Zener Diodes, 24 and 40 Watt Peak Power

SOT-23 Dual Common Anode Zeners

These dual monolithic silicon Zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Standard Zener Breakdown Voltage Range 5.6 V to 47 V
- Peak Power 24 or 40 W @ 1.0 ms (Unidirectional), per Figure 6 Waveform
- ESD Rating:
 - Class 3B (> 16 kV) per the Human Body Model Class C (> 400 V) per the Mashine Model
 - Class C (> 400 V) per the Machine Model
- ESD Rating of IEC61000-4-2 Level 4, ±30 kV Contact Discharge
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage $< 5.0 \ \mu A$
- Flammability Rating UL 94 V–0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

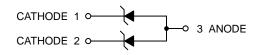
Mechanical Characteristics

CASE: Void-free, transfer-molded, thermosetting plastic case **FINISH:** Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.



ON Semiconductor®

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 3 of this data sheet.

MAXIMUM RATINGS

Rati	ng	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ $T_L \le 25^{\circ}C$	MMBZ5V6ALT1G thru MMBZ9V1ALT1G MMBZ12VALT1G thru MMBZ47VALT1G	P _{pk}	24 40	W
Total Power Dissipation on FR-5 Board (Note @ $T_A = 25^{\circ}C$ Derate above 25°C	e 2)	P _D	225 1.8	mW mW/°C
Thermal Resistance Junction-to-Ambient		$R_{ heta JA}$	556	°C/W
Total Power Dissipation on Alumina Substrate @ T _A = 25°C Derate above 25°C Thermal Resistance Junction–to–Ambient	e (Note 3)	Ρ _D R _{θ.IA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature Range		T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum (10 Se	cond Duration)	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 6 and derate above $T_A = 25^{\circ}C$ per Figure 7.

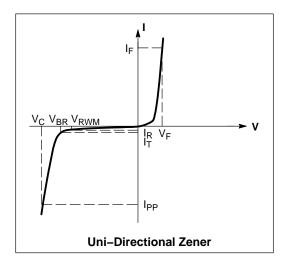
2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

3. Alumina = 0.4 x 0.3 x 0.024 in, 99.5% alumina.

*Other voltages may be available upon request.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBZ5V6ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZ5V6ALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ5V6ALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZ6VxALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZ6VxALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ6VxALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZ9V1ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZ9V1ALT13G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
MMBZxxVALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZMMBZxxVALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel
MMBZxxVALT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZxxVALT3G*	SOT-23 (Pb-Free)	10,000 / Tape & Reel
SZMMBZxxVTALT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V _{BR}
١ _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (5% Tolerance)

24 WATTS

				Breakdown Voltage				ax Zene ance (N		V _C @ I _{PP} (Note 6)			
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR} (Note 4) (V)			@ I _T	Z _{ZT} @ I _{ZT}			vc	IPP	ΘV _{BR}
Device*	Marking	Volts	μA	Min	Nom	Max	mA	Ω	Ω	mA	v	Α	mV/°C
MMBZ5V6ALT1G/T3G	5A6	3.0	5.0	5.32	5.6	5.88	20	11	1600	0.25	8.0	3.0	1.26
MMBZ6V2ALT1G	6A2	3.0	0.5	5.89	6.2	6.51	1.0	-	-	-	8.7	2.76	2.80
MMBZ6V8ALT1G	6A8	4.5	0.5	6.46	6.8	7.14	1.0	-	-	-	9.6	2.5	3.4
MMBZ9V1ALT1G	9A1	6.0	0.3	8.65	9.1	9.56	1.0	-	-	-	14	1.7	7.5

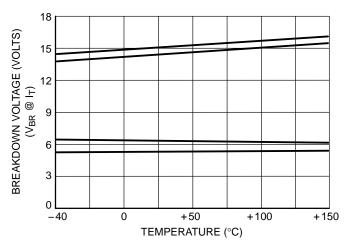
 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (5% Tolerance)

40 WATTS

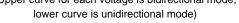
			I _R @	Breakdown Voltage				V _C @ I _{PP}				
	Device	V _{RWM}	V _{RWM}	VBF	V _{BR} (Note 4) (N		V _{BR} (Note 4) (V)		@ I _T	vc	I _{PP}	ΘV _{BR}
Device*	Marking	Volts	nA	Min Nom		Max	mA	V	Α	mV/°C		
MMBZ12VALT1G	12A	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5		
MMBZ15VALT1G	15A	12	50	14.25	15	15.75	1.0	21	1.9	12.3		
MMBZ16VALT1G	16A	13	50	15.20	16	16.80	1.0	23	1.7	13.8		
MMBZ18VALT1G	18A	14.5	50	17.10	18	18.90	1.0	25	1.6	15.3		
MMBZ20VALT1G	20A	17	50	19.00	20	21.00	1.0	28	1.4	17.2		
MMBZ27VALT1G/T3G	27A	22	50	25.65	27	28.35	1.0	40	1.0	24.3		
MMBZ33VALT1G	33A	26	50	31.35	33	34.65	1.0	46	0.87	30.4		
MMBZ47VALT1G	47A	38	50	44.65	47	49.35	1.0	54	0.74	43.1		

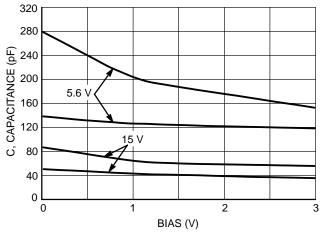
 $(V_F = 0.9 V Max @ I_F = 10 mA)$ (2% Tolerance)

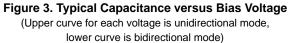
40 WATTS


			I _R @	В	reakdow	n Voltage)	V _C @ I _{PF}		
	Device	V _{RWM}	V _{RWM}	V _{BR} (Note 4) (V)			@ I _T	Vc	I _{PP}	ΘV _{BR}
Device*	Marking	Volts	nA	Min Nom Max			mA	V A		mV/°C
MMBZ16VTALT1G	16T	13	50	15.68	16	16.32	1.0	23	1.7	13.8
MMBZ47VTALT1G	47T	38	50	46.06	47	47.94	1.0	54	0.74	43.1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for I_{Z(AC)} = 0.1 I_{Z(DC)}, with the AC frequency = 1.0 kHz.
Surge current waveform per Figure 6 and derate per Figure 7


* Include SZ-prefix devices where applicable.


TYPICAL CHARACTERISTICS

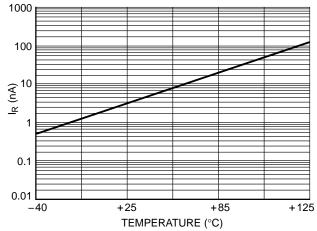


Figure 2. Typical Leakage Current versus Temperature

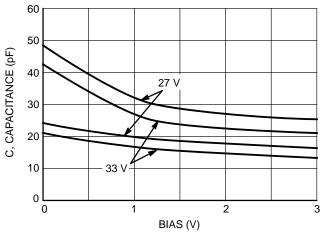
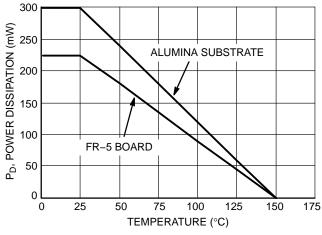
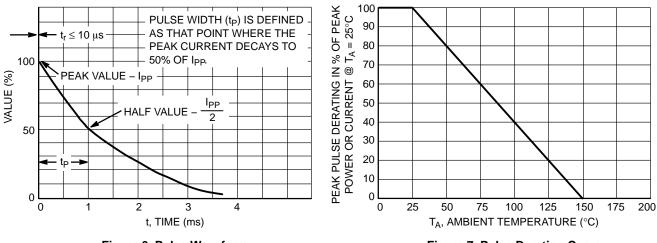
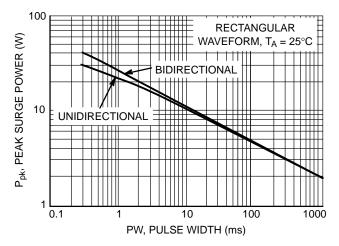



Figure 4. Typical Capacitance versus Bias Voltage (Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)

TYPICAL CHARACTERISTICS

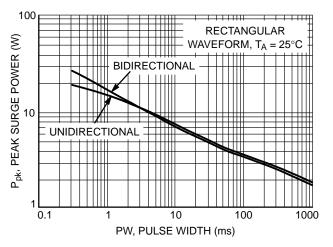
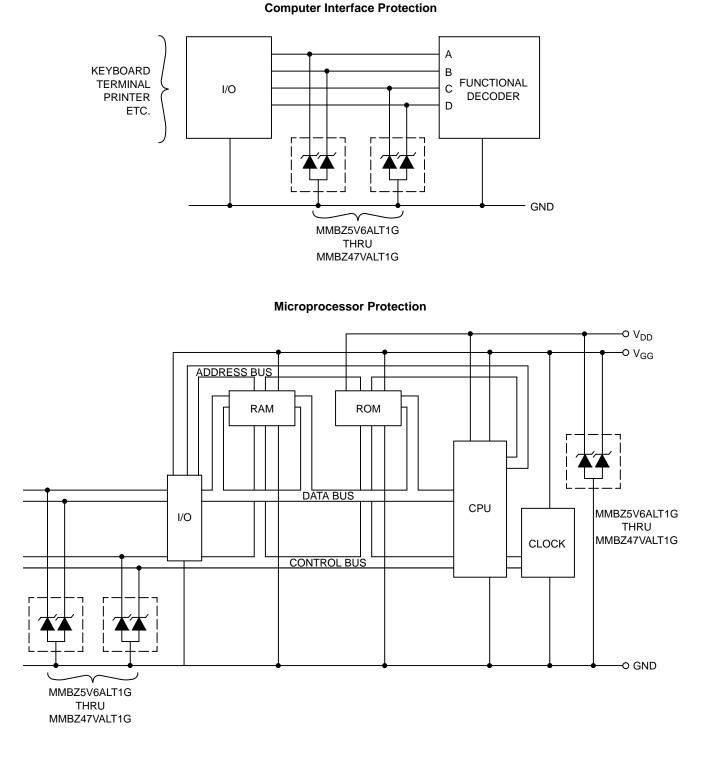

Figure 6. Pulse Waveform

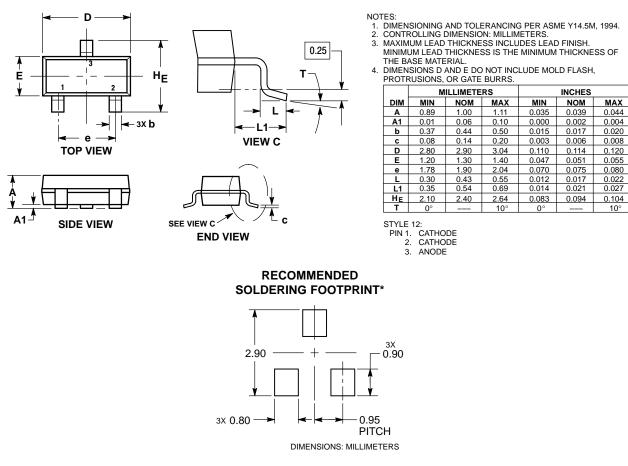
Figure 8. Maximum Non-repetitive Surge Power, P_{pk} versus PW

Power is defined as $V_{RSM} \times I_Z(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk)$.


Figure 9. Maximum Non-repetitive Surge Power, P_{pk}(NOM) versus PW

Power is defined as $V_Z(NOM) \times I_Z(pk)$ where $V_Z(NOM)$ is the nominal Zener voltage measured at the low test current used for voltage classification.

TYPICAL COMMON ANODE APPLICATIONS


A dual junction common anode design in a SOT-23 package protects two separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of ESD applications are illustrated below.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and a re trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor asyme any liability arising out of the applications or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor products and application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asso

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for TVS Diode Arrays category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

D1213A-04SO-7 D5V0F4U5P5-7 SZMMQA6V2T1G 409031D USB50805e3/TR7 D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DRTR5V0U4SL-7 SMQA1000T1G SZMMQA33VT1G SZMMQA5V6T1G IP4042CX5/LF,135 D1213A-01LP4-7B D1213A-02WL-7 MAX3203EEWT+T CM1248-04QG D5V0F4U10MR-13 RSA6.1J4T2R NUP4103FCT1G NUP5150MUTBG SZMMBZ12VALT1G 82401646 PESD1CANVL D1213A-01W-7 PESD1FLEX,215 ESDR0544MDMR4G ESDR0502BT1G ESD7M5.0DT5G ESD5V5U5ULCE6327HTSA1 ESD1P0RFWH6327XTSA1 SMF05CT2G MAX3203EETTT NUP4102XV6T1G D5V0L4B5TS-7 NUP4060AXV6T1G SZMMBZ15VDLT1G SZMMBZ15VALT1G SRDA3.3-4BTG SPT01-335DEE SMS24CT1G SMF15CT1G MG2040MUTAG PLCDA15C6LF NUP5120X6T2G PACDN1408CG ESDA5V3SC6Y SNUP2114UCMR6T1G SZNSQA6V8AW5T2G SZSMF12CT1G SP6001-06UTG-1