High Frequency 50 GHz Thin Film Chip Resistor

DESIGN SUPPORT TOOLS
click logo to get started

$3 D$
 Models
 Available

Those miniaturized components are designed in such a way that their internal reactance is very small. When correctly mounted and utilized, they function as almost pure resistors on a very large range of frequency, up to 50 GHz .

FEATURES

- Operating frequency 50 GHz
- Thin film microwave resistors
- Flip chip, wraparound or one face termination
- Small size, down to 20 mils by 16 mils
- Edged trimmed block resistors
- Pure alumina substrate (99.5 \%)
- Ohmic range: 10R to 500R
- Design kits available
- Small internal reactance (LC down to 1×10^{-24})
- Tolerance 1 \%, 2 \%, 5 \%, 10 \%
- TCR: $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ in $\left(-55^{\circ} \mathrm{C},+155^{\circ} \mathrm{C}\right)$ temperature range
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

STANDARD ELECTRICAL SPECIFICATIONS

MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER $\mathbf{P n}$ \mathbf{W}	LIMITING ELEMENT VOLTAGE \mathbf{V}	TOLERANCE $\mathbf{\pm} \%$	TEMPERATURE COEFFICIENT $\mathbf{\pm p p m} /{ }^{\circ} \mathbf{C}$
CH 02016	02016	10 to 500	0.030	30	$2,5,10$	100
CH 0402	0402	10 to 500	0.050	37	$1,2,5,10$	100
CH 0603	0603	10 to 500	0.125	50	$1.2,5,10$	100

DIMENSIONS in millimeters (inches)

Note

(1) $\pm 0.070(\pm 0.003)$

TOLERANCE VS. OHMIC VALUES

Ohmic range	$10 \Omega \leq R<50 \Omega$	$50 \Omega \leq R<100 \Omega$	$100 \Omega \leq R \leq 500 \Omega$
Tolerance	$5 \%, 10 \%$	$2 \%, 5 \%, 10 \%$	$1 \%, 2 \%, 5 \%, 10 \%(1)$

Note

(1) 1% tolerance not applicable for case 02016

LAND PATTERN FOR F 'FLIP CHIP' TERMINATIONS in millimeters (inches)

CHIP SIZE	$\mathbf{Z}_{\text {max. }}$	$\mathbf{X}_{\text {max. }}$	$\mathbf{G}_{\text {min. }}$
02016	$0.53(0.021)$	$0.44(0.017)$	$0.15(0.006)$
0402	$1.40(0.055)$	$0.65(0.026)$	$0.40(0.016)$
0603	$1.71(0.067)$	$0.90(0.035)$	$0.76(0.030)$

Note

- Suggested land pattern: According to IPC-7351

LAND PATTERN FOR N AND G WRAPAROUND TERMINATIONS in millimeters (inches)

$\mathrm{G}_{\text {min }}$.			
$\mathrm{Z}_{\text {max }}$			
CHIP SIZE	$\mathbf{Z}_{\text {max }}$	$\mathrm{G}_{\text {min. }}$	$\mathrm{X}_{\text {max }}$.
0402	1.55 (0.061)	0.15 (0.006)	0.73 (0.029)
0603	2.37 (0.093)	0.35 (0.014)	0.98 (0.039)

Dimension and tolerance of land pattern shall be defined by PCB designer; PCB can be designed according to IPC-7351A "Generic Requirements for Surface Mount Design and Land Pattern Standard"

PREFERRED MODELS AND VALUES

Vishay Sfernice highly recommend to use the smallest sizes and flip chip version to get the best performances.
Recommended Values:
10R/18R/25R/50R/75R/100R/150R/180R/200R/250R/330R/500R
Those values are available with a MOQ of $\mathbf{1 0 0}$ pieces.
Other values can be ordered upon request, but higher MOQ will apply: 1000 pieces for $\mathbf{C H 0 2 0 1 6 , 5 0 0}$ pieces for CH0402, 50 pieces for CH 0603.
Recommended termination:
F
Recommended tolerance:
2 \%

DESIGN KITS

Design kits are available Ex Stock in CH 02016 and CH 0402 sizes. There are 20 pieces per recommended value. F termination. 5 \% tolerance.
Those kits are packaged in pieces of tape and delivered in ESD bags.

PACKAGING

Standard packaging is waffle pack for sizes 0402 and 0603 and plastic tape and reel (low conductivity) for size 02016.
Paper tape and reel is available for size 0402 and either paper tape and reel or plastic tape and reel (low conductivity) for size 0603.

Depending on the type of terminations, parts will be packed differently:
One face:

- Gold terminations: Active face up
- Tin/silver termination: Active face down

Note

- Please refer to Vishay Sfernice Application Note "Guidelines for Vishay Sfernice Resistive and Inductive Products" for soldering recommendation (document number 52029, 3. Guidelines for Surface Mounting Components (SMD), profile number 3 applies

SIZE	MOQ	NUMBER OF PIECES PER PACKAGE			TAPE WIDTH
		WAFFLE PACK 2" X 2"	TAPE AND REEL		
			Min.	Max.	
02016	See MOQ mentioned on preferred models and values	484	100	5000	8 mm
0402		100			
0603		100			

PACKAGING RULES

Waffle Pack

Can be filled up to maximum quantity indicated in the table here above, taking into account the minimum order quantity. When quantity ordered exceeds maximum quantity of a single waffle pack, the waffle packs are stacked up on the top of each other and closed by one single cover. To get "not stacked up" waffle pack in case of ordered quantity > maximum number of pieces per package: Please consult Vishay Sfernice for specific ordering code.

Tape and Reel

See Part Numbering information to get the quantity desired by tape.
In regard to the CH02016 size only, up to 5 empty cavities can be found every 1000 parts in the reel. Nevertheless, the number of requested parts will be respected.

GLOBAL PART NUMBER INFORMATION

New Global Part Numbering: CH0402-50RJF (preferred part number format)

Notes

- Historical part numbers are not recommended but can still be used for ordering
${ }^{(1)}$ Gold termination for application in hermetic package
(2) CHKIT for 0603 size is not available

CODIFICATION OF PACKAGING	
WAFFLE PACK (standard packaging for CH0402 and CH0603)	
W	100 min., 1 mult
PLASTIC TAPE (standard packaging for CH02016 and CH0603)	
T	100 min., 1 mult
TA	100 min., 100 mult
TB	250 min., 250 mult
TC	500 min., 500 mult
TD	1000 min., 1000 mult
TE	2500 min., 2500 mult
TF	Full tape (quantity depending on size of chips)
PAPER TAPE (standard packaging for CH0402-available for CH0603)	
PT	100 min., 1 mult
PA	100 min., 100 mult
PB	250 min., 250 mult
PC	500 min., 500 mult
PD	1000 min., 1000 mult
PE	2500 min., 2500 mult
PF	Full tape (quantity depending on size of chips)

TYPICAL HIGH FREQUENCY PERFORMANCE ELECTRICAL MODEL

C		Internal shunt capacitance
L		Internal inductance
R		Resistance
Z		Internal impedance (R, L, C)
L_{c}		External connection inductance
C_{g}		External capacitance to ground

www.vishay.com

The complex impedance of the chip resistor is given by the following equations:

Notes

$$
\begin{gathered}
\mathrm{Z}=\frac{R+\mathrm{j} \omega\left(\mathrm{~L}-R^{2} \mathrm{C}-\mathrm{L}^{2} \mathrm{C} \omega^{2}\right)}{1+\mathrm{C}\left[\left(R^{2} \mathrm{C}-2 \mathrm{~L}\right) \omega^{2}+\mathrm{L}^{2} \mathrm{C} \omega^{4}\right]} \\
\frac{[\mathrm{Z}]}{R}=\frac{1}{1+\mathrm{C}\left[\left(R^{2} \mathrm{C}-2 \mathrm{~L}\right) \omega^{2}+\mathrm{L}^{2} \mathrm{C} \omega^{4}\right]} \times \sqrt{1+\left[\frac{\omega\left(\mathrm{L}-R^{2} \mathrm{C}-\mathrm{L}^{2} \mathrm{C} \omega^{2}\right)}{R}\right]^{2}} \\
\theta=\tan ^{-1} \frac{\omega\left(\mathrm{~L}-R^{2} \mathrm{C}-\mathrm{L}^{2} \mathrm{C} \omega^{2}\right)}{R}
\end{gathered}
$$

- $\omega=2 \mathrm{x} \pi \mathrm{xf}$
- f : Frequency

The chip resistor itself is purely resistive when $R=\sqrt{\frac{L}{C}}$. The smaller the $L \times C$ product the greater the frequency range over which the resistor looks approximately resistive.
This can be seen on the graphs showing the ratio $\frac{[Z]}{R}$ versus frequency.
R, L and C are relevant to the chip resistor itself.
L_{c} and C_{g} also depends on the way the chip resistor is mounted.
It is important to notice that after assembly the external reactance of L_{c} and C_{g} will be combined to internal reactance of L and C. This combination can upgrade or downgrade the HF behavior of the component.

This is why we are displaying two sets of data:

- $\frac{[Z]}{R}$ versus frequency curves which aims to show at a glance the intrinsic HF performance of a given chip resistor
- S-parameters versus frequency curves relevant to chip resistor when assembled on ideal Z0 impedance transmission line

These lines are terminated with adapted source and load impedance respectively Z_{s} and Z_{I} with $Z_{0}=Z_{L}=Z_{s}$ (for others configurations please consult us).
Equivalent circuit for S-parameters:

S-parameters are computed taking into account all the resistive, inductive and capacitive elements $(Z$ total $)$ and $Z_{0}=Z_{L}=Z_{\mathrm{s}}=R$.

Vishay Sfernice

INTERNAL IMPEDANCE CURVES

Internal impedance curve for 0402 size (F and P terminations)

Vishay Sfernice

INTERNAL IMPEDANCE CURVES

Internal impedance curve for 0402 size (N and G terminations)

Internal impedance curve for 0603 size (F and P terminations)

Vishay Sfernice

INTERNAL IMPEDANCE CURVES

S-PARAMETER

CH02016 (F and P Terminations)

Vishay Sfernice

S-PARAMETER

CH0402 (F and P Terminations)

CH0402 (N and G Terminations)

CH 0402 wraparound $\left(\mathrm{Z}_{0}=\mathrm{Z}_{1}=\mathrm{Z}_{\mathrm{s}}=R=50 \Omega\right)$

CH0603 (F and P Terminations)

CH 0402 wraparound $\left(\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{I}}=\mathrm{Z}_{\mathrm{s}}=R=100 \Omega\right)$

Vishay Sfernice

S-PARAMETER

CH0603 (N and G Terminations)

CH 0603 wraparound $\left(\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{I}}=\mathrm{Z}_{\mathrm{s}}=R=50 \Omega\right)$

CH 0603 wraparound $\left(\mathrm{Z}_{0}=\mathrm{Z}_{1}=\mathrm{Z}_{\mathrm{s}}=R=100 \Omega\right)$

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Frequency/RF Resistors category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
800-50T-S 10-100RV-S 100200-4X50-2 100200-4Y100-2 100200-4Y50-2 E250N50X4 250-100RM-S 250-50RM 150-100RL-S
A4B50X1A 10-50TV G150N50W4B 250-50TC 60N50TPC R1A06031000G5AR 30-300R-S CH0402-20RJPW C1A50Z4 60N50TPR 400-
50T 060120A25X50-2 60-50TP 250375-4X50-2 30-100R-S 40-50TPP A5B50X1A CH02016-150RGFTA CH0402-75RGFTA CH0402-
50RGFTA CH0402-330RGFTA CH0402-150RGFTA CH0402-18RJFTA CH0402-10RJFTA CH02016-75RGFTA CH02016-100RGFTA
CH0402-100RGFTA C150N50Z4 FT10302N0050JBK CR11005T0100JTR FT10800N0050JBK CZ12010T0050GTR G100N50W4

J100N50X4 FC0402E2000DTT5 FC0402E3300DTT5 CH0402-100RFNPT FC0402E50R0BTBS CH02016-18RJFT FT10301N0050J
CS12010T0100GTR

