Innovative Service Around the Globe YAGEO

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General purpose

Class 1, NP0

16 V TO 50 V

0.22 pF to 33 nF

0.22 pr to 33 m

RoHS compliant & Halogen Free

YAGEO Phícomp

14

SCOPE

This specification describes NP0 series chip capacitors with leadfree terminations.

YAGEO Phicomp

APPLICATIONS

- Consumer electronics for example
 - Tuners
 - Television receivers
 - All types of cameras
- Telecommunications
- Data processing

FEATURES

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC \underline{xxxx} \underline{x} \underline{x} NPO \underline{x} BN \underline{xxx} (1) (2) (3) (4)

(I) SIZE - INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $B = \pm 0.1 pF$

 $C = \pm 0.25 \text{ pF}$

 $D = \pm 0.5 pF$

 $F = \pm 1\%$

 $G = \pm 2\%$

 $J = \pm 5\%$

 $K = \pm 10\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

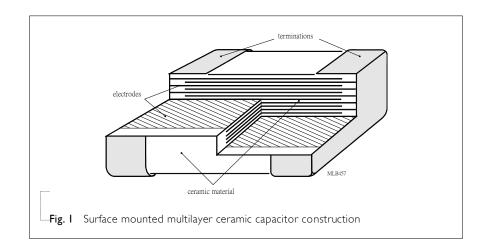
7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

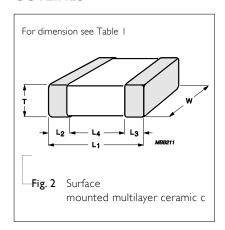

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. 1



DIMENSION

Table I For outlines see fig. 2

TYPE	l (mama)	\A/ ()	T (MM)	L_2 / L_3	(mm)	L ₄ (mm)
IIFE	TYPE L ₁ (mm) W (mm)		T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03		0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05		0.20	0.30	0.40
0603	1.6 ±0.10	0.8 ±0.10	_	0.20	0.60	0.40
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾		0.25	0.75	٥٢٢
0003	$2.0 \pm 0.20^{(2)}$	1.25 ±0.20 ⁽²⁾	Refer to table 2 to 5	0.25	0.75	0.55
1206	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾	table 2 to 3	0.25	0.75	1.40
1200	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾		0.25	0.75	1.40
1210	3.2 ±0.20	2.5 ±0.20		0.25	0.75	1.40
1812	4.5 ±0.20	3.2 ±0.20		0.25	0.75	2.20
		·			-	

OUTLINES

NOTE

- 1. Dimension for size 0805 and 1206, C \leq I nF
- 2. Dimension for size 0805 and 1206, C > I nF

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0 16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 2	Sizes from	0201 to 0603	
I able 2	31ZC3 11 O11	1 0201 10 0003	

CAP.	0201		0402			0603		
	25 V	50 V	16 V	25 V	50 V	16 V	25 V	50 V
0.22 pF								
0.47 pF								
0.82 pF								
1.0 pF								
1.2 pF								
1.5 pF								
1.8 pF								
2.2 pF								
2.7 pF								
3.3 pF								
3.9 pF								
4.7 pF								
5.6 pF								
6.8 pF								
8.2 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
10 pF								
12 pF								
15 pF								
18 pF								
22 pF								
27 pF								
33 pF								
39 pF								
47 pF								
56 pF								
68 pF								
82 pF								
100 pF								

NOTE

14

NP0

16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3	Sizes from	m 0201 to	0603 ((continued)

CAP.	0201	(0402			0603		
	25 V	50 V	16 V	25 V	50 V	16 V	25 V	50 V
120 pF								
150 pF								
180 pF								
220 pF								
270 pF			0.5±0.05	0.5±0.05	0.5±0.05			
330 pF								
390 pF								
470 pF								
560 pF						0.0101	00101	00101
680 pF						0.8±0.1	0.8±0.1	0.8±0.1
820 pF		_						
I.O nF			0.5±0.05	0.5±0.05	0.5±0.05			
1.2 nF								
I.5 nF								
I.8 nF								
2.2 nF								
2.7 nF								
3.3 nF								
3.9 nF								
4.7 nF								
5.6 nF								
6.8 nF								
8.2 nF								
IO nF								
I2 nF								
15 nF								
18 nF								
22 nF								
33 nF								

NOTE

14

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0

16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 4	Sizes from	0805 to	1812

CAP.	0805			1206			1210		1812
	16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
0.22 pF									
0.47 pF									
0.82 pF									
1.0 pF									
1.2 pF									
1.5 pF									
1.8 pF									
2.2 pF									
2.7 pF									
3.3 pF									
3.9 pF									
4.7 pF									
5.6 pF									
6.8 pF									
8.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
10 pF									
12 pF									
15 pF									
18 pF									
22 pF									
27 pF									
33 pF									
39 pF									
47 pF									
56 pF									
68 pF							1.25±0.2	1.25±0.2	1.25±0.2
82 pF									1.20.20.2
100 pF									

NOTE

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0

16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 5	Sizes from	0805 to	1812	(continued)	

16 V 25 V 50 V 16 V 25 V 50 V 25 V 50 V 25 V 50 V 120 pF 150 pF 180 pF 220 pF 270 pF 330 pF 470 pF 560 pF 680 pF 820 pF 1.0 nF 1.25 ± 0.2 1.2	CAP.	oizes from 080 0805	05 10 1012 (0	ortinaed)	1206			1210		1812
150 pF		16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
180 pF 220 pF 270 pF 330 pF 390 pF 470 pF 560 pF 820 pF 1.0 nF 1.2 nF 1.2 nF 2.2 nF 2.7 nF 3.3 nF 3.9 nF 1.25±0.2	120 pF									
220 pF 270 pF 330 pF 390 pF 470 pF 560 pF 820 pF 1.0 nF 1.2 nF 1.5 nF 0.85±0.1	150 pF									
270 pF 330 pF 330 pF 470 pF 560 pF 680 pF 820 pF 1.0 nF 1.2 nF 1.5 nF 0.85±0.1	180 pF									
330 pF 390 pF 470 pF 560 pF 680 pF 1.0 nF 1.2 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2	220 pF									
390 pF 470 pF 560 pF 680 pF 820 pF 1.0 nF 1.2 nF 1.5 nF 0.85±0.1	270 pF									
390 pF 470 pF 560 pF 680 pF 820 pF 1.0 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2	330 pF	0.6+0.1	0.6+0.1	0.6+0.1						
560 pF 680 pF 820 pF 1.0 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2	390 pF	0.020.1	0.020,1	0.020.1						
680 pF 820 pF 1.0 nF 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.1 0.85±0	470 pF									
820 pF 1.0 nF 1.2 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2	560 pF				0.6±0.1	0.6±0.1	0.6±0.1			
1.0 nF 1.2 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2										
1.2 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 1.25±0.2 0.85±0.1 0.85±0.1 0.85±0.1										
1.2 nF 1.5 nF 0.85±0.1 0.85±0.1 0.85±0.1 1.25 1.8 nF 2.2 nF 2.7 nF 3.3 nF 3.9 nF 1.25±0.2 1.25±0.2 1.25±0.2 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1								1.25±0.2	1.25±0.2	
1.8 nF 2.2 nF 2.7 nF 3.3 nF 3.9 nF 1.25±0.2 4.7 nF 5.6 nF 6.8 nF										
1.8 nF 2.2 nF 2.7 nF 3.3 nF 3.9 nF 1.25±0.2 1.25±0.2 4.7 nF 5.6 nF 6.8 nF		0.85±0.1	0.85±0.1	0.85±0.1						1.25±0.2
2.7 nF 3.3 nF 3.9 nF	-									
3.3 nF 3.9 nF										
3.9 nF										
4.7 nF										
5.6 nF 6.8 nF		1.25±0.2	1.25±0.2	1.25±0.2						
6.8 nF					0.85±0.1	0.85±0.1	0.85±0.1			
8.2 nF										
10.5										
IO nF										
12 nF 1.25±0.2					1.25±0.2	1.25±0.2	1.25±0.2			
18 nF										
22 nF 2.0±0.2								2.0±0.2		
33 nF								Z,U±U,Z		

NOTE

16 V to 50 V

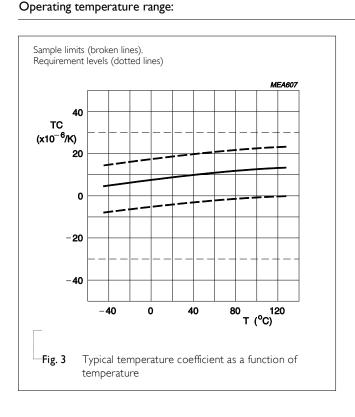
THICKNESS CLASSES AND PACKING QUANTITY

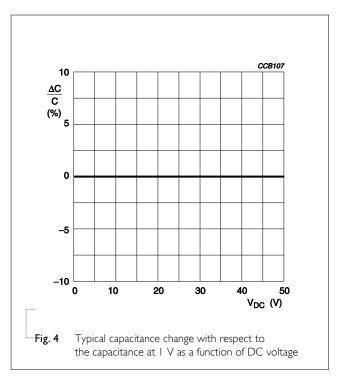
_	_			
	Га	h	Ь	6

YAGEO Phicomp

	ь		Ø180 MM	/7INCH	Ø330 MM	/ 13 INCH	
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH — QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1206	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		10,000	
1210	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.0 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
1000	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000			
	$2.0 \pm 0.2 \text{ mm}$	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	12 mm		1,000			
	1.15 ±0.15 mm	I2 mm		1,000			
1012	1.35 ±0.15 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS


YAGEO Phicomp


NP0 DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise stated all electrical values apply at an ambient temperature of 20±1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.

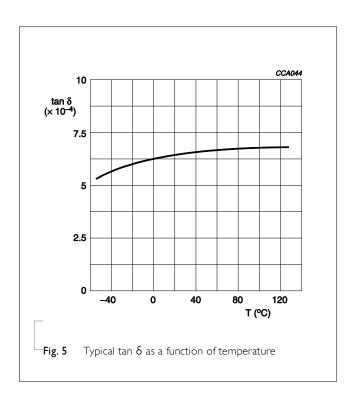

_			-
	at	ole	1

Table /		
DESCRIPTION		VALUE
Capacitance range		0.22 pF to 33 nF
Capacitance tolerance		
C	< 10 pF	±0.1 pF, ±0.25 pF, ±0.5 pF
C	≥ 10 pF	±1%, ±2%, ±5%, ±10%
Dissipation factor (D.F.)		
C	< 30 pF	≤ I / (400 + 20C)
C	≥ 30 pF	≤ 0.1 %
Insulation resistance after I minute at U_r (DC)		$R_{ins} \ge 10 \text{ G}\Omega \text{ or } R_{ins} \times C_r \ge 500 \text{ seconds whichever is less}$
Maximum capacitance change	as a function of temperature	
(temperature characteristic/coefficient):		±30 ppm/°C
Operating temperature range:		_55 °C to +125 °C

SOLDERING RECOMMENDATION

YAGEO Phicomp

Table 8

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

16 V to 50 V

TESTS AND REQUIREMENTS

YAGEO Phicomp

Table 9 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual inspection and dimensio n check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance		4.5.1	Class I: $f = I \text{ MHz for C} \le I \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = I \text{ KHz for C} > I \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance	
Dissipation factor (D.F.)		4.5.2	Class I: $f = I \text{ MHz for C} \le I \text{ nF , measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = I \text{ KHz for C} > I \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$	In accordance with specification	
Insulation resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification	
Temperature coefficient		4.6 Capacitance shall be measured by the steps show following table. The capacitance change should be measured afte specified temperature stage. Step Temperature(°C) a 25±2 b Lower temperature±2°C c 25±2 d Upper Temperature±2°C e 25±2 (I) Class I Temperature Coefficient shall be calculated from below Temp, Coefficient = C2 - C1 / C1 × ΔT × 106 [ppm/°C] C1: Capacitance at step c C2: Capacitance at 125°C ΔT: 100°C(=125°C-25°C) (2) Class II Capacitance Change shall be calculated from the below ΔC = C2 - C1 / C1 × 100% C1: Capacitance at step c C2: Capacitance at step c		<general purpose="" series=""> Class I: Δ C/C: ±30ppm Class 2: X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82% <high capacitance="" series=""> Class 2: X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%</high></general>	

YAGEO Phicomp

16 V to 50 V

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N
Bond strengt h of plating		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
on end face			Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	<pre><general purpose="" series=""> ΔC/C Class 1: NP0: within ±1% or 0.5 pF whichever is greater</general></pre>
Resistance to soldering heat	IEC 60384- 21/22	4.9	Precondition: 150 +0/−10 °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for I minute Preheating: for size > 1206: 100 °C to 120 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			and 170 °C to 200 °C for I minute	<general purpose="" series=""></general>
			Solder bath temperature: 260 ±5 °C	ΔC/C
			Dipping time: 10 \pm 0.5 seconds Recovery time: 24 \pm 2 hours	Class 1: NPO: within ±0.5% or 0.5 pF whichever is greater
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)Depth of immersion: 10mm 	
Rapid change of		4.11	Preconditioning 150 +0/–10 °C for 1 hour, then keep for	No visual damage
temperature			24 ±1 hours at room temperature	<general purpose="" series=""></general>
			5 cycles with following detail:	ΔC/C
			30 minutes at lower category temperature	Class I:
			30 minutes at upper category temperature	NP0: within ±1% or 1 pF whichever is greater
			Recovery time 24 ±2 hours	5.0.0. 8 8. 04.01
				D.F. meet initial specified value R _{ins} meet initial specified value

YAGEO Phicomp

TEST	TEST METH	OD	PROCEDURE	REQUIREMENTS
Damp heat with U _r load	IEC 60384- 21/22	4.13	1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. 1.0 U _r applied 4. Recovery: Class 1: 6 to 24 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	No visual damage after recovery
Endurance		4.14	1. Preconditioning class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: NPO: 125 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × U _r for general product. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	No visual damage
Voltage proof	IEC 60384-1	4.6	Specified stress voltage applied for 1 minute $U_r \le 100 \text{ V}$: series applied 2.5 U_r $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) $200 \text{ V} < U_r \le 500 \text{ V}$ series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V}$: 1.3 U_r 1: 7.5 mA	No breakdown or flashover

16 V to 50 V

14

REVISION HISTORY

YAGEO Phicomp

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Jun. 17, 2013		- Product range updated
Version 8	Aug 05, 2011		- Dimension updated
Version 7	Jun 14, 2011	-	- Size1210 T=1.0mm SPQ added - Dimension updated
Version 6	Jan 06, 2011	-	- Dimension updated
Version 5	Dec 29, 2010	-	- Dimension updated
Version 4	Nov 23, 2010	-	- Dimension updated
Version 3	Apr 20, 2010	-	- The statement of "Halogen Free" on the cover added - Dimension updated
Version 2	Oct 26, 2009	-	- Typo updated
Version I	Jun 02, 2009	-	- I2NC code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose NPO series with RoHS compliant
			- Replace the "16V to 50V" part of pdf files: NP0_16V_7, NP0_16V-to-100V_6, NP0_25V_7, NP0_50-to-500V_11
			- Combine 020 I from pdf files: UP-NP0X5RX7RY5V_020 I _6.3-to-50V_2 and UY-NPOX5RX7RY5V_020 I _6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT 1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT 1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT 1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K