Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power ($0.2 \mu \mathrm{~A}$ Typical)
- Ideally suited for notebook applications
- TTL - compatible control of input levels
- Fast switching speed -4.5 ns max.
- Packaging (Pb -free \& Green available):
- 48-pin 150-mil wide BQSOP (B)

Description

Pericom Semiconductor's PI3B33X257 is a 3.3V, 24:12 multiplexer/ demultiplexer with three-state outputs. Inputs can be connected to outputs with low on resistance (5Ω) with no additional ground bounce noise or propagation delay.

Pin Configuration

Block Diagram

Pin Description

Pin Name	Description
$\mathrm{IA}_{\mathrm{n}}-\mathrm{IL}_{\mathrm{n}}$	Data Inputs
S	Select Inputs
$\overline{\mathrm{E}} \mathrm{n}$	Enable
$\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{L}}$	Data Outputs
GND	Ground
V_{CC}	Power
NC	No Connect

Truth Table ${ }^{(1)}$

$\overline{\mathbf{E}} \mathbf{n}$	$\mathbf{S n}$	YA $^{(\mathbf{2})}$	YB $^{(\mathbf{2})}$	YC $^{(\mathbf{2})}$	YD $^{(\mathbf{2})}$	Function
H	X	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Disable
L	L	${ }_{\mathrm{I}} \mathrm{A}_{0}$	${ }_{\mathrm{I}} \mathrm{B}_{0}$	${ }_{\mathrm{I}} \mathrm{C}_{0}$	${ }_{\mathrm{I}} \mathrm{D}_{0}$	$\mathrm{~S}=0$
L	H	${ }_{\mathrm{I}} \mathrm{A}_{1}$	${ }_{\mathrm{I}} \mathrm{B}_{1}$	${ }_{\mathrm{I}} \mathrm{C}_{1}$	${ }_{\mathrm{I}} \mathrm{D}_{1}$	$\mathrm{~S}=1$

Notes:

1. $\mathrm{H}=$ High Voltage Level,

L = Low Voltage Level
2. $n=0 Y A, Y B, Y C, Y D$,
$\mathrm{n}=1 \mathrm{YE}, \mathrm{YF}, \mathrm{YG}, \mathrm{YH}$,
$\mathrm{n}=2 \mathrm{YI}, \mathrm{YJ}, \mathrm{YK}, \mathrm{YL}$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential .. -0.5 V to +4.6 V
DC Input Voltage .. -0.5 V to +4.6 V
DC Output Current... 120 mA
Power Dissipation .. 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%$)

Parameters	Description	Test Conditions ${ }^{(\mathbf{1})}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 50	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	
Iozh	High Impedance Output Current	$0 \leq \mathrm{I}, \mathrm{Y} \leq \mathrm{V}_{\mathrm{CC}}$			± 50	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$, I $\mathrm{ION}=48 \mathrm{~mA}$ or 64 mA		5	7	Ω
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}$ IN $=15 \mathrm{~mA}$		10	15	

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

Parameters ${ }^{(4)}$	Description	Test Conditions	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	3.0		pF
Coff	In/Yn Capacitance, Switch Off		17.0		
CON	In/Yn Capacitance, Switch On		25.0		

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between I and Y pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (I, Y) pins.
4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units	
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	9.0	
$\Delta \mathrm{I}_{\mathrm{CC}}$	Supply Current per Input @ TTL HIGH	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}^{(3)}$			75 A	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right.$, control inputs only $)$; I and Y pins do not contribute to I_{CC}.

Switching Characteristics over Operating Range

Parameters	Description	Test Conditions ${ }^{(1)}$	Com.		Units
			Min.	Max.	
$\mathrm{t}_{\text {IY }}$	Propagation Delay ${ }^{(2,3)}$ In to Yn	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		0.25	ns
$\mathrm{t}_{\text {SY }}$	Bus Select Time Sn to Yn		1	4.5	
$\begin{aligned} & \text { tPZH } \\ & t_{\text {PZL }} \end{aligned}$	Bus Disable Time $\overline{\mathrm{E}}$ to Yn		1	4.5	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Bus Disable Time $\overline{\mathrm{E}}$ to Yn		1	4.8	

Notes:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, IN may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Packaging Mechanical: 48-pin BQSOP (B)

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3B33X257B	B	48 -pin BQSOP
PI3B33X257BE	B	Pb-free \& Green, 48-pin BQSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{X}=$ Tape and Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G
NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 59628756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)

