jumper allows measuring of the power-supply-current of the microcontroller (Icc).

Jumper	Setting	Description
JP29 (Vcc)	1 - 2	On-board voltage regulation
	2 - 3	not supported
JP30 (3V3)	ON (closed)	voltage regulation adjusted to +3.3V
	OFF (open)	voltage regulation adjusted to +5V
JP34 (MCUVcc)	ON (closed)	Power supply Vcc is connected to μC
	OFF (open)	Disconnected from Power supply Vcc

Default: JP29 = 1-2, JP30 = OFF, JP34 = ON,

By default, the on-board Voltage +5V regulation is used and the microcontroller is powered.

3.4 Analogue Power Supply Voltage (JP: 11, 13, 15)

The power supply as well as the positive reference voltage for the A/D-converter can be provided internally or externally.

JP11, JP15 connect power supply voltages (AVcc and AVss)

JP13 connect reference voltages (AVRH to AVcc)

Jumper	Setting	Description
JP11 (AVcc)	ON (closed)	AVcc is connected to Vcc
	OFF (open)	AVcc is disconnected from Vcc
JP13 (AVRH)	ON (closed)	AVRH is connected to AVcc
	OFF (open)	AVRH defined by resistor divider*1
JP15 (AVss)	ON (closed)	AVss is connected to GND
JF 13 (AV\$5)	OFF (open)	AVss is disconnected from GND

¹By default the resistor-divider R11 and R23 is not mounted on the board

Default: JP11, JP13, JP15 are closed

By default, the A/D-converter supply and reverence voltage is +5V.

Note:

If JP11 and J15 are open, the user has to supply an adequate analogue voltage supply (AVcc and AVss) to the A/D-converter.

If JP13 is open, the resistors R11 and R23 define AVRH. By default, the resistor divider (R11 and R23) is not mounted on the board.

3.5 Subclock (JP: 36,37)

Some devices like e.g. MB90F387 support a 32kHz subclock (X0A, X1A), other devices like MB90FxxxS do not support a subclock but will offer additional port-pins (P35, P36) instead.

Please check the related datasheet.

JP36: defines usage of Pin 46 (X0A/P35) Pin-out JP36

JP37: defines usage of Pin 47 (X1A/P36)

		2	
Pin-out JP36:	3	4	1

Jumper	Setting	Description
JP36 (X0A/P35)	1-4	Pin 46 is connected to the 32kHz Subclock (X0A)
	2-4	Pin 46 is used as P35 and is connected to X4-A28
	3-4	Pin 46 is connected to GND (in case that subclock-device is used, but no 32kHz crystal is connected)
JP37 (X1A/P36)	1-2	Pin 47 is connected to the 32kHz Subclock (X1A)
01 07 (X1741 00)	2-3	Pin 47 is used as P36 and is connected to X4-C29

Default: JP36: 1-4, JP37: 1-2

By default, the 32kHz-subclock-crystal is connected to the microcontroller.

3.6 UART"A" (JP: 1, 2, 31)

One RS232-transceiver is available and can be connected to UART1.

JP1, **JP2** connects UART1 to the RS232-transceiver (U1, X3)

JP31 Some Flash-programming-Tools needs a connection between CTS and RTS

Jumper Setting		Description
	ON (closed)	SOT1 is connected to RS232-Transceiver
JP1 (UART"A"TxD)	OFF (open)	SOT1 is disconnected from RS232-Transceiver
JP2 (UART"A"RxD)	ON (closed)	SIN1 is connected to RS232-Transceiver
JF2 (UART A RXD)	OFF (open)	SIN1 is disconnected from RS232-Transceiver
JP31 (RTS-CTS)	ON (closed)	RTS and CTS is shortcut on X3
JF31 (K13-C13)	OFF (open)	RTS and CTS is not shortcut on X3

Default: JP1=ON, JP2=ON, JP31 = ON

By default, UART1 of MB90F387 is used as UART"A".

Note: RS232- and LIN-transceiver can not be used at the same time. Take care that the jumpers JP21 and JP22 are open if JP1 and JP2 are closed.

3.7 LIN"A" (JP: 17, 18, 21, 22)

One LIN-transceiver is available and can be used with UART1.

JP17 enable LIN-Transceiver

JP18 LIN Master-mode

JP21, JP22 connects UART1 to the LIN-transceiver (U5, X8)

Jumper	Setting	Description
JP17 (LIN enable)	open	LIN-transceiver is disabled
JF 17 (LIN ellable)	closed	LIN-transceiver is enabled
ID19 (LINI Montor)	open	LIN Slave-mode
JP18 (LIN Master)	closed	LIN Master-mode
JP21 (LIN"A"RXD)	open	SIN1 is disconnected from LIN-Transceiver
JP21 (LIN A RAD)	closed	SIN1 is connected to LIN-Transceiver
ID22 /LINI"A"TVD\	open	SOT1 is disconnected from LIN-Transceiver
JP22 (LIN"A"TXD)	closed	SOT1 is connected to LIN-Transceiver

Default: JP17, JP18, JP21, JP22 = open

By default, UART1 of MB90F387 is not used as LIN-interface.

Note: RS232- and LIN-transceiver can not be used at the same time. Take care that the jumpers JP1 and JP2 are open if JP21 and JP22 are closed.

3.8 CAN"A" (JP: 25, 26)

One high-speed CAN-transceiver is available on the FLASH-CAN-48P evaluation board.

JP25, JP26 connects the CAN-Port to the CAN-transceiver (U7, X10). If the CAN interface is not used, the jumpers should be left open.

Jumper	Setting	Description
JP25 (TX0)	Open	TX is disconnected from CAN-Transceiver (U7, X10)
	Closed	TX is connected to CAN-Transceiver (U7, X10)
JP26 (RX0)	Open	RX is disconnected from CAN-Transceiver (U7, X10)
	Closed	RX is connected to CAN-Transceiver (U7, X10)

Default: JP25, JP26 = Closed

By default, the CAN transceiver is connected to the microcontroller

3.9 Reset-Generation (JP: 3, 4, 24, 35)

Additional to the internal Power-On-Reset the microcontroller can be reset by an external Reset-circuit (Voltage-Monitor) and by the UART, too.

JP3	As well the DTR-line as the RTS-Line of UART"A" can be used to generate
	a system-reset.

JP4 This jumper selects whether the DTR/RTS line from UART"A" or UART"B" will generate a system-reset.

JP24 open this jumper if no external Reset shall be generated.In this case, only the internal reset is active (e.g.: power-on)

JP35 The polarity of the DTR/RTS line can be invert by this jumper. Remove the jumper in order to disable the reset logic.

Jumper	Setting	Description	
JP3 (DTR / RTS "A")	1-2	DTR of UART"A" is selected	
	2-3	RTS of UART"A" is selected	
JP4 (UART"A"/"B")	1-2	UART"A" is used to generate Reset	
	2-3	not applicable on FLASH-CAN-48P	
JP24 (Main Reset)	closed	external Reset generation is active	
	open	no external Reset generation	
JP35 (Polarity)	1-2	No polarity inversion for the DTR/RTS signal	
	2-3	Polarity inversion for the DTR/RTS signal	

Default: JP24 = closed (JP3, JP4 and JP35 are not set)

By default, the external Reset generation is active. The Reset by UART is disabled.

Note:

While a reset signal is asserted the red Reset-LED D14 is lit.

During normal operation, this LED should be off!

If JP35 (Polarity) is set, than JP4 and JP5 have to be set, too.

If the reset LED is steadily on, check the power supply input voltage and the settings for the reset-generation by UART.

3.10 Buttons INT4, INT5, TIN0, IN0, ADTG, Reset (JP: 12, 14, 16, 20, 23, 24)

JP12, JP14: Two push buttons can be used to trigger the external interrupts INT4 and INT5

JP16: One button can be used as trigger-input for the Reload-Timer0 (TIN0)

JP20: One Button can be used for input at Input-Capture0 (IN0)

JP23: One Button can be used as trigger for the A/D-converter (ADTG)

JP24: One Button can be used for manually reset

Jumper	Setting	Description	
JP12 (INT4)	Closed	INT4 is connected to Push-button "INT4"	
	Open	no connection to INT4	
JP14 (INT5)	Closed	INT5 is connected to Push-button "INT5"	
	Open	no connection to INT5	
JP16 (TIN0)	Closed	TIN0 is connected to Push-button "TIN0"	
	Open	no connection to TIN0	
JP20 (IN0)	Closed	IN0 is connected to Push-button "IN0"	
	Open	no connection to IN0	
JP23 (ADTG)	Closed	ADTG is connected to Push-button "ADTG"	
	Open	no connection to ADTG	
JP24 (Reset)	Closed	Push-button "Reset" is active	
	Open	no external Reset generation	

Default: JP12, JP14, JP16, JP20, JP23, JP24 = Closed

By default, INT4, INT5, TIN0, IN0 and ADTG of the microcontroller are connected to the Push buttons and the external Reset-generation is active.

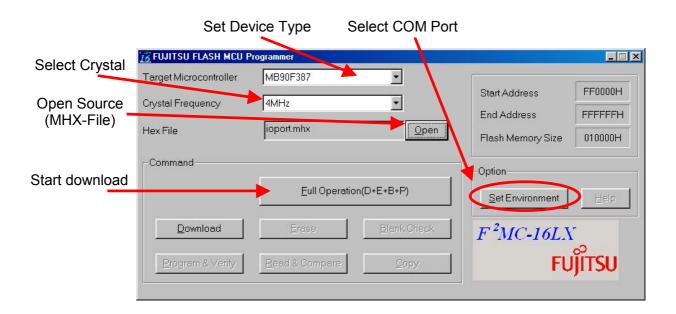
4 Programming the internal Flash

All Flash devices have an internal bootloader for asynchronous- as well as synchronous-Flash-programming:

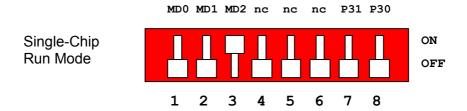
- asynchronous-serial Flash-programming via UART1 (UART"A", X3)
- synchronous-serial Flash-programming via Serial I/O (SCI1, X17)

4.1 Asynchronous Mode

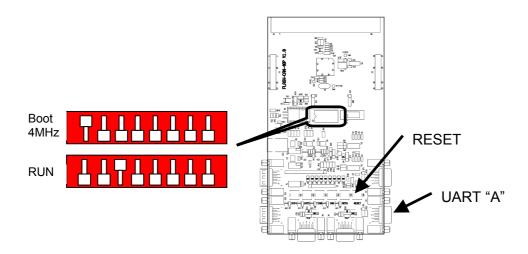
In order to program the Flash-ROM asynchronously via UART1, the tool "Fujitsu Flash MCU Programmer for FMC16LX" can be used. This tool is available free on the Fujitsu Micros CD-ROM or Web Site (http://www.fme.gsdc.de/gsdc.htm: select ▶ Software ▶ Utilities)


The following procedure must be followed to enable Flash Programming:

- 1. Power off the board
- 2. Connect the Evaluation Board UART"A" to your serial PC communication port. Please use a 1:1 cable for the PC-connection.
- 3. Check the Jumper-settings according to the UART as described in chapter 3.6
- 4. Configure the chip mode: Depending on the external crystal two modes can be selected by DIP-switch S2:



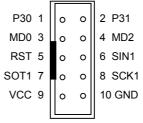
- 5. Power on the board
- 6. Check that the Reset LED is off. Otherwise change the DTR polarity (JP35) and check the power supply voltage.
- 7. Start the tool "Fujitsu Flash MCU Programmer for FMC16LX" software and follow the instructions:



8. After programming the Flash-ROM, switch off the power supply and set back the mode according to the usage of the application, e.g.:

9. Power on the board. The user application is started directly.

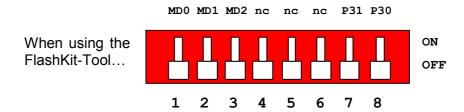
4.2 Synchronous Mode


In order to program the Flash-ROM synchronously via Serial-I/O (SCI1) special software has to be used, e.g. Fujitsu 'FlashKit' Tool. This tool is not available free.

Please contact our Web Site in order to get more information about the FlashKit-Tool:

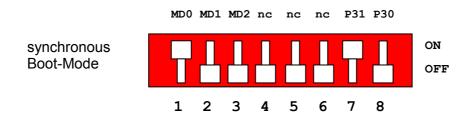
<u>http://www.fme.gsdc.de/gsdc.htm</u>: select ▶ Tools ▶ Programme ▶ MCU FlashKit

A dedicated Flash programming socket (X17) is provided on the FLASH-CAN-48P board for direct connection to the Fujitsu 'FlashKit'.


X17: Flash programming socket

Note:

Open Jumper JP1 and JP2 in order to disconnect UART1 from the RS232-Transceiver!


In case that the FlashKit-Tool is used, all Mode-settings will be done automatically by the FlashKit. This means that all DIP-switch S2 has to be set to the "OFF" position.

Please refer to the manual of the FlashKit for more information how to program a Flash-device by the synchronous-serial mode.

Note:

In case that another Programming-Tool is used and the Mode-settings have to be done manually then use the following configuration of DIP-switch S2 in order to select the synchronous-serial Flash-programming mode:

5 Connectors

5.1 Power connector (X12)

The following figure shows the power connection jack X12. This connector is used to connect an external unregulated DC power supply voltage (9V-12V DC) to the evaluation board.

Connector X12: Shield is connected to positive voltage supply

Centre is connected to ground (GND)

It is recommended to use 9V to keep the power dissipation to a minimum. Otherwise, an additional heat sink for the linear voltage regulator might be necessary.

5.2 Edge connector (X1, X2)

All pins of the microcontroller are directly connected to X1 and X2, both are 2 x 12 Pin headers, as follows:

Connector	MCU Pins	
X1 (1 – 24)	1 – 24	
X2 (25 – 48)	25 – 48	

The odd pin numbers are located on the one side and the even pin numbers are located on the other side of the connector.

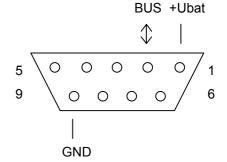
On the PCB, the corresponding pin numbers of the μ C are written next to the connector pins.

5.3 UART"A" connector (X3)

One 9-pin D-Sub female connector is used for the serial interface UART"B".

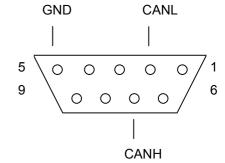
TXD is the transmit output, RXD is the receive input.

The DTR or RTS signal can be used to generate a reset.


Please use 1:1 cable for PC-connection.

Connector X3:

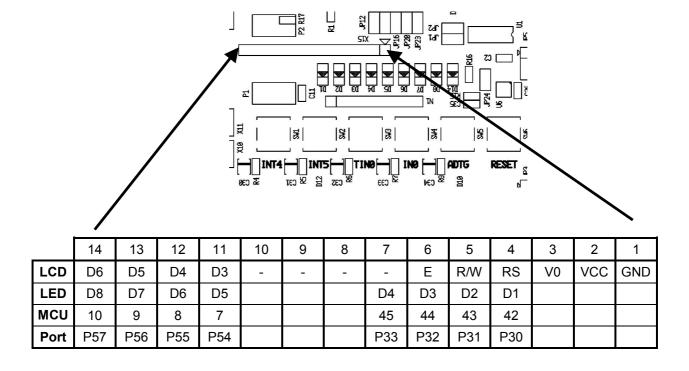
5.4 LIN"A" Interface connector (X8)


One 9-pin D-Sub female connector is used for the LIN-communication.

Connector X8:

5.5 CAN"A" Interface connector (X10)

One 9-pin D-Sub male connector is used for the CAN interface.


Connector X10:

5.6 USER-LEDs & LC-Display (optional)

Eight LEDs are reserved for user-application. In order to disconnect the LEDs from the related microcontroller port, the resistor network N1 can be removed. Take care that, in case of asynchronous programming, the low-level of P30 and P31 is reached by the resistor-network N1 and the LEDs D1/D2. If N1 is removed in order to free the Port, then P30 and P31 have to be connected manually to GND. See chapter 4 for more details.

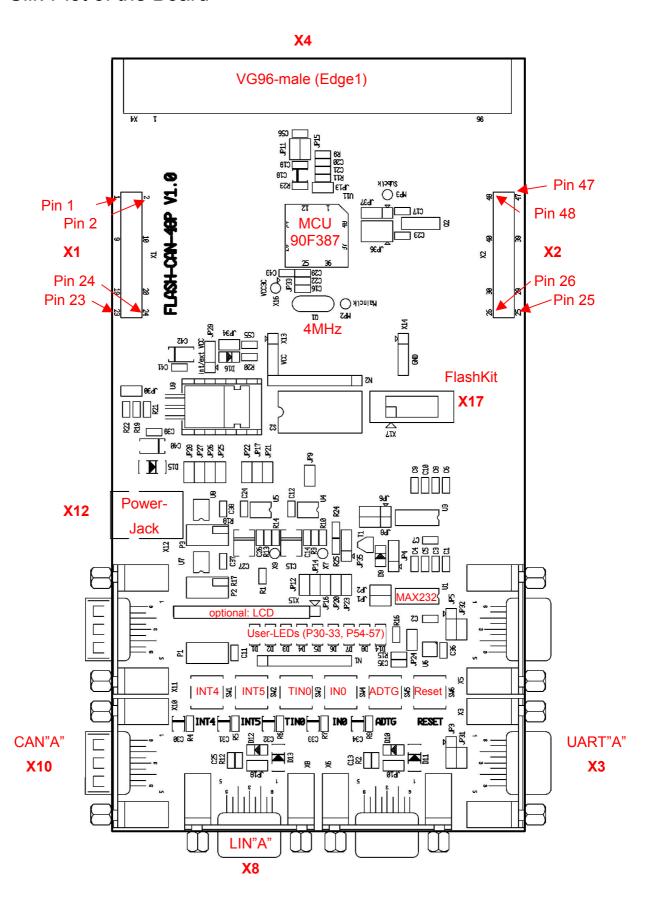
Instead of the user-LEDs one alphanumeric LC-Display (optional) can be connected.

The following control-signals are reserved:

5.7 VG96 connector (X4)

The signal-layout of connector X4 is near the same as used with the Evaluation-Board Flash-CAN-64P-M09-V2 that will be used together with the MB90495series.

Connector X4	FLASH-CAN-48P MB90385/MB90455 series		FLASH-CAN-64P MB90495 series	
A1	-	-	1	P61/INT1
C1	-	-	2	P62/INT2
A2	3	P50/AN0	3	P50/AN0
C2	4	P51/AN1	4	P51/AN1
A3	5	P52/AN3	5	P52/AN3
C3	6	P53/AN3	6	P53/AN3
A4	7	P54/AN4	7	P54/AN4
C4	8	P55/AN5	8	P55/AN5
A5	9	P56/AN6	9	P56/AN6
C5	10	P57/AN7	10	P57/AN7
A6	-	-	11	AVcc
C6	-	-	12	AVR
A7	-	-	13	AVss
C7	-	-	14	P60/INT0
A8	-	-	15	X0A
C8	-	-	16	X1A
A9	-	-	17	P63/INT3
C9	-	-	18	MD0
A10	23	RSTX	19	RSTX
C10	-	-	20	MD1
A11	-	-	21	MD2
C11	-	-	22	X0
A12	-	-	23	X1
C12	25	Vss	24	Vss
A13	-	-	25	P00/AD00
C13	-	-	26	P01/AD01
A14	-	-	27	P02/AD02
C14	-	-	28	P03/AD03
A15	-	-	29	P04/AD04
C15	-	-	30	P05/AD05
A16	-	-	31	P06/AD06
C16	-	-	32	P07/AD07


Connector	FLA	SH-CAN-48P	FL	ASH-CAN-64P	
X4	MB90385/MB90455 series		MB90495 series		
A17	29	P10/IN0	33	P10/IN0/AD08	
C17	30	P11/IN1	34	P11/IN1/AD09	
A18	31	P12/IN2	35	P12/IN2/AD10	
C18	32	P13/IN3	36	P13/IN3/AD11	
A19	33	P14/PPG0	37	P14/PPG0/AD12	
C19	34	P15/PPG1	38	P15/PPG1/AD13	
A20	35	P16/PPG2	39	P16/PPG2/AD14	
C20	36	P17/PPG3	40	P17/PPG3/AD15	
A21	12	P20/TIN0/	41	P20/TIN0/A16	
C21	13	P21/TOUT0	42	P21/TOUT0/A17	
A22	14	P22/TIN1	43	P22/TIN1/A18	
C22	15	P23/TOUT1	44	P23/TOUT1/A19	
A23	16	P24/INT4	45	P24/INT4/A20	
C23	17	P25/INT5	46	P25/INT5/A21	
A24	18	P26/INT6	47	P26/INT6/A22	
C24	19	P27/INT7	48	P27/INT7/A23	
A25	25	Vss	49	Vss	
C25	42	P30	50	P30/SOT0/ALE	
A26	43	P31	51	P31/SCK0/RDX	
C26	44	P32	52	P32/SIN0/WRLX	
A27	45	P33	53	P33/WRHX	
C27	-	-	54	P34/HRQ	
A28	(46)	(P35)*2	55	P35/HAKX	
C28	24	Vcc	56	Vcc	
A29	-	-	57	С	
C29	(47)	(P36)*2	58	P36/FRCK/RDY	
A30	11	P37/ADTG	59	P37/ADTG/CLK	
C30	37	P40/SIN1	60	P40/SIN1	
A31	38	P41/SCK1	61	P41/SCK1	
C31	39	P42/SOT1	62	P42/SOT1	
A32	40	P43/(TX)*1	63	P43/TX	
C32	41	P44/(RX)*1	64	P44/RX	

^{*1} only MB90385series

 $^{^{*2}}$ only MB90F38xS /MB90F45xS

6 Silk-Plot of the Board

7 Related Products

•	FLASH-CAN-48P-M26	Evaluation board for MB90385 and MB90455 series with socket and MB90F387
•	FLASH-CAN-48P-90F387	Evaluation board for MB90385 and MB90455 series with soldered microcontroller MB90F387 (without socket)
•	MB2141A/B	Emulator debugger main unit
•	MB2145-507	Emulation adapter for MB90385 and MB90455 series
•	MB2132-466	Emulator probe cable for package (FPT-48P-M26)
•	MB90V495G	Evaluation chip for MB90385 and MB90455 series
•	MB90F387	Flash-Microcontroller with CAN and with Subclock
•	MB90F387S	Flash-Microcontroller with CAN but without Subclock
•	MB90F45x	Flash-Microcontroller without CAN but with Subclock
•	MB90F45xS	Flash-Microcontroller without CAN and without Subclock
•	NQPACK48SD	Socket for package FPT-48P-M26 (Tokyo Eletech Corp. www.tetc.co.jp/e tet.htm)
•	HQPACK48SD	Header for NQPACK48SD

8 Information in the WWW

Information about FUJITSU MICROELECTRONICS Products can be found on the following Internet pages:

Microcontrollers (8-, 16- and 32bit), Graphics Controllers Datasheets and Hardware Manuals, Support Tools (Hard- and Software)

http://www.fme.gsdc.de/gsdc.htm

Memory products: Flash, SDRAM and FRAM

http://www.fme.fujitsu.com/products/memory/index1.html

Linear Products: Power Management, A/D and D/A Converters

http://www.fme.fujitsu.com/products/linear/start.html

Media Products: SAW filters, acoustic resonators and VCOs

http://www.fme.fujitsu.com/products/media/index1.html

For more information about FUJITUS MICROELECTRONICS

http://www.fme.fujitsu.com/products/start.html

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Daughter Cards & OEM Boards category:

Click to view products by Fujitsu manufacturer:

Other Similar products are found below:

MA320013 MA320017 ADZS-21262-1-EZEXT MPC574XG-176DS MPC5777C-516DS MPC5777M-512DS 1585396-1 1585939-1

IMXEBOOKDC4 20-101-1254 27911 ADZS-USBLAN-EZEXT MA160016 MPC5777C-416DS SPC56ELADPT144S TMDXRM46CNCD

MPC574XG-324DS MIKROE-2051 DM160216 SPC560B64A100S MA180036 MPC5777M-416DS SPC564AADPT324S

KITMPC5643DBEVM Y-RH850-P1XC-100PIN-PB-T1-V1 P0531 P0431 MIKROE-1289 2711 P0504 EV-ADUCM350-BIO3Z

IRAC1161-T0220 QB-R5F104LE-TB 1130 MA160015 MA180033 MA240026 MA320014 MA330014 MA330017 MCIMXHDMICARD

TLK10034SMAEVM TMDSCNCD28054MISO TMDXSDV6467T TOOLSTICK330DC TOOLSTICK360DC MIKROE-2152 MIKROE-2154 MIKROE-2381 MIKROE-2458