CBT3126

Quad FET bus switch

Rev. 04 - 12 October 2009
Product data sheet

1. General description

The CBT3126 is a quad FET bus switch with independent line switches. Each switch is disabled when the associated Output Enable (OE) input is LOW.

The CBT3126 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

2. Features

- Standard '126-type pinout
- Multiple package options
- 5Ω switch connection between two ports
- TTL-compatible input levels
- Minimal propagation delay through the switch
- Latch-up protection exceeds 500 mA per JEDEC standard JESD78 class II level A
- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101C exceeds 1000 V
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Temperature range	Package		
		Name	Description	Version
CBT3126D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
CBT3126DB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
CBT3126PW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
CBT3126DS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SSOP16[1]	plastic shrink small outline package; 16 leads; body width 3.9 mm ; lead pitch 0.635 mm	SOT519-1

[^0]
4. Functional diagram

Fig 1. Logic symbol

Pin numbers are for the 14 pin packages.
Fig 2. Logic diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description	
	SOT108-1 SOT337-1 and SOT402-1	SOT519-1	
1OE to 4OE	$1,4,10,13$	$2,5,12,15$	output enable input
1A to 4A,	$2,5,9,12$	$3,6,11,14$	A input/output
1B to 4B	$3,6,8,11$	$4,7,10,13$	B output/input

Table 2. Pin description ...continued

Symbol	Pin	Description	
	SOT108-1 SOT337-1 and SOT402-1	SOT519-1	
GND	7	8	ground (0 V)
V $_{\text {CC }}$	14	16	positive supply voltage
n.c.	-	1,9	not connected

6. Functional description

Table 3. Function selection
$H=$ HIGH voltage level; $L=$ LOW voltage level.

Inputs	Switch
nOE	
L	$n A$ to $n B$ disconnected
H	$n A$ to $n B$ connected

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit	
V_{CC}	supply voltage		-0.5	+7.0	V	
$\mathrm{~V}_{\mathrm{I}}$	input voltage		$\underline{[1]}$	-0.5	+7.0	V
I_{SW}	switch current	continuous current through each switch	-	128	mA	
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-50	-	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\underline{[2]}$			
		$\mathrm{SO14}$ package	$\underline{[3]}-$	500	mW	
	SSOP14 and SSOP16 package	$\underline{[4]}-$	500	mW		
	TSSOP14 package	$\underline{[4]}-$	500	mW		

[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
[2] The package thermal impedance is calculated from JESD51-7.
[3] For SO14 package; $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[4] For SSOP14, SSOP16 and TSSOP14 packages; $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.

8. Recommended operating conditions

Table 5. Operating conditions
All unused control inputs of the device must be held at $V_{C C}$ or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {CC }}$	supply voltage		4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage		2.0	-	V
V_{IL}	LOW-level input voltage		-	0.8	V
$\mathrm{~T}_{\text {amb }}$	ambient temperature	operating in free-air	-40	+85	${ }^{\circ} \mathrm{C}$

CBT3126_4
© NXP B.V. 2009. All rights reserved.

9. Static characteristics

Table 6. Static characteristics
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ ${ }^{[1]}$	Max	Unit
$V_{\text {IK }}$	input clamping voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	-	-	-1.2	V
$V_{\text {pass }}$	pass voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=-100 \mu \mathrm{~A}$	-	3.8	-	V
1	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V	-	-	± 1	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=0 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	-	-	3	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	control pins; per input; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND	[2] -	-	2.5	mA
C_{1}	input capacitance	control pins; $\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0 V	-	1.7	-	pF
$\mathrm{Cio}_{\text {io(ff) }}$	off-state input/output capacitance	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 V ; $\mathrm{nOE}=\mathrm{V}_{\mathrm{CC}}$	-	3.4	-	pF
RON	ON resistance	$\mathrm{V}_{C C}=4.0 \mathrm{~V}$	[3]			
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$	-	16	22	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$				
		$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{l}_{\mathrm{I}}=64 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{V}_{1}=0 \mathrm{~V} ; \mathrm{l}_{1}=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$	-	10	15	Ω

[1] All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{C C}$ or GND.
[3] Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. ON resistance is determined by the lowest voltage of the two (A or B) terminals.

10. Dynamic characteristics

Table 7. Dynamic characteristics
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; $V_{C C}=4.5 \mathrm{~V}$ to 5.5 V ; for test circuit see Figure 8.

Symbol	Parameter	Conditions		Min	Max	Unit
$\mathrm{t}_{\text {pd }}$	propagation delay	nA to nB or nB to nA ; see Figure 6	[1][2]	-	0.25	ns
$\mathrm{t}_{\text {en }}$	enable time	nOE to nA or nB ; see Figure 7	[2]	1.6	4.5	ns
$\mathrm{t}_{\text {dis }}$	disable time	nOE to nA or nB ; see Figure 7	[2]	1.0	5.4	ns

[1] This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical ON resistance of the switch and a load capacitance, when driven by an ideal voltage source (zero output impedance).
[2] $t_{\text {PLH }}$ and $t_{P H L}$ are the same as $t_{p d}$; $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{e n}$; $t_{\text {PLZ }}$ and $t_{\text {PHZ }}$ are the same as $t_{\text {dis }}$.

11. AC waveforms

Measurement points are given in Table 8.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig 6. The input ($n A, n B$) to output ($n B, n A$) propagation delay times

Measurement points are given in Table 8.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig 7. Enable and disable times

Table 8. Measurement points

Input	Output		
$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

12. Test information

Test data is given in Table 9.
Definitions for test circuit:
$R_{L}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 8. Test circuit for measuring switching times

Table 9. Test data

Supply voltage	Input						
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{t}_{\text {PLT }}$		
4.5 V to 5.5 V	GND to 3.0 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	7.0 V	open

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & \hline 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	
	IEC	JEDEC	JEITA		PROJECTION
SOT108-1	$076 E 06$	MSSUE DATE			

Fig 9. Package outline SOT108-1 (SO14)

CBT3126_4	Rev. $\mathbf{0 4 - 1 2}$ October 2009	NXP B.v. 2009. All rights reserved.
Product data sheet	7 of 13	

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9				0.13	0.1
	0.05	1.65	0.25	0.25	0.09	6.0	5.2	1.4	8^{0}									

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT337-1		MO-150		- ¢	$\begin{aligned} & \hline-99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 10. Package outline SOT337-1 (SSOP14)
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\boldsymbol{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.65	6.6	1	0.75	0.4					
	0.05	0.80		0.19	0.1	4.9	4.3	0.6	6.2	1	0.50	0.3	0.13		0.72	8^{0}		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT402-1		MO-153		\pm ¢	$\begin{aligned} & \hline-99-12-27 \\ & 03-02-18 \end{aligned}$

Fig 11. Package outline SOT402-1 (TSSOP14)
DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.73	0.25	1.55	0.25	0.31	0.25	5.0	4.0	0.635	6.2	1	0.89	0.2	0.18	0.09	0.18	8°
		0.10	1.40		0.20	0.18	4.8	3.8		5.8		0.41				0.05	0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT519-1				\square	$\begin{array}{r} \hline 99-05-04 \\ 03-02-18 \\ \hline \end{array}$

Fig 12. Package outline SOT519-1 (SSOP16)

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
CBT3126_4	20091012	Product data sheet	-	CBT3126_3
Modifications:	\bullet Section 7 "Limiting values" changed ICC to $I_{\text {SW }}$			
CBT3126_3	20081209	Product data sheet	-	CBT3126_2
CBT3126_2	20081023	Product data sheet	-	CBT3126_1
CBT3126_1	20011212	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status $\underline{[1][2]}$	Product status[]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
18. Contents
1 General description 1
2 Features 1
3 Ordering information 1
4 Functional diagram 2
5 Pinning information 2
5.1 Pinning 2
5.2 Pin description 2
6 Functional description 3
7 Limiting values 3
8 Recommended operating conditions. 3
9 Static characteristics. 4
10 Dynamic characteristics 4
11 AC waveforms 5
12 Test information 6
13 Package outline 7
14 Abbreviations 11
15 Revision history 11
16 Legal information 12
16.1 Data sheet status 12
16.2 Definitions 12
16.3 Disclaimers 12
16.4 Trademarks 12
17 Contact information 12
18 Contents 13

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E
ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE
ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX
PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)

[^0]: [1] Also known as QSOP16.

