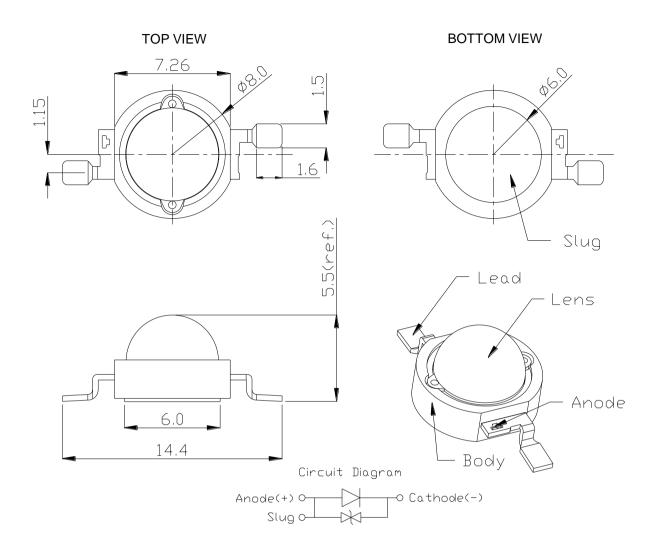


ProLight PM2B-1LPE-M 1W Magenta Power LED Technical Datasheet Version: 1.0


Features

- Magenta color high flux LED
- Good color uniformity
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Superior ESD protection

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Radiation Pattern	Color	Part Number	Lumious Flux Φ_v (Im)	
	Color	Emitter	Minimum	Typical
Lambertian	Magenta	PM2B-1LPE-M	23.5	30

Flux Characteristics at 350mA, T_J = 25°C

 \bullet ProLight maintains a tolerance of ± 10% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 350mA, $T_J = 25^{\circ}C$

	Fo	Forward Voltage V _F (V)		Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)	
Magenta	2.85	3.5	4.1	10	

Optical Characteristics at 350mA, T_J = 25°C

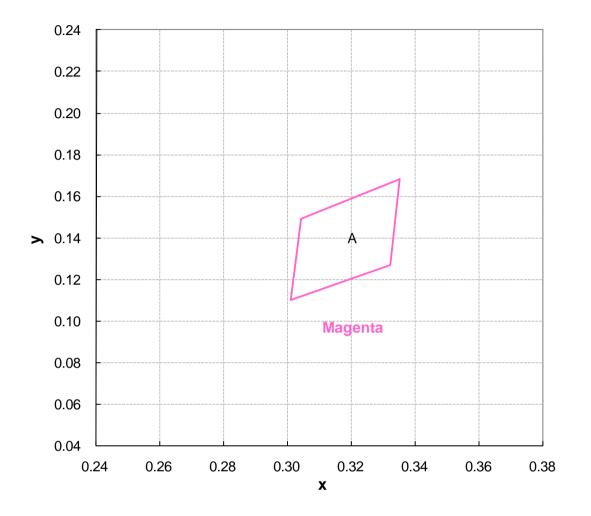
		Total included Angle			Viewing Angle
Color	Dominant Wavelength λ_D ,			(degrees)	(degrees)
	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
Magenta				180	130

• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter	Magenta	
DC Forward Current (mA)	350	
Peak Pulsed Forward Current (mA)	500	
Average Forward Current (mA)	350	
ESD Sensitivity	±4000V (Class III)	
(HBM per MIL-STD-883E Method 3015.7)	$\pm 4000 \text{ (Class III)}$	
LED Junction Temperature (°C)	120	
Aluminum-core PCB Temperature (°C)	105	
Storage & Operating Temperature (°C)	-40 to +105	
Soldering Temperature(°C)	235°C	

Radiometric Power Bin Structure


_	Color	Bin Code	Minimum Photometric Flux (Im)	Maximum Photometric Flux (Im)	Available Color Bins
ſ	Magenta	Р	23.5	30.6	All
		Q	30.6	39.8	[1]

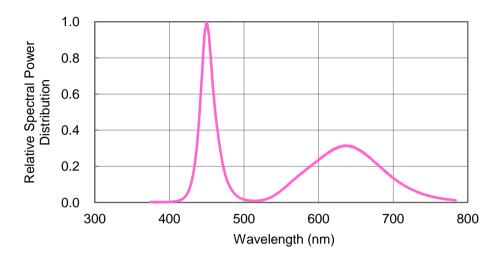
• ProLight maintains a tolerance of ± 10% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

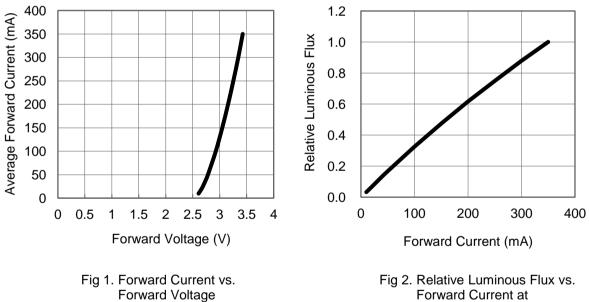
• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Color Bins

Magenta Binning Structure Graphical Representation

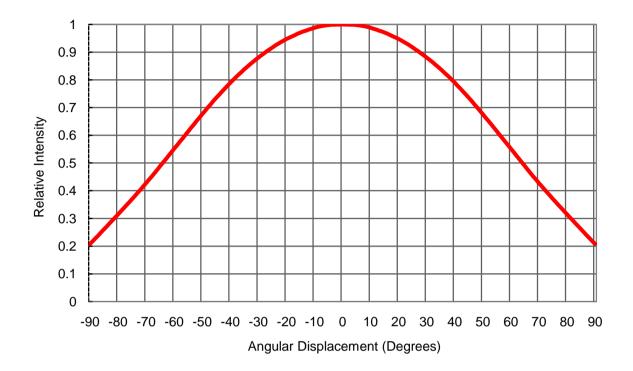

Color Bins

Magenta Bin Structure


Bin Code	х	У
	0.335	0.168
Δ	0.304	0.149
A	0.301	0.110
	0.332	0.127

Magenta Color Spectrum

1. Magenta


Forward Current Characteristics, $T_J=25^{\circ}C$

 $T_J=25^{\circ}C$ maintained.

Typical Representative Spatial Radiation Pattern

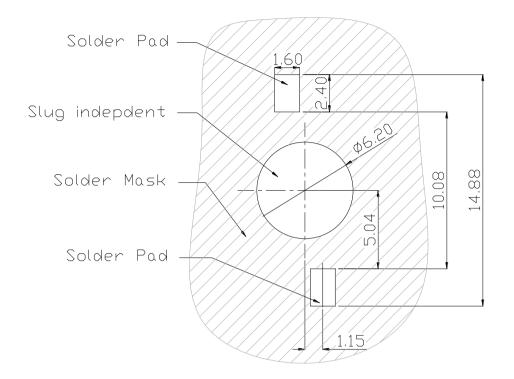
Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Non-operating Thermal Shock (TMSK)	-40°C to 120°C, 20 min. dwell, <20 sec. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3

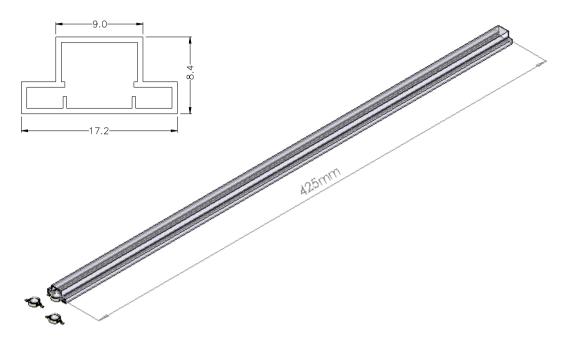
Notes:

1. Depending on the maximum derating curve.


2. Criteria for judging failure

ltem	Test Condition	Criteria for Judgement		
nem	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7		
Reverse Current (I _R)	$V_R = 5V$		50 µA	

* The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.

Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

Emitter Tube Packaging

Notes:

- 1.50 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

**Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- ${\ensuremath{\bullet}}$ The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The slug is to be soldered. If not, please use the heat conductive adhesive.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Power LEDs - Multi-Colour category:

Click to view products by Prolight manufacturer:

Other Similar products are found below :

CLQ6A-TKW-S1L1R1H1QBB7935CC3 CLQ6A-TKW-S1L1R1H1QBB7935AA3 LL-HP60NUYC OSB4XME3E1E OSB5XZE1E1E OSG5XDE5E1E OSR5XAE1E1E OSR5XAE3E1E OSR5XME1E1E PC8N-10LTS-C PC8N-5LTS-C PK2N-3LAE-SD PK2N-3LRE-SD PM2B-3LGS-SD PQ2A-4FGE PQ2A-4FPE-YGFC PQ2A-4FWE-FC OSTCXBEAC1E PM2E-1LAE PM2E-1LAS PM2E-1LGS PM2E-1LRS PM2E-3LAE-SD PM2E-3LAS-SD PM2E-3LBS-SD PM2E-3LGS-SD PM2E-3LRE-SD PP6N-TFFE-D60 PP6N-FFFE-D60 PP6N-3LFE PP6N-1LFE-P PK2N-3LLE-L PBLA-10LTE PC8N-10LTE-VRGB OSB4XDE5E1E OSB4XME1E1E OSG5XME1E1E OSR5XAT1C1E OSR5XAT3C1E OSR5XDE5E1E OSR5XME3E1E OSY5XAE3E1E OSY5XAT3C1E OSY5XME3E1E PC8N-10LTE-C PC8N-5L4E-C PK2N-3LBE-SD PM2B-1LBE PM2B-1LPE-M PM2B-1LPS-M