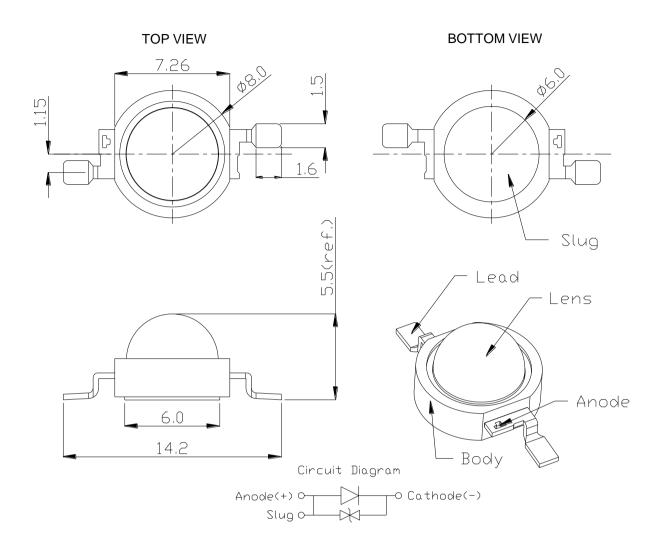


ProLight PM2B-1LPE-Y 1W PC Yellow Power LED Technical Datasheet Version: 1.1


Features

- Phosphor-Converted Yellow high flux LED
- Low-temp. & lead free reflow soldering
- Good color uniformity
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Superior ESD protection

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Radiation	Part Number	Lumious Flux Φ_v (Im)		
Pattern	Color Emitter		Minimum	Typical
Lambertian	Yellow	PM2B-1LPE-Y	67.2	84

Flux Characteristics at 350mA, T_J = 25°C

 \bullet ProLight maintains a tolerance of ± 10% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 350mA, $T_J = 25^{\circ}C$

	Forward Voltage V _F (V)			Thermal Resistance
Color	Min.	Тур.	Max.	Junction to Slug (°C/ W)
Yellow	2.85		4.1	10

Optical Characteristics at 350mA, T_J = 25°C

	Color Temperature CCT			Total included Angle	Viewing Angle
Color	Min.	Тур.	Max.	(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}
Yellow	579 nm	580 nm	581 nm	180	130

• ProLight maintains a tolerance of \pm 5% for CCT measurements.

Absolute Maximum Ratings

Parameter	Yellow	
DC Forward Current (mA)	350	
Peak Pulsed Forward Current (mA)	500	
Average Forward Current (mA)	350	
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)	
LED Junction Temperature (°C)	120	
Aluminum-core PCB Temperature (°C)	105	
Storage & Operating Temperature (°C)	-40 to +105	
Soldering Temperature(°C)	235°C	

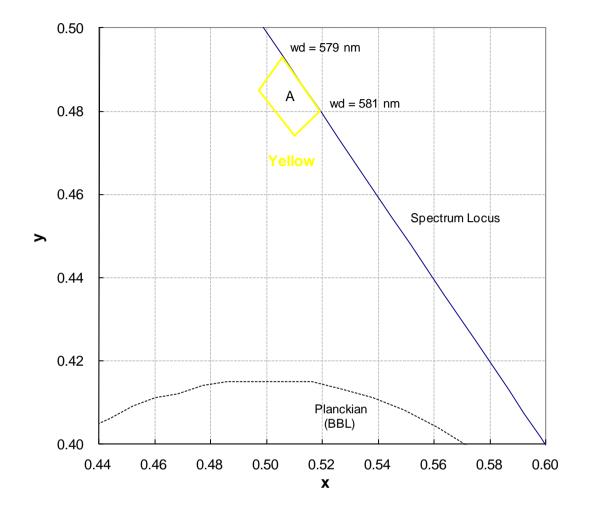
Radiometric Power Bin Structure

_	Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
		T1	67.2	76.6	All
	Yellow	T2	76.6	87.4	All
		U1	87.4	99.6	[1]

• ProLight maintains a tolerance of ± 10% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.


Forward Voltage Bin Structure

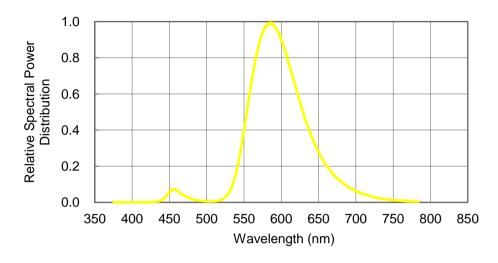
Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	А	2.85	3.10
	В	3.10	3.35
Yellow	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10

• ProLight maintains a tolerance of ± 0.1 for Voltage measurements.

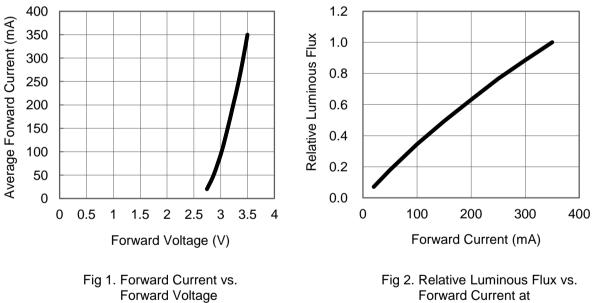
Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bins

Yellow Binning Structure Graphical Representation

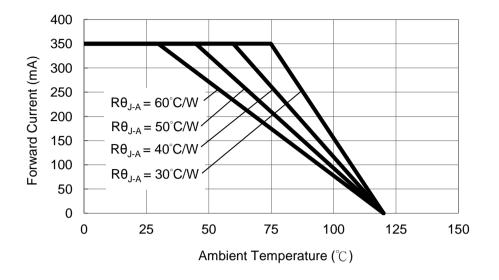

Color Bins

Yellow Bin Structure

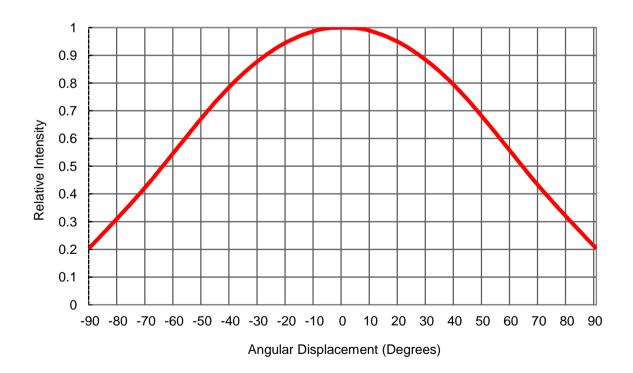

Bin Code	х	У
	0.506	0.493
А	0.519	0.480
A	0.510	0.474
	0.497	0.485

Yellow Color Spectrum

1. Yellow


Forward Current Characteristics, Tj=25°C

Tj=25°C maintained.


Ambient Temperature vs. Maximum Forward Current

Yellow (T_{JMAX} = 120°C)

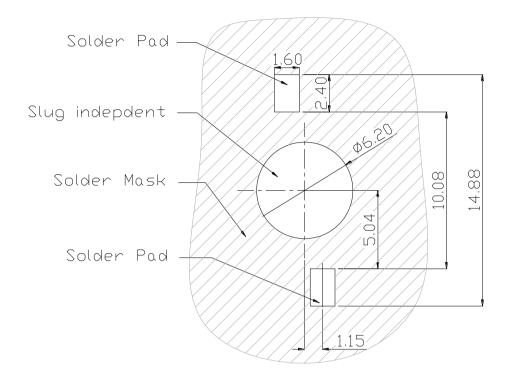
Typical Representative Spatial Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I_F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Non-operating Thermal Shock (TMSK)	-40°C to 120°C, 20 min. dwell, <20 sec. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

1. Depending on the maximum derating curve.


2. Criteria for judging failure

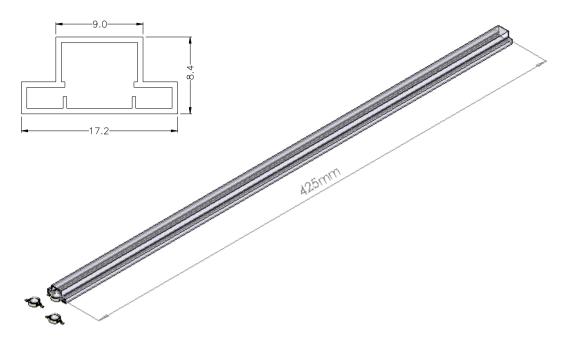
ltem	Test Condition	Criteria for Judgement		
		Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7		
Reverse Current (I _R)	$V_R = 5V$		50 µA	

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Low-Temp. & Pb-Free Assembly (58Bi-42Sn Eutectic Alloy)	
Preheat & Soak			
Temperature min (T _{smin})	100 °C	90 °C	
Temperature max (T _{smax})	150 °C	120 °C	
Time (T _{smin} to T _{smax})	60-120 seconds	60-120 seconds	
Average Ramp-Up Rate $(T_{smax}$ to $T_P)$	3 °C / second max.	2 °C / second max.	
Liquidous temperature (T _L)	183°C	138°C	
Time at liquidous (t _L)	60-150 seconds	20-50 seconds	
Peak package body temperature (T _P)	235°C	185°C	
Time (t_P) within 5°C of the specified	20 seconds	20 seconds	
classification temperature (T_{C})	20 seconds		
Average ramp-down rate (T_P to T_{smax})	6 °C/second max.	3 °C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	4 minutes max.	

- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Notes:

- 1.50 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

**Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- ${\ensuremath{\bullet}}$ The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The slug is to be soldered. If not, please use the heat conductive adhesive.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Power LEDs - Multi-Colour category:

Click to view products by Prolight manufacturer:

Other Similar products are found below :

CLQ6A-TKW-S1L1R1H1QBB7935CC3 CLQ6A-TKW-S1L1R1H1QBB7935AA3 LL-HP60NUYC OSB4XME3E1E OSB5XZE1E1E OSG5XDE5E1E OSR5XAE1E1E OSR5XAE3E1E OSR5XME1E1E PC8N-10LTS-C PC8N-5LTS-C PK2N-3LAE-SD PK2N-3LRE-SD PM2B-3LGS-SD PQ2A-4FGE PQ2A-4FPE-YGFC PQ2A-4FWE-FC OSTCXBEAC1E PM2E-1LAE PM2E-1LAS PM2E-1LGS PM2E-1LRS PM2E-3LAE-SD PM2E-3LAS-SD PM2E-3LBS-SD PM2E-3LGS-SD PM2E-3LRE-SD PP6N-TFFE-D60 PP6N-FFFE-D60 PP6N-3LFE PP6N-1LFE-P PK2N-3LLE-L PBLA-10LTE PC8N-10LTE-VRGB OSB4XDE5E1E OSB4XME1E1E OSG5XME1E1E OSR5XAT1C1E OSR5XAT3C1E OSR5XDE5E1E OSR5XME3E1E OSY5XAE3E1E OSY5XAT3C1E OSY5XME3E1E PC8N-10LTE-C PC8N-5L4E-C PK2N-3LBE-SD PM2B-1LBE PM2B-1LPE-M PM2B-1LPS-M