ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

24-bit bus exchange switch with 12-bit output enables

Rev. 02 — 3 November 2008

Product data sheet

1. General description

The CBT16212 provides 24 bits of high-speed TTL-compatible bus switching or exchanging. The low ON resistance of the switch allows connections to be made with minimal propagation delay.

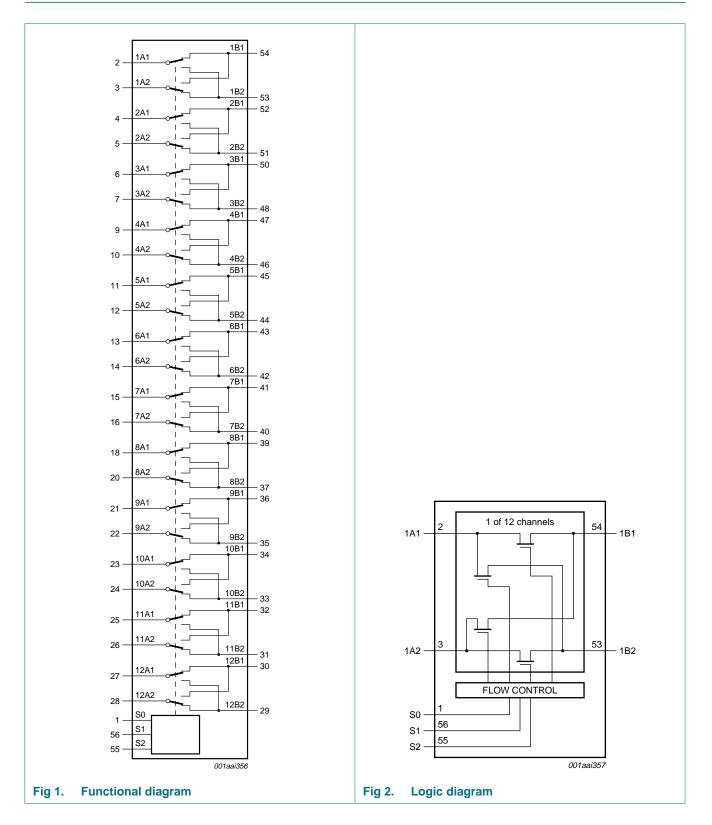
The CBT16212 operates either as a 24-bit bus switch or as a 12-bit bus exchanger, providing data exchange between four signal ports using the port select inputs (S0, S1 and S2).

The CBT16212 is characterized for operation from -40 °C to +85 °C.

2. Features

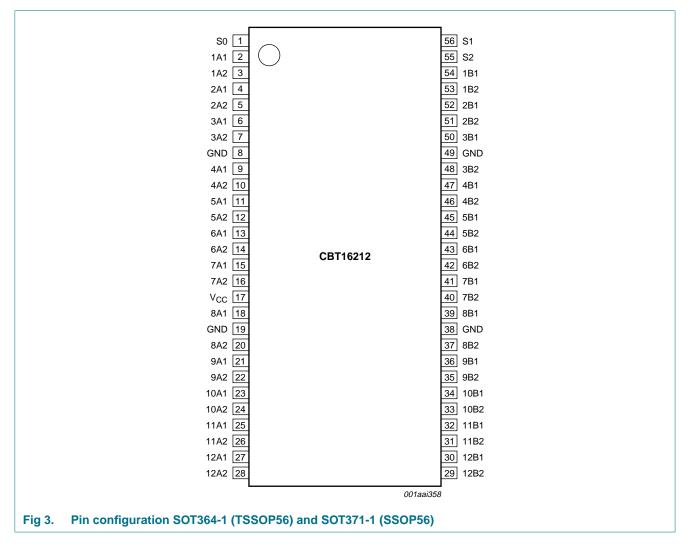
- 5 Ω switch connection between two ports
- TTL compatible input levels
- ESD protection:
 - HBM JESD22-A114E Class 1C exceeds 1500 V
 - CDM JESD22-C101C exceeds 1000 V
- Latch-up performance:
 - JESD78 exceeds 100 mA

3. Ordering information


Table 1.	Ordering	information
----------	----------	-------------

Type number	Package						
	Temperature range	Name	Description	Version			
CBT16212DGG	–40 °C to 85 °C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1			
CBT16212DL	–40 °C to 85 °C	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1			

24-bit bus exchange switch with 12-bit output enables


4. Functional diagram

24-bit bus exchange switch with 12-bit output enables

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin c	lescription	
Symbol	Pin	Description
S0, S1, S2	1, 56, 55	port select input
1A1 to 12A1	2, 4, 6, 9, 11, 13, 15, 18, 21, 23, 25, 27	A1 port
1A2 to 12A2	3, 5, 7, 10, 12, 14, 16, 20, 22, 24, 26, 28	A2 port
GND	8, 19, 38, 49	ground (0 V)
V _{CC}	17	supply voltage
1B1 to 12B1	54, 52, 50, 47, 45, 43, 41, 39, 36, 34, 32, 30	B1 port
1B2 to 12B2	53, 51, 48, 46, 44, 42, 40, 37, 35, 33, 31, 29	B2 port

CBT16212_2 Product data sheet 24-bit bus exchange switch with 12-bit output enables

6. Functional description

Table 3. Function selection^[1]

Port select input			Input/outpu	ut	Function
S2	S1	S0	nA1	nA2	
L	L	L	Z	Z	disconnect
L	L	Н	nB1	Z	nA1 = nB1
L	Н	L	nB2	Z	nA1 = nB2
L	Н	Н	Z	nB1	nA2 = nB1
Н	L	L	Z	nB2	nA2 = nB2
Н	L	Н	Z	Z	disconnect
Н	Н	L	nB1	nB2	nA1 = nB1 and nA2 = nB2
Н	Н	Н	nB2	nB1	nA1 = nB2 and $nA2 = nB1$

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
Vo	output voltage	output at HIGH level or OFF-state	-0.5	+5.5	V
lo	output current	output at LOW level	-	128	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$			
		SSOP56 package	<u>[3]</u> _	850	mW
		TSSOP56 package	<u>[4]</u> _	600	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

[3] Above 55 °C the value of P_{tot} derates linearly with 11.3 mW/K.

[4] Above 55 °C the value of P_{tot} derates linearly with 8 mW/K.

8. Recommended operating conditions

Table 5.Operating conditions

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Max	Unit
Oymbol	Tarameter	Conditions	NVIII I	Max	Onit
V _{CC}	supply voltage		4.0	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	V
V _{IL}	LOW-level input voltage		-	0.8	V
T _{amb}	ambient temperature	operating in free-air	-40	+85	°C
CBT16212_2				© NXP B.V.	2008. All rights reser

24-bit bus exchange switch with 12-bit output enables

9. Static characteristics

Table 6. Static characteristics

Tamb	$= -40 \circ C$ to $+85 \circ C$.	
------	------------------------------------	--

Symbol	Parameter	Conditions		Min	Typ <mark>[1]</mark>	Max	Unit
V _{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{\text{I}} = -18 \text{ mA}$		-	-	-1.2	V
l _l	input leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$		-	-	10	μΑ
		V_{CC} = 5.5 V; V_I = V_{CC} or GND		-	-	±1	μΑ
I _{CC}	supply current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 5.5 \ V; \ I_{O} = 0 \ A; \\ V_{I} = V_{CC} \ \text{or GND} \end{array}$		-	-	3	μA
ΔI_{CC}	additional supply current	per port select input pin; V _{CC} = 5.5 V; one input at 3.4 V, other inputs at V _{CC} or GND	[2]	-	-	2.5	mA
CI	input capacitance	port select input pins; V ₁ = 3 V or 0 V; $V_{CC} = 5.0$ V;		-	4.7	-	pF
C _{io(off)}	off-state input/output capacitance	$V_{O} = 3 V \text{ or } 0 V; V_{CC} = 0 V$		-	11.5	-	pF
R _{ON}	ON resistance	$V_{CC} = 4.0 V$	[3]				
		V _I = 2.4 V; I _I = 15 mA		-	-	21	Ω
		$V_{CC} = 4.5 V$	[3]				
		$V_{I} = 0 V; I_{I} = 64 mA$		-	4	7	Ω
		V _I = 0 V; I _I = 30 mA		-	4	7	Ω
		V _I = 2.4 V; I _I = 15 mA		-	6	12	Ω

[1] All typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[3] Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (A or B) terminals.

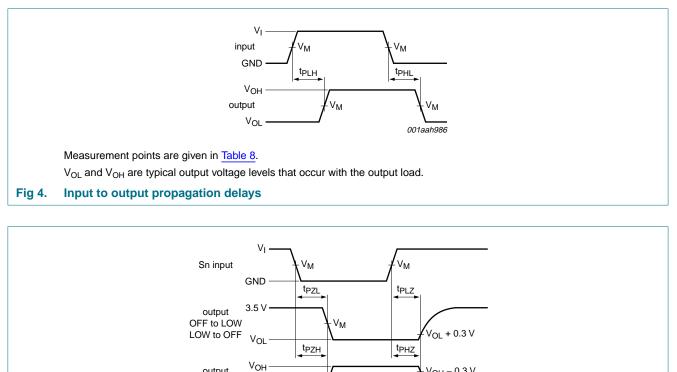
10. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = -40 \circ C$ to +85 $\circ C$; $V_{CC} = 4.5 \vee to 5.5 \vee to 5.5$

Symbol	Parameter	Conditions		Min	Max	Unit
t _{pd}	propagation delay	input A or B to output B or A; see Figure 4	[1][2]	-	0.25	ns
t _{en}	enable time	port select input to output A or B; Figure 5	[3]	2.4	8.0	ns
t _{dis}	disable time	port select input to output A or B; Figure 5	[4]	2.4	8.0	ns

[1] This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical ON resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).

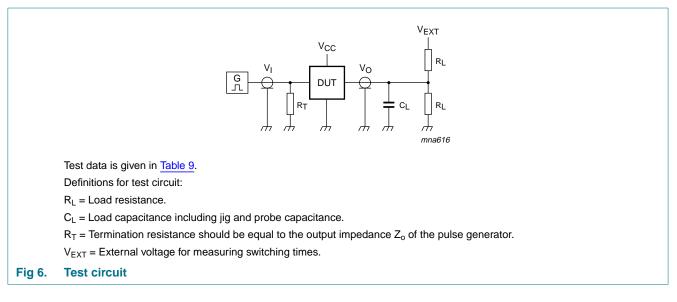

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] t_{en} is the same as t_{PZL} and t_{PZH} .

[4] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

24-bit bus exchange switch with 12-bit output enables

11. Waveforms



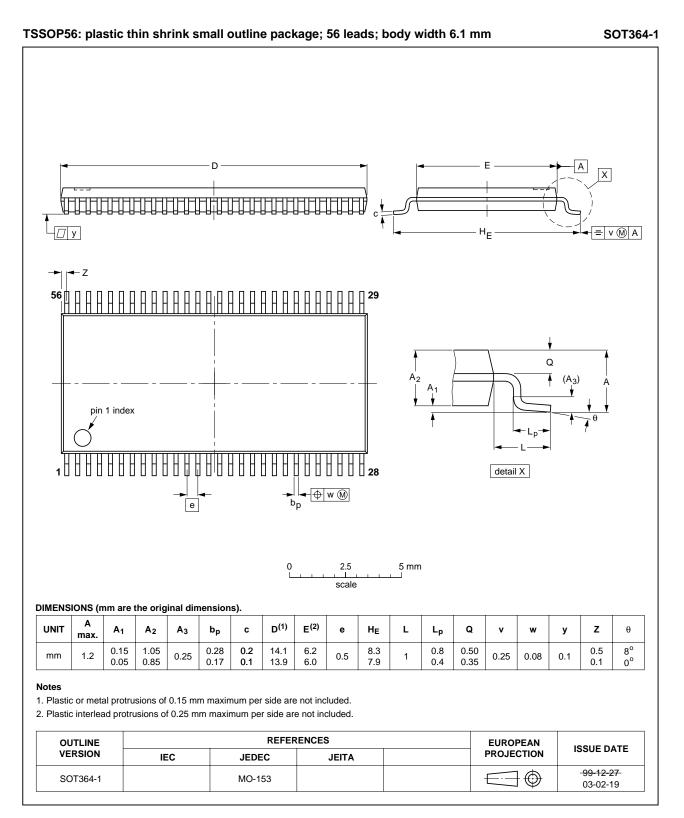
 $V_{OH} = V_{OH} = V_{V} + V_{V} + V_{OH} = 0.3 V$ $V_{OH} = 0.3 V$ V_{O

Table 8.Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _M
4.5 V to 5.5 V	1.5 V	1.5 V

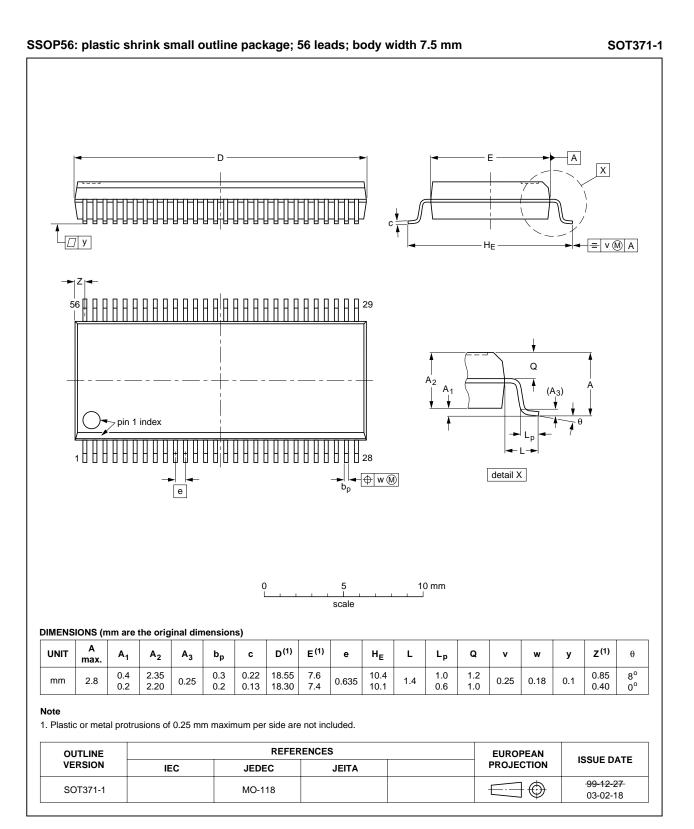
24-bit bus exchange switch with 12-bit output enables

Table 9. Test data


Supply voltage	Input	Load		V _{EXT}			
V _{CC}	Vi	$\mathbf{t}_{r} = \mathbf{t}_{f}$	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
4.5 V to 5.5 V	GND to 3.0 V	≤ 2.5 ns	50 pF	500 Ω	open	open	7.0 V

NXP Semiconductors

CBT16212


24-bit bus exchange switch with 12-bit output enables

12. Package outline

Fig 7. Package outline SOT364-1 (TSSOP56)

24-bit bus exchange switch with 12-bit output enables

Fig 8. Package outline SOT371-1 (SSOP56)

24-bit bus exchange switch with 12-bit output enables

13. Abbreviations

Table 10. Abbi	reviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
CBT16212_2	03112008	Product data sheet	-	CBT16212_1		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. 					
	<u>Table 7 "Dynamic characteristics"</u> :					
	 Enable time: min value changed from 3.6 into 2.4. Disable time: min value changed from 4.5 into 2.4. 					
	- Disable t	ime: min value changed inc	om 4.5 into 2.4.			
CBT16212_1	20010928	Product data	-	-		

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

CBT16212

24-bit bus exchange switch with 12-bit output enables

17. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics 5
11	Waveforms 6
12	Package outline 8
13	Abbreviations 10
14	Revision history 10
15	Legal information 11
15.1	Data sheet status 11
15.2	Definitions 11
15.3	Disclaimers 11
15.4	Trademarks 11
16	Contact information 11
17	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 November 2008 Document identifier: CBT16212_2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)