

MLCC(Multilayer Ceramic Capacitor) is SMD(Surface Mounted Device) type capacitor that is used in wide ranges of capacitance. MLCC is paid more attentions than other capacitors due to the better frequency characteristics, higher reliability, higher withstanding voltage and so on.

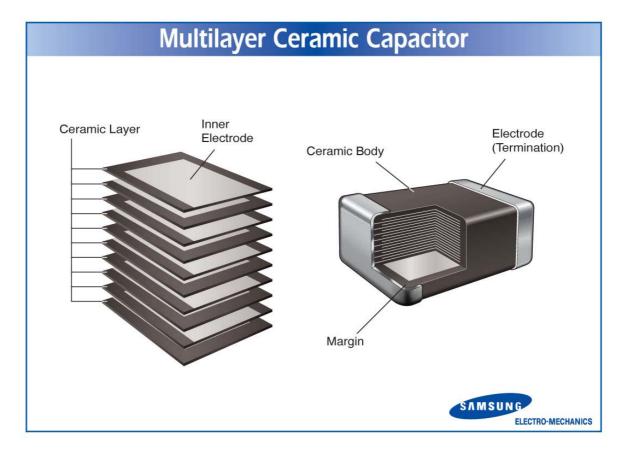
MLCC is made of many layers of ceramic and inner electrodes like sandwich. Pd was used for inner electrodes. But the price of Pd was skyrocketed and Pd was replaced by the BME(Base Metal Electrode), which reduced the total cost of MLCC.

This inner electrode is connected to outer termination for surface mounting, which is composed of three layers, Cu or Ag layer, Ni plating layer, and SnPb or Sn plating layer. Most of MLCCs become Pb free by the environmental issue at present.

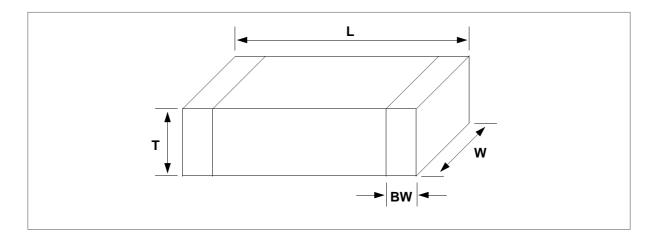
MLCC is divided into two classes. Class I(COG, etc) is the temperature compensating type. It has a small TCC(Temperature Coefficient of Capacitance) and a better frequency performance. Therefore, it is used in RF applications such as cellular phone, tuner, and so on. Class II(X7R, X5R, Y5V, etc) is the high dielectric constant type, which is used in general electronic circuit. Especially high capacitance MLCC is replacing other capacitors (Tantalum and Aluminum capacitor) due to the low ESR(Equivalent Series Resistance) value.

■ FEATURE AND APPLICATION

• Feature


- Miniature Size
- Wide Capacitance and Voltage Range
- Highly Reliable Performance
- Tape & Reel for Surface Mount Assembly
- Low ESR
- High Q at High Frequencies
- Stable Temperature Dependence of Capacitance

• Application


- High Frequency Circuit(Tuner, VCO, PAM etc)
- General Power Supply Circuit(SMPS etc)
- DC-DC Converter
- General Electronic Circuit

STRUCTURE

■ APPEARANCE AND DIMENSION

CODE	EIA CODE	DIMENSION (mm)						
CODL		L	W	T (MAX)	BW			
03	0201	$0.6~\pm~0.03$	$0.3~\pm~0.03$	$0.3~\pm~0.03$	0.15±0.05			
05	0402	1.0 ± 0.05	0.5 ± 0.05	$0.5~\pm~0.05$	0.2+0.15/-0.1			
10	0603	1.6 ± 0.1	$0.8~\pm~0.1$	$0.8~\pm~0.1$	0.3 ± 0.2			
21	0805	2.0 ± 0.1	1.25 ± 0.1	1.25± 0.1	0.5+0.2/-0.3			
31	1206	3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.5+0.2/-0.3			
32	1210	3.2 ± 0.3	$2.5~\pm~0.2$	$2.5~\pm~0.2$	0.6 ± 0.3			
43	1812	4.5 ± 0.4	3.2 ± 0.3	3.2 ± 0.3	0.8 ± 0.3			
55	2220	5.7 ± 0.4	5.0 ± 0.4	$3.2~\pm~0.3$	1.0 ± 0.3			

■ PREVIOUS PART NUMBERING

1 SAMSUNG Multilayer Ceramic Capacitor

2 Type(Size)

- **3** Capacitance Temperature Characteristics
- **4** Nominal Capacitance
- **6** Capacitance Tolerance
- 6 Rated Voltage
- Thickness Option
- 8 Packaging Type

8 CAPACITANCE TEMPERATURE CHARACTERISTICS

CLASS I (Temperature Compensation)

Symbol	EIA Code	Temperature Coefficient(PPM/℃)	* Temperature Characteristics	Operation Temperature Range
С	C0G(CH)	0 ± 30	C∆	
Р	P2H	-150 ± 60	PΔ	
R	R2H	-220 ± 60	R∆	
S	S2H	-330 ± 60	SΔ	-55 ~ +125℃
Т	T2H	-470 ± 60	TΔ	
U	U2J	-750 ± 120	UΔ	
L	S2L	+350 ~ -1000	SL	

<u>* Temperature Characteristics</u>

Temperature Characteristics	below 2.0pF	2.2 ~ 3.9pF	above 4.0pF	above 10pF	
C∆	C0G	C0G	C0G	C0G	
PΔ	-	P2J	P2H	P2H	
R∆	-	R2J	R2H	R2H	☞ K:±250 PPM/℃
S∆	-	S2J	S2H	S2H	J:±120 PPM/℃
ТΔ	-	T2J	T2H	T2H	H : ±60 PPM/℃
UΔ	-	U2J	U2J	U2J	G : ±30 PPM/℃

► CLASS II (High Dielectric Constant)

Symbol	EIA Code	Capacitance Change (∆C : %)	Operation Temperature Range
Α	X5R	± 15	-55 ~ +85℃
В	X7R	± 15	-55 ~ +125℃
F	Y5V	+22 ~ -82	-30 ~ +85 ℃

O NOMINAL CAPACITANCE

The nominal capacitance value is expressed in pico-Farad(pF) and identified by threedigit number, first two digits represent significant figures and last digit specifies the number of zeros to follow. For values below 1pF, the letter "R" is used as the decimal point and the last digit becomes significant.

examp	le)			
100 :	10 \times	10° =	10pF	
102 :	10 $ imes$	10 ² =	1000pF	
020 :	$_{2}$ \times	10° =	2pF	
1R5 :	1.5pF			

Temperature Characteristics	Symbol	Tolerance	Applicable Capacitance & Range
	В	± 0.1pF	0.5 ~ 3pF
	С	± 0.25pF	0.5 10-5
C0G(NPO)	D	± 0.5pF	– 0.5 ~ 10pF
or	F	± 1pF	6 ~ 10pF
T.C Series	G	± 2%	
	J	± 5%	E-24 Series for over 10pF
	К	± 10%	
	J	± 5%	
A(X5R)	К	± 10%	E-12 Series
B(X7R)	М	± 20%	
F(Y5V)	Z	-20% ~ +80%	E-6 Series

O CAPACITANCE TOLERANCE

* Please consult us for special tolerances.

6 RATED VOLTAGE

Symbol	Rated Voltage(Vdc)	Symbol	Rated Voltage(Vdc)
Q	6.3V	D	200V
Р	10V	G	500V
0	16V	I	1000V
Α	25V	J	2000V
В	50V	К	3000V
С	100V		

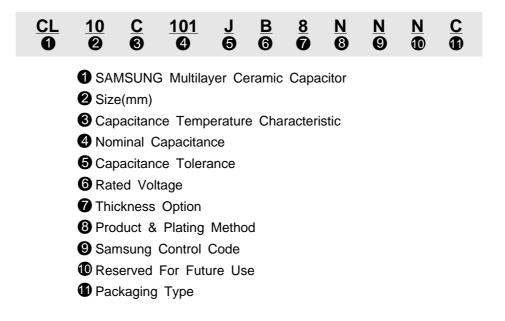
O THICKNESS OPTION

Symbol	Description of the Code				
Ν	Standard thickness (please refer to standard thickness table on next page)				
Α	Thinner than standard thickness				
В	Thicker than standard thickness				
С	Standard Thickness High Q (Low ` D.F `)				
D	Sn-100% (High-Q)				
Е	Sn-100% (General)				

* Please Consult us for other termination type.

1 PACKAGING TYPE

Symbol	Packaging	Symbol	Packaging
В	Bulk	F	Embossed Tape, 13" Reel
Р	Cassette	L	Paper 13" Reel
С	Paper Tape, 7" Reel	0	Paper 10" Reel
D	Paper Tape, 13" Reel	S	Embossed Tape, 10" Reel
E	Embossed Tape, 7" Reel		


► STANDARD CAPACITANCE STEP

Series		Capacitance Step										
E- 3	1.0			2.2			4.7					
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
F 04	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

 $\,$ % Standard Capacitance is " Each step $\,\times\,10^{\circ}$ "

■ NEW PART NUMBERING

O PRODUCT ABBREVIATION

Symbol	Product Abbreviation			
CL	SAMSUNG Multilayer Ceramic Capacitor			

2 SIZE(mm)

Symbol	Size(mm)					
Symbol	Length	Width				
03	0.6	0.3				
05	1.0	0.5				
10	1.6	0.8				
21	2.0	1.2				
31	3.2	1.6				
32	3.2	2.5				
43	4.5	3.2				
55	5.7	5.0				

Symbol		Temperature Range					
С		COG	C	0±30(ppm/℃)			
Р	_	P2H	PA	-150±60	-		
R		R2H	R	-220 ± 60			
S	Class	S2H	SA	-330±60	-55 ~ +125℃		
Т	_	T2H	TΔ	-470±60	-		
U	_	U2J	UA	-750±60	-		
L	_	S2L S△ +350 ~ -1000		+350 ~ -1000	-		
Α		X5R	X5R	±15%	-55 ~ +85℃		
В	Class	ss X7R X7R ±15%		±15%	-55 ~ +125℃		
F		Y5V Y5V +22 ~ -82%		+22 ~ -82%	-30 ~ +85℃		

O CAPACITANCE TEMPERATURE CHARACTERISTIC

***** Temperature Characteristic

Temperature Characteristics	Below 2.0pF	elow 2.0pF 2.2 ~ 3.9pF		Above 10pF
C∆	C0G	C0G	C0G	C0G
PΔ	-	P2J	P2H	P2H
RΔ	-	R2J	R2H	R2H
S∆	-	S2J	S2H	S2H
TΔ	-	T2J	T2H	T2H
UΔ	-	U2J	U2J	U2J

J : ± 120 PPM/°C, H : ± 60 PPM/°C, G : ± 30 PPM/°C

O NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. 'R' identifies a decimal point.

• Example

Symbol	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 µ F
104	100,000pF, 100nF, 0.1 µ F

G CAPACITANCE TOLERANCE

Symbol	Tolerance	Nominal Capacitance
Α	±0.05pF	
В	±0.1pF	
С	\pm 0.25pF	Less than 10pF (Including 10pF)
D	±0.5pF	(including Topi)
F	±1pF	
F	±1%	
G	±2%	
J	±5%	
К	±10%	More than 10pF
м	±20%	
Z	+80, -20%	

6 RATED VOLTAGE

Symbol	Rated Voltage	Symbol	Rated Voltage		
Q	6.3V	E	250V		
Р	10V	G	500V		
0	16V	Н	630V		
Α	25V	I	1,000V		
В	50V	J	2,000V		
С	100V	К	3,000V		
D	200V				

O THICKNESS OPTION

Туре	Symbol	Thickness(T)	Spec		
0603	3	0.30	±0.03		
1005	5	0.50	±0.05		
1608	8	0.80	±0.10		
	Α	0.65	10.40		
2012	С	0.85	±0.10		
	F	1.25	±0.10		
	С	0.85	±0.15		
3216	F	1.25	±0.15		
	н	1.6	±0.20		
	F	1.25			
2005	н	1.6	±0.20		
3225	I	2.0			
	J	2.5			
	F	1.25			
	н	1.6			
4532	I	2.0	±0.20		
	J	2.5			
	L	3.2	±0.30		
	F	1.25			
	н	+0.20			
5750	I	2.0	±0.20		
	J	2.5			
	L	3.2	±0.30		

Symbol	Electrode	Termination	Plating Type		
Α	Pd	Ag	Sn_100%		
N	Ni	Cu	Sn_100%		
G	Cu	Cu	Sn_100%		

③ PRODUCT & PLATING METHOD

③ SAMSUNG CONTROL CODE

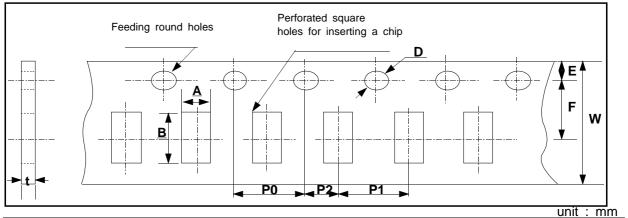
Symbol	Description of the code	Symbol	Description of the code
Α	Array (2-element)	Ν	Normal
В	Array (4-element)	Р	Automotive
С	High - Q	W	3 Terminal EMI Filter
L	LICC		

1 RESERVED FOR FUTURE USE

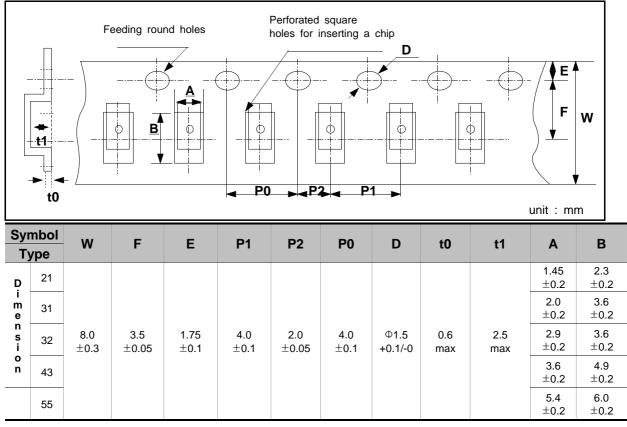
Symbol	Description of the code
Ν	Reserved for future use

D PACKAGING TYPE

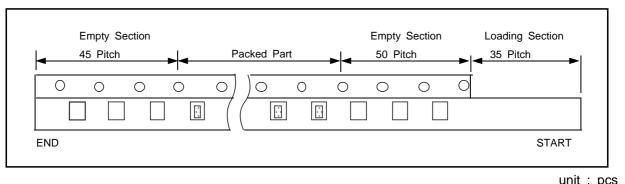
Symbol	Packaging Type	Symbol	Packaging Type
В	Bulk	F	Embossing 13" (10,000EA)
Р	Bulk Case	L	Paper 13" (15,000EA)
С	Paper 7"	0	Paper 10"
D	Paper 13" (10,000EA)	S	Embossing 10"
E	Embossing 7"		


De	escripti	on	0603 (0201)	1005 (0402)	1608 (0603)	20	12 Ty (0805)	vpe)	32	16 Ty (1206	/pe)		3225 (1	і Туре 210)	Type 4532 Type 0) (1812))	5750 Type (2220)				
Dimension (mm) T		L	0.6 ±0.03	1.0 ±0.05	1.6 ±0.1		2.0±0.1	1	3.2±	3.2±0.15		3.2±0.3				4.5±0.4				5.7±0.4		
		w	0.3 ±0.03	0.5 ±0.05	0.8 ±0.1		1.25±0.	1	1.6±	0.15	1.6 ±0.2		2.5	5±0.2			3.2	2±0.3			5.0±0	.4
		т	0.3 ±0.03	0.5~ ±0.05	0.8 ±0.1	0.65 ±0.1	0.85 ±0.1	1.25 ±0.1	0.85 ±0.15	1.25 ±0.15	1.6 ±0.2	1.25 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2	1.25 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2
C	SL	50V	-	0.5~ 240	0.5 ~ 1000	0.5 ~1000	1100 ~ 1500	1600~ 2700	0.5 ~ 2700	3000~ 5600	6200~ 8200	-	-	-	-	-	-	-	-	-	-	-
АРАС-ТАХСШ КАХОШ (РН)	C, TC	25V	0.5~ 47	0.5~ 220	0.5 ~ 1000	-	-	3300~ 8200	1500~ 3600	3900~ 6800	7500~ 10000	-	-	-	-	-	100000	-	-	-	-	-
(PF) PF)	C, TC (Except SL,UJ)	50V	-	0.5 ~ 180	0.5 ~ 1000	0.5 ~ 560	620~ 1000	1100~ 3300	0.5 ~ 2200	2400~ 4700	-	560~ 10000	11000 22000	24000~	-	1000~ 13000		24000~ 47000	62000~ 68000	43000	93000	130000
		6.3V	10	220	2200	-	-	10000	-	-	10000	-	-	-	22000	-	-	-	47000	-	-	47000
		10V	10	100	1000	-	-	2200	-	-	4700~ 10000	-	-	-	22000	-	-	-	-	-	-	47000
	A (X5R)	16V	-	47	330~ 470	-	-	1000	-	-	4700	-	-	-	6800~ 10000	-	-	-	-	-	-	-
		25V	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		50V	-	6.8~ 10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C A P A		6.3V	0.1~ 10	47~ 100	470~ 1000	-	-	1000	-	-	6800~ 10000	-	-	-	22000	-	-	-	-	-	-	-
ACITANCE		10V	0.1~ 10	33~ 100	220~ 470	220~ 270	330~ 470	560~ 1000	-	1000~ 3300	4700	1500~ 2200	3300	3900~ 4700	-	-	-	-	22000	-	-	-
	(X7R)	16V	0.1~ 1	10~ 33	100~ 220	68~ 200	220~ 330	390~ 1000	330~ 680	1000~ 1500	2200~ 3300	1500~ 2200	3300	3900~ 4700	-	-	-	2200	-	-	-	-
R A N G E		25V	-	4.7~ 10	47~ 100	39~ 68	82~ 100	150~ 470	100~ 330	470~ 620	680~ 1000	680~ 1500	1800	2200	-	-	-	1000	-	-	-	10000
ц (пн)		50V	-	0.22~ 4.7	0.22~ 100	0.22~ 39	47~ 100	220	1~ 150	220	390~ 1000	2.2~ 680	820~ 1000	-	-	10~ 1000	-	-	-	-	-	3300~ 4700
		6.3V	10~ 100	-	2200	-	-	10000	-	-	-	-	-	47000	-	-	-	-	-	-	-	-
		10V	-	220~ 330	100~ 1000	-	-	4700	-	4700	10000~ 22000	-	-	-	22000	-	-	-	-	-	-	100000
	F (Y5V)	16V	-	10~ 220	100~ 1000	10~ 680	820~ 1000	1200~ 2200	1000~ 2200	2700~ 4700	10000	3300~ 6800	10000	15000	-	-	-	22000	-	-	-	-
		25V	-	10~ 33	22~ 330	10~ 220	270~ 470	560~ 1000	470~ 1000	1200~ 2200	2700~ 3300	1000~ 3300	4700~ 10000	-	-	-	-	-	10000	-	-	-
		50V	-	2.2~ 10	2.2~ 100	2.2~ 68	82~ 150	180~ 1000	10~ 470	560~ 1000	-	100~ 1000	-	-	-	-	-	-	10000	-	-	-

► CAPACITANCE vs CHIP THICKNESS STANDARD

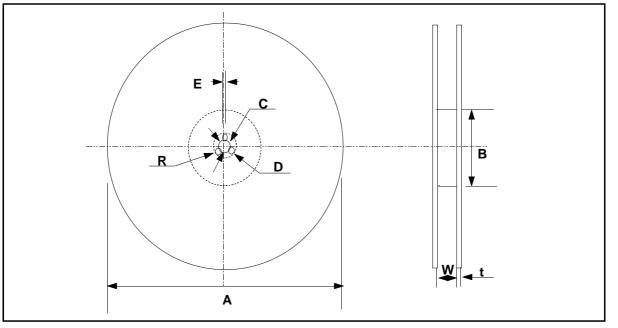

PACKAGING

CARDBOARD PAPER TAPE


Symbol Type		w	F	Е	P1	P2	P0	D	t	Α	В
	03				2.0 ±0.05				0.37 ±0.03	0.38 ±0.03	0.68 ±0.03
D i m	05								0.6 ±0.05	0.65 +0.05/-0.1	1.15 +0.05/-0.1
e n	10	8.0 ±0.3	3.5 ±0.05	1.75 ±0.1		2.0 ±0.05	4.0 ±0.1	Ф1.5 +0.1/-0		1.1 ±0.2	1.9 ±0.2
s i o n	21				4.0 ±0.1				1.1 MAX	1.6 ±0.2	2.4 ±0.2
n	31									2.0 ±0.2	3.6 ±0.2

EMBOSSED PLASTIC TAPE

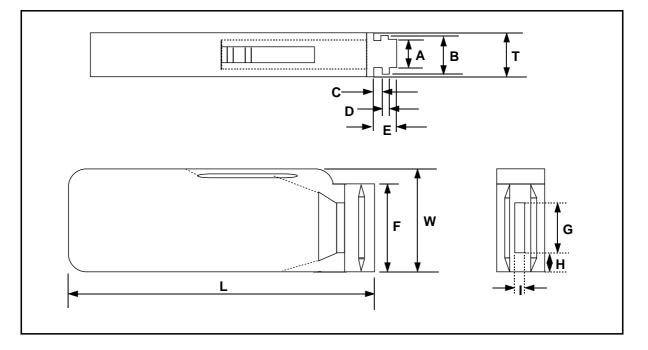
SAMSUNG ELECTRO-MECHANICS


• TAPING SIZE

dint : peo
Embossed Plastic Tane

Symbol	Cardboard Paper Tape	Embossed Plastic Tape
7" Reel	4000	2000
13" Reel	15000	-

• REEL DIMENSION


unit : mm

Symbol	Α	В	С	D	E	W	t	R
7" Reel	\$\$178±2.0	min.¢50						
13" Reel	\$330±2.0	min.¢70	\$13±0.5	21±0.8	2.0±0.5	10±1.5	0.8±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

Symbol	Α	В	Т	С	D	E
Dimension	6.8±0.1	8.8±0.1	12±0.1	1.5+0.1/-0	2+0/-0.1	4.7±0.1
Symbol	F	W	G	Н	L	I

QUANTITY

Size	05(0402)	10(0602)	21(0805)				
5120	05(0402)	10(0603)	T≤0.85mm	T≥1.0mm			
Quantity	50,000	10,000~15,000*	10,000	5,000			

* Option

■ CHARACTERISTIC MAP

• CLASS I

Temperature Characteristics	Size	Voltage					Cap	oacita	nce	Range	(PF)				
Characteristics	00	Jenege	0.5	10	100) 1(, 000	0000	100	000 1	000000	0 1000	0000	10000	0000
	05 (0402)	50V				240									
CL UL	10 (0603)	50V					1000								
SL,UJ	21 (0805)	50V					2700								
	31 (1206)	50V						820	0						
	03 (0201)	25V			47										
	05 (0402)	25V				220									
		50V				180									
	10 (0603)	25V					1000								
	(0603)	50V					1000								
	21	25V				33	00	8200							
C(COG) & TC Series	(0805)	50V					3300								
TC Series	31	25V				15	00	100	00						
	(1206)	50V					470	00							
	32	50V			5	60			4700	00					
	(1210)	100V					4700	18	3000						
	43	25V								1000	00				
	(1812)	50V		_		1000			680	00					
	55 (2220)	50V					43	3000 🛛		130	000				

● CLASS II , A(X5R)

Temperature Characteristics	Size	Voltage				Capacita	ince Ran	ge (pF)			
			10) 10	0 10	00 100	000 100	000 100	0000 1000	00000 10	0000000
	0603 (0201)	6.3V					■ 10000				
	, , ,	10V					1 0000				
		6.3V						■ 22000	0		
	1005	10V						■ 100000) 		
	(0402)	16V					■ 470	00			
		50V				6800	10000				
		6.3V							■ 220000	00	
	1608 (0603)	10V							■ 100000	0	
		16V					330	000 🔳 470	000		
		6.3V								1 00000	00
A(X5R)	2012 (0805)	10V							220000		
	()	16V							■ 100000	0	
		6.3V								■ 100000	00
	3216 (1206)	10V						4700	000	10000000)
		16V							■ 4700	0000	
		6.3V								220000	00
	3225 (1210)	10V								220000	00
		16V						680	0000	10000000)
	4532 (1812)	6.3V								■ 4700	00000
	5750	6.3V								■ 4700	00000
	(2220)	10V								■ 4700	00000

• CLASS II, B(X7R)

Temperature Characteristics	Size	Voltage		Сара	citance Ran	ge (^{pF})			
Characteristics	UIZC	Voltage	10 100	0 1000	10000 100	000 100	0000 1000	00000 100	0000000
		6.3V	100		10000				
	03 (0201)	10V	100		10000				
		16V	100	1000					
		6.3V			47000	100000			
		10V			33000	100000			
	05 (0402)	16V		10	0000 🔲 33000)			
		25V		4700	10000				
		50V	22	0	4700				
	10 (0603)	6.3V			47	70000	1000000		
		10V			2200	00 📕 470	000		
		16V			100000	220000)		
B(X7R)		25V			47000	100000			
		50V	220	0		100000			
		6.3V					■ 100000	0	
		10V			2200	00	1000000		
	21 (0805)	16V			68000		1000000		
	(,	25V			39000	4700	000		
		50V	220	0		220000			
		6.3V				680	00000	10000000)
		10V				1000000	4700	000	
	31 (1206)	16V			3300	000	33000	00	
	· · · /	25V			100000		1000000		
		50V		1000			1000000		

\bullet CLASS ${\rm I\!I}$, B(X7R)

Temperature	Size	Voltage		Сара	acitance R	ange (^{pF})		
Characteristics	Size	vonage	10 10	00 1000	10000	100000 100	0000 1000	00000 10000000
		6.3V						22000000
		10V				150000	0 💶 4700	0000
	32 (1210)	16V				150000	9 4700	0000
		25V				680000	220000	0
		50V		2200 🗖			1000000	
B(X7R)		10V						22000000
	43	16V					■220000	0
	(1812)	25V					■ 100000	D
		50V		1	0000		1000000	
	55	25V						■ 1000000
	(2220)	50V				33000	00 🔲 4700	0000

Multilayer Ceramic Capacitor ● CLASS II , F(Y5V)

Temperature Characteristics	Size	Voltage				Capa	citance F	Range (P	F)		
Characteristics		- onlige	10	1(00 10	000 100	000 100	000 100	0000 1000	00000 10	0000000
	03 (0201)	6.3V				10000		100000			
		10 V					220000	33000	0		
	05	16 V				10000		220000			
	(0402)	25 V				10000	3 3000)			
		50 V			220	0	10000				
		6.3V							22000	00	
		10 V					100000		1000000		
	10 (0603)	16 V					100000		1000000		
		25 V				2200	0	330000			
		50 V			220	0		100000			
		6.3V								1 00000	00
		10 V							4 70	0000	
	21 (0805)	16 V				10000			220000	o	
		25 V				10000			1000000		
F(Y5V)		50 V			220	0			1000000		
		10 V						470		220000	00
		16 V								10000000	
	31 (1206)	25 V					470		33000		
		50 V				10000			1000000		
		6.3V				10000			1000000	470	0000
		10 V								■ 4700	
	32 (1210)	16 V						33000		■ 22000 ■ 1500000	
	(1210)	25 V						1000000		1000000	
		50 V					100000)
		16V					100000		1000000		200
	43									22000	
	(1812)	25 V								100000	
-	55	50 V								100000	
	(2220)	10 V									100000

■ RELIABILITY TEST DATA

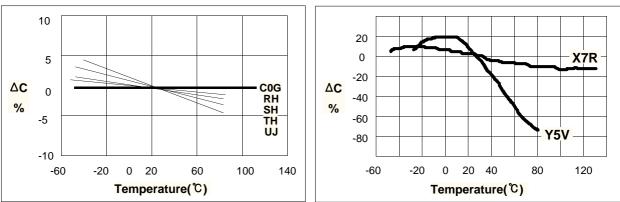
NO	ITE		IEƏI	PERFORM	IANCE			TES	T CONDITION						
1	APPEAF	RANCE	NO ABNOR	MAL EXTERIOR	APPEARANCE		THROUGH MIC	ROSCO	PE(×10)						
2	INSUL4 RESIST		SMALLER (RATED VO	R 500MΩ·μℰ PROE LTAGE IS BELO DR 100MΩ·μℰ)		R IS	MEASUREMEN	RATED VOLTAGE SHALL BE APPLIED. MEASUREMENT TIME IS 60 ~ 120 RATED VOLTAGE TIME 60 SEC.							
3	WITHSTA VOLT			TRIC BREAKDOV AL BREAKDOWN	-		CLASS II :250% (OF THE	RATED VOLTAG RATED VOLTAGE THAN 50mA CUF	FOR 1~5 SEC					
							CAPACITAN	CE	FREQUENCY	VOLTAGE					
		CLASS	WITHIN TOLER/	THE SPECIFIED)		1,000 pF AN BELOW	D	1Mz±10%	0.5 ~ 5 Vrms					
4	CAPACIT						MORE THA 1,000 pF	N	1kHz±10%						
	/						CAPACITANCE		FREQUENCY	VOLTAGE					
		CLASS		THE SPECIFIED)		10µF AND BEI		1km±10%	1.0±0.2Vrms					
		Ш	TOLER	ANCE			MORE THA	N	120Hz±20%	0.5±0.1Vrms					
	Q						CAPACITAN	CE	FREQUENCY	VOLTAGE					
5		CLASS	CLASS	CLASS	Q	Q	Q	Q	OVER $30pF$: Q \geq 1,000 LESS THAN $30pF$: Q \geq 400 +20C				1,000 pF AN BELOW	D	11111110%
		1		(C:CAPAC	ITANCE)		MORE THA 1,000 pF	N	1kHz±10%	0.5 ~ 5 Vrms					
			1. CHAR :	В			CAPACITAN	CE	FREQUENCY	VOLTAGE					
			RATE	D VOLTAGE	DF SPEC		10µF AND BEI	_OW	1kHz±10%	1.0±0.2Vrms					
				6.3V	0.05 max		MORE THAN	10 <i>µ</i> F	120Hz±20%	0.5±0.1Vrms					
				10V	0.05 max										
				16V	0.035 max										
			F	25V 0V 이상	0.025 max										
			5	00 013	0.025 max										
			2. CHAR :	F		1		1		1					
6	Tanδ	CLASS		6.3V	10V		16V		25V	50V					
6	Tano	Π	1005	-	0.125max		nax (C<220nF) nax (C≥220nF)		0.05max	0.05max					
			1608	1608 0.16max 0.125max 0.	0.09max		nax(C≦100nF) nax(C>100nF)	0.05max							
			2012	0.16max	0.125max		0.09max		0.07max	0.05max					
			3216	0.16max	0.125max		0.09max		0.07max	0.05max					
			3225	0.16max	0.125max	ax 0.09max		max(C≦6.8⊭F) max(C>6.8⊭F)	0.05max						
			4532	0.16max	0.16max		0.09max		-	-					
	5750 0.125max				-		-	-							

NO	ITE	M	Ы	ERFORMA				TEST CONDITION		
NU	112		PI			TUEO		IEST CONDITION		
			CHARACTERIS	TE	EMP. COEFFICIENT		-	ASUREMENT OF TEMPERATURE		
				5110	(PPM/℃)			: ONE AT 25℃ AND AT 85℃		
			C0G		0 ± 30		TEP	TEMPERATURE		
	CAPACITANCE	CLASS	PH		-150 ± 60		1	25 ± 2		
7	TEMPERATURE	I	RH		-220 ± 60	_				
	COEFFICIENT		SH		-330 ± 60	_	2	MIN RATED TEMP ± 2		
			TH		-470 ± 60		3	25 ± 2		
			SL		-750 ± 120	_	4	MAX RATED TEMP \pm 2		
			SL +350 ~ -1000				5 25 ± 2			
8	TEMPERATURE CHARACTERISTIC S	CLASS II	CAPACITAN CHAR. A,B F	CAP.	GE CHANGE(%) ±15% 2% ~ -82%	the call After of Max. $\frac{1}{2}$ it should $\frac{C2 - \frac{1}{2}}{C}$ C1 : C	apacitano capacita Temp., uld be c <u>C1</u> > C1 CAPACIT TEMPE	of capacitance should be got from ce at 25°C. Ince measured from Min. Temp. to calculated from the formula below. < 100 % TANCE AT STANDARD ERATURE(25°C) TANCE AT EACH		
9	ADHESIVE S OF TERMI		NO INDICAT OCCUR ON ELECTRODE	THE TER	PEELING SHALL RMINAL	APPLI 2772 2772	A 500g.f PRESSURE SHALL BE APPLIED FOR 10±1 SECOND.			
		APPEARANCE	NO MECHAI	NICAL DA	MAGE SHALL	BEND	ING SH	ALL BE APPLIED TO		
			OCCUR.		_ [THE L	.IMIT(1m	nm) WITH 0.3mm/SEC.		
			CHARA	CTER	CHANGE OF CAPACITANCE			EST BOARD AT THE LIMIT POINT HEN MEASURE CAPACITANCE.		
10	BENDING STRENGTH	CAPACITANCE	CLAS	S I A,B	$\begin{array}{c} \text{WITHIN } \pm 5\% \\ \text{OR } \pm 0.5 \text{ pF} \\ \text{WHICHEVER IS} \\ \text{LARGER} \\ \text{B} \qquad \text{WITHIN } \pm 12.5\% \end{array}$		CHARACTERLIMITC, A, B, F1mm 20 100 50 100			
			CLASS II	F WITHIN ±309			/ ► I5±1 FIG.2)	45±1 LIMIT		

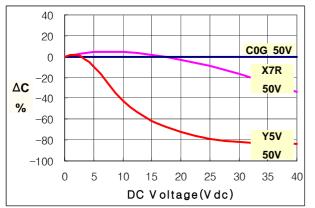
NO	ITE	EM		PERFO	ORMANCE	TEST CONDITION				
			MORE THA		OF THE TERMINAL	SOLDER	TEMPERATURI			
			SURFACE I	S TO B	E SOLDERED NEWLY,	DIP TIME	: 3±1 Sec			
			SO METAL	PART [DOES NOT COME	SOLDER : H63A				
			OUT OR DI	SSOLVE	E	FLUX : RMA TYPE				
			[[/		*PB-FREE				
11	SOLDER	ABILITY				SOLDER	TEMPERATUR	E:260±5℃		
							: Sn96.5-3Ag-0	.5Cu		
						Flux : R				
			IN PBFREE PART, MORE THAN 95% OF THE TERMINAL SURFACE IS TO BE				:3±0.1Sec ATING:AT_80	120°C EOD	10 20850	
			SOLDERED			PRE-RE	ATING : AT 80	J~120 C FUR	10~305EC.	
					ICAL DAMAGE	DIP · SO	LDER TEMPER	ATURE OF		
		APPEARANCE		L OCCL			±5℃			
			CHARACTE	RISTIC	CAP. CHANGE	DIP TIME	:10±1 SEC.			
					WITHIN ±2.5% OR	EACH TE	RMINATION SH	ALL BE FULL	Y	
			CLASS	Ι	±0.25 pF WHICHEVER	IMMERSE	D AND PREHE	ATED		
		CAPACITANCE			IS LARGER	AS FOLL	OWING:			
				A,B	WITHIN ±7.5%			TIME		
12	RESISTANCE TO SOLDERING		CLASS II	F	WITHIN ±20%	STEP	TEMP.(℃)	(SEC.)		
12	HEAT	Q	30 pF AND C	OVER :	Q≥ 1000	1	80~100	60		
	,	CLASS I	LESS THAN	30 pF	: Q≥ 400+20×C	2	150~180	60		
		Tanδ	TO SATISF	Y THE S	SPECIFIED	MEASURI	E AT ROOM TE	EMP. AFTER		
		CLASS II	INITIAL VAL	UE		COOLING	FOR			
		INSULATION	TO SATISF		SPECIFIED		SSI: 24 ± 2			
		RESISTANCE	INITIAL VAL			CLA	SSⅡ:48 ± 4	HOURS		
		WITHSTANDING VOLTAGE	TO SATISFY THE SPECIFIED							
		VOLTAGE		-	DAMAGE SHALL	BENDING	SHALL BE AP			
		APPEARANCE	OCCUR.		DAMAGE SHALL		T(1mm) WITH (
			CHARACTE	RISTIC	CAP. CHANGE	_	E TEST BOAR		IIT POINT	
					WITHIN ±2.5% OR	IN 5 SEC	., THEN MEAS	URE CAPACIT	ANCE.	
				Ŧ	±0.25 pF	CHAR	FREQUEN	CY RANGE		
		CAPACITANCE	CLASS	1	WHICHEVER	A,B,C,		Hz → 10Hz		
					IS LARGER	A,D,O,			1	
			CLASS	A,B	WITHIN ±5%	CHAR	. TRAVER	SED TIME		
13	VIBRATION		Ш	F	WITHIN ±20%	A,B,C,	F 1	min		
	TEST	Q	30pF AND C			THE ENT	IRE FREQUEN	CY RANGE,		
		CLASS I			Q≥ 400+20×C	FROM 1	0 TO 55Hz AN	D RETURN		
		Tanδ CLASS Ⅱ	TO SATISF		SPECIFIED	-	SHALL BE TR	AVERSED		
			INTIAL VA	LUE		IN 1 MIN	JIE.			
						THIS CV	LE SHALL BE	PERFORMED		
		INSULATION			SPECIFIED	THIS CYCLE SHALL BE PERFORMED 2 HOURS IN EACH THERE MUTUALLY				
		RESISTANCE	INITIAL VALUE			PERPENDICULAR DIRECTION,				
						FOR TO	TAL PERIOD C	F 6 HOURS.		

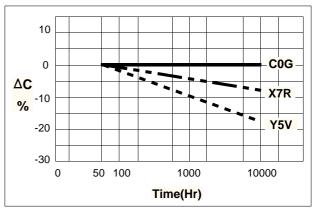
* THE INITIAL VALUE OF HIGH DIELECTRIC CONSTANT SERIES SHALL BE MEASURED

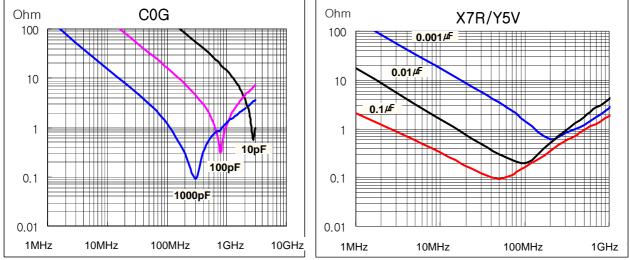
AFTER THE HEAT TREATMENT OF 150 +0/-10 $^\circ$, 1Hr and Sitting of 48 \pm 4hr at room temperature & room humidity.


NO	l	TEM			PERFORM					
		APPEARANCE			_ DAMAGE	-				
			CHARAC	TERIST	IC CAP	ACITANC	E CHAN	IGE		
					WITH	N ±5% (OR		TEST TIME	: 500 +12/-0 Hr.
		CAPACITANCE	CLA	SS I	±0.5p	±0.5pF WHICHEVER			MEASUDE	
					IS LA	IS LARGER				
			CLASS	A,B	WITH	WITHIN ±12.5%				
			П	F	WITH	N ±30%				
		Q	30 pF AND	OVER	: Q≥ 350)				
	HUMIDITY		10 ~30 pF : Q \geq 275 + 2.5×C					6.3V	0.125 MAX *Condition	
14	(STEADY		LESS TH	AN 10pF	F : Q≥ 200) + 10×0	;		Tanδ	0.123 WAX Condition
	STATE)			25V	401/	101	0.01/			1005 C ≥0.22 <i>µ</i> F
			CHAR.	AND OVER	16V	10V	6.3V	4V		1608 C ≥2.2μF
		Tanδ	A,B	0.05	0.05 MAX	0.05	0.075	0.1	CLASS II	
		CLASS II				MAX	MAX	MAX	(A,B)	
			F	0.075	0.1MAX (C ≦1.0µF) 0.125	0.15	0.195	0.25		,
			F	MAX	MAX	IVIAA	MAX	MAX		
					(C≥1.0µF)					5750 C ≥100.0µ
		INSULATION			ATION RES					
		RESISTANCE			Ω·μF PROD	UCT WH	ICHEVE	R IS		
			SMALLER	R						
		APPEARANCE	NO MECH	HANICAL	_ DAMAGE	SHALL	OCCUR			anð (0.125 MAX *Condition) $(1005 \text{ C} \geq 0.22 \mu \text{F})$ $(1608 \text{ C} \geq 2.2 \mu \text{F})$ $(2012 \text{ C} \geq 4.7 \mu \text{F})$ $(3216 \text{ C} \geq 10.0 \mu \text{F})$ $(3225 \text{ C} \geq 22.0 \mu \text{F})$ $(4532 \text{ C} \geq 47.0 \mu \text{F})$ $(5750 \text{ C} \geq 100.0 \mu \text{F})$ ED VOLTAGE : RATED VOLTAGE ERATURE : 40 ± 2 °C TIVE HUMIDITY:90–95%RH TIME : $500 + 12/-0$ Hr. ENT APPLIED : 50mA MAX. AL MEASUREMENT> S II SHOULD BE MEASURED L VALUE AFTER BE HEAT-TREATED I HR IN 150 °C+0/-10°C AND BE LEFT $48\pm 4\text{HR}$ AT ROOM TEMPERATURE. TER MEASUREMENT> S II SHOULD BE MEASURED AFTER FOR 24 ± 2 HRS IN ROOM ERATURE AND HUMIDITY. S II SHOULD BE MEASURED AFTER FOR 24 ± 2 HRS IN ROOM ERATURE AND HUMIDITY. S II SHOULD BE MEASURED ER VALUE AFTER BE TREATED FOR 1 HR IN 150 °C+0/-10 D BE LEFT FOR $48\pm 4\text{HR}$ AT ROOM ERATURE. $3V \text{ Tan} \delta$ 0.125 MAX *Condition $1005 \text{ C} \geq 0.22 \mu \text{F}$ $2012 \text{ C} \geq 4.7 \mu \text{F}$
			CHARAC	TERIST		CITANCE	CHAN	3F		
								52		
				.		N ±7.5%			TEST TIME :	
			CLA	SS I		pF WHIC	HEVER		CURRENT A	
					IS LA	RGER				
				A,B	A,B WITHIN ±12.5% CLASS I SHOULD BE MEASURE INITIAL VALUE AFTER BE HEAT-					
		CAPACITANCE			WITH	WITHIN ±30%				
		OALAOITANOL				N +30~-	40%			
			CLASS		1005	C>0.47µF			<latter me<="" td=""><td>EASUREMENT></td></latter>	EASUREMENT>
			П	F	1608	C>1.0µF			CLASS I SH	OULD BE MEASURED AFTER
	MOIOTURE				2012	C>4.7µF				
15	MOISTURE RESISTANCE				3216	C>10.0µF				
15	RESISTANCE					C>22.0µF				
						С>47.0µF				
		Q		-	: Q≥ 200				℃ AND BE L	EFT FOR 48±4HR AT ROOM
		CLASS I	30 pt ANL) BELON	V : Q≥ 10	0 + 10/3	3×C		TEMPERATU	RE.
			CHAR.	25V AND	16V	10V	6.3V	4V	6.3V Tanδ	0.125 MAX *Condition
				OVER	-					1005 C ≥0.22 <i>µ</i> F
		Tanδ	A,B	0.05	0.05	0.05	0.075	0.1		1608 C ≥2.2 <i>µ</i> F
		CLASS II		MAX	MAX	MAX	MAX	MAX	CLASS II	
			-	0.075	0.1MAX (C ≦1.0µ₽)	0.15	0.195	0.25	(A,B)	
			F	MAX	0.125MAX (C≥1.0μF)	MAX	MAX	MAX		
			(C≥1.0µ2:) MINIMUM INSULATION RESISTANCE:							
		INSULATION	_		ation rea uf produ					
		RESISTANCE			MALLER.	UT,				

NO	ITE	M			PERFORM	ANCE					TEST COND	DITION																		
		APPEARANCE	NO MECH	HANICAL	_ DAMAGE	E SHALI		IR	150%, TEST T	200% IME : NT AF	OF RATED 1000 +48/-0 PPLIED : 50mA	Hr.																		
				TEDIOTI	0	045			-	ED VOLTAGE : , 200% OF RATED VOLTAGE TIME : 1000 +48/-0 Hr. ENT APPLIED : 50mA MAX. $\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
			CHARAC	TERISTI	-		CHANG		-																					
			CLAS	SS I			OR ±0	-																						
				A,B	WITHI	N ±12.	5%				Г	65 15 C																		
					WITHI	N ±30%	, o																							
		CAPACITANCE			WITHI	WITHIN+30~40%																								
			CLASS		1005 (1005 C>0.47µF																								
												П	F		C>1.0µF						-									
						C>4.7µF Շ. 10 Օս																								
40	HIGH					C>10.0µ C>22.0µ																								
16	TEMPERATURE RESISTANCE					C>47.0µ																								
	REGIOTANOE		30 pF ANE	OVER	: Q ≥ 3	50																								
		Q	$10 \sim 30 \text{ pF}$: Q $\ge 275 + 2.5 \times \text{C}$																											
		CLASS I	LESS TH	AN 10pF	:Q ≥200	+ 10×	2			noc	0% OF RATED VOLTAGEE: 1000 +48/-0 Hr. APPLIED : 50mA MAX.HAR.TEMP.ASS I125 ±3 °CA85 ±3 °CB125 ±3 °CB125 ±3 °CF85 ±3 °CB125 ±3 °CIEASUREMENT> SHOULD BE MEASURED INITIAL TER BE HEAT-TREATED FOR 1 °C +0/-10°C AND BE LEFT FOR 48± DOM TEMPERATURE.MEASUREMENT> SHOULD BE MEASURED LATTER 24 ±2 HRS IN ROOM FURE AND HUMIDITY. SHOULD BE MEASURED LATTER TER BE HEAT-TREATED FOR 1 °C +0/-10°C AND BE LEFT FOR 48± DOM TEMPERATURE.*150% Authorization Conditions*150% Authorization Conditions1005 C>0.47µF 1608 C ≥2.2µf 2012 C ≥4.7µf 3216 C ≥10.0µf*150% Authorization Conditions*150% Authorization Conditions*150% Authorization Conditions*150% Authorization Conditions*150% Authorization Conditions*150% Authorization Conditions*150% Authorization Conditions*1005 C>0.47µF 1608 C ≥2.2µf 2012 C ≥4.7µf 3216 C ≥10.0µfSHALL BE SUBJECTED CYCLES OF THE TURE CYCLE AS FOLLOWINGTEMP.(°C)TIME(MIN) MIN.RATED 30252-3MAX.RATED TEMP.+0/-330252-3MAX.RATED TEMP.+3/-030252-3CLING FOR : 24±2 Hr.30																			
				25V																										
			CHAR.	AND OVER	16V	10V	6.3V	4V		CLASSI125 ± 3 °CCLASSA85 ± 3 °CIIB125 ± 3 °CIIF85 ± 3 °CIIF85 ± 3 °CIIIF85 ± 3 °CIIIF85 ± 3 °CIIIF85 ± 3 °CIIIF85 ± 3 °CIIIIS0°C+0/-10°C AND BE LEFT FOR 48 \pm AT ROOM TEMPERATURE.ITER MEASUREMENT>SS I SHOULD BE MEASURED AFTERIF FOR 24 ± 2 HRS IN ROOMPERATURE AND HUMIDITY.SS II SHOULD BE MEASURED LATTERJE AFTER BE HEAT-TREATED FOR 1N 150°C+0/-10°C AND BE LEFT FOR 48 \pm AT ROOM TEMPERATURE.III1005 C>0.47µF1608 C $\geq 2.2µF$ 2012 C $\geq 4.7µF$ 2013 C $\geq 2.2µF$ 2014 C $\geq 10.0µF$ 1005 C $\geq 0.22µF$ 2015 C $\geq 100.0µF$ CE OF RATED VOLTAGE WILL BELIED TO ALL SERIES BUT ABOVE)OWEVER, A/B $\doteq 1005$ C $\geq 0.22µF$ 2010 C C C CLES OF THE100ERATURE CYCLE AS FOLLOWING11IIMP.+0/-312IEMP.+0/-3130																				
				0.05 0.05 0.05 0.075 0.1	_																									
						Tanŏ CLASS II						Tanδ CLASS II								A,B	MAX	MAX	MAX	MAX	MAX			3216	C ≥10.0µF	
		CLASS II			0.1MAX			(, -	,- ,																					
																					F	0.075 MAX	(C<1.0µF) 0.125MAX	0.15 MAX	0.195 MAX	0.25 MAX				
			(C≥1.0µ ^T)								I																			
			MINIMUM	INSUL	TION RE	SISTAN	CE:		· -			-																		
		INSULATION RESISTANCE	1,000 MΩ	OR 501	Ω∙µF PROE	DUCT			** 11014		A/R⊨1005	C ≥0.32/E																		
			WHICHE	/ER IS \$	SMALLER				_		,	C ≃0.22µi																		
		APPEARANCE	NO MECH	HANICAL	DAMAGE	SHAL		IR																						
			CHARAC	TERISTI	С	CAP.	CHANG	Ε	_	-																				
			CLAS	SS I		N ±2.59 0.25pF \		VER IS	STEF																					
		CAPACITANCE			LARGI	ER			1			30																		
	TEMPERATURE		CLASS	A,B F		N ±7.5°	-		2			2~3																		
17	CYCLE	Q			₹ : Q ≥ -	N ±20%	0		-	N	AX.RATED																			
		CLASS I	-		:Q ≥400 ·				3	-	TEMP.+3/-0	30																		
		Tanδ			E SPECIFI				4		25	2~3																		
		CLASS II	INITIAL V						MEASU	JRE A	AT ROOM TH	EMPERATURE																		
									AFTER COOLING FOR																					
		INSULATION RESISTANCE			SPEUIFI	ED																								
				NITIAL VALUE					CLASS I : 24 ± 2 HI. CLASS II : 48 ± 4 Hr.																					


CHARACTERISTIC GRAPH


ELECTRICAL CHARACTERISTICS


► CAPACITANCE - TEMPERATURE CHARACTERISTICS

▶ IMPEDANCE - FREQUENCY CHARACTERISTICS

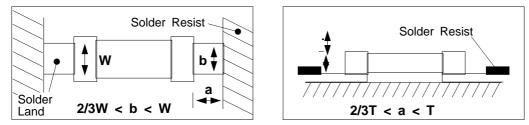
APPLICATION MANUAL

Storage Condition

Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40° C and 70%, respectively. Guaranteed storage period is within 6 months from the outgoing date of delivery.

Corrosive Gases


Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCs must be avoid from these gases.

Temperature Fluctuations

Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

• Design of Land Pattern

When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor. The amount of solder at the end terminations has a direct effect on the crack. The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently. Use the following illustrations as guidelines for proper land design. Recommendation of Land Shape and Size

Adhesives

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.

They should not spread or run when applied to the circuit board.

They should harden quickly.

They should not corrode the circuit board or chip material.

They should be a good insulator.

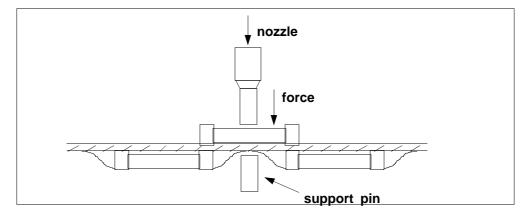
They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160° C or less, within 2 minutes or less.


Mounting

Mounting Head Pressure

Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.

Bending Stress

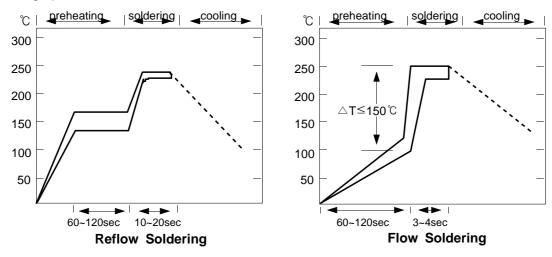
When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side, it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.

• Flux

Although the solderability increased by the highly-activated flux, increase of activity in flux may also degrade the insulation of the chip capacitors. To avoid such degradation, it is recommended that a mildly activated rosin flux(less than 0.2% chlorine) be used.

• Soldering

Since a multilayer ceramic chip capacitor comes into direct contact with melted solder during soldering, it is exposed to potentially mechanical stress caused by the sudden temperature change. The capacitor may also be subject to silver migration, and to contamination by the flux. Because of these factors, soldering technique is critical.


Soldering Methods

Method		Classification
Reflow	- Overall heating	Infrared raysHot plateVPS(vapor phase)
soldering	- Local heating	- Air heater - Laser - Light beam
Flow soldering	Single waveDouble wave	-

* We recommend the reflow soldering method.

Soldering Profile

To avoid crack problem by sudden temperature change, follow the temperature profile in the adjacent graph.

Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors. The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor. Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

Amount of Solder

Too much Solder	Cracks tend to occur due to large stress
Not enough Solder	Weak holding force may cause bad connections or detaching of the capacitor
Good	

Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference($\triangle T$) must be less than 100°C

6-6. Cleaning

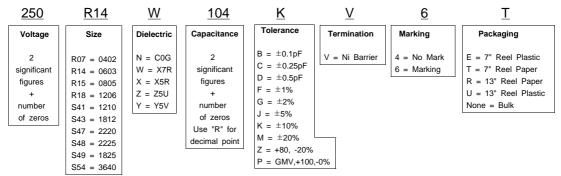
If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

▶ Notes for Separating Multiple, Shared PC Boards.

A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending of the circuit board.

CROSS REFERENCE

P/N	COMPANY	SAMSUNG	AVX	JOHANSON	KEMET	KYOCERA	MURATA	NOVACAP	PANASONIC	ROHM	TAIYO - YUDEN	TDK	VITRAMO
① COMPANY	MODEL(MLCC)	CL	-	-	С	СМ	GRM	-	ECJ	MCH	МК	С	VJ
	0201(0603)	03	-	-	-	03	33	-	z	-	063	0603	-
	0402(1005)	05	0402	R07	0402	05	36	0402	0	15	105	1005	0402
	0603(1608)	10	0603	R14	0603	105	39	0603	1	18	107	1608	0603
	0805(2012)	21	0805	R15	0805	21	40	0805	2	21	212	2012	0805
② SIZE (EIA/JIS)	1206(3216)	31	1206	R18	1206	316	42-6	1206	3	31	316	3216	1206
	1210(3225)	32	1210	S41	1210	32	42-2	1210	4	32	325	3225	1210
	1808(4520)	42	1808	R29	1808	42	-	1808	-	-	-	4520	1808
	1812(4532)	43	1812	S43	1812	43	43-2	1812	-	43	432	4532	1812
	2220(5750)	55	-	-	2220	55	44-1	2221	-	-	550	5650	-
	COG(NPO)	с	A	N	G	CG	COG/CH	N	С	A	С	COG/CH	А
	P2H(N150)	Р	s	-	-	Р	P2H	-	Р	-	Р	PH	-
	R2H(N220)	R	1	-	-	R	R2H	-	R	-	R	RH	-
	S2H(N330)	S	3	-	-	S	S2H	-	S	-	S	SH	-
3 TEMPERATURE	T2H(N470)	т	0	-	-	т	T2H	-	т	-	т	TH	-
CHARACTERISTIC	U2J(N750)	U	z	-	-	U	U2J	-	U	UJ	U	UJ	-
	S2L	L	Y	-	-	SL	SL	-	G	SL	SL	SL	-
	X7R	В	с	w	R(X)	X7R	X7R	В	В	с	BJ	X7R(B)	Y(X)
	Z5U	E	E	z	U	-	Z5U	Z	-	E	-	Z5U	U
	Y5V	F	G	Y	v	Y5V	Y5V	Y	F	F	F	Y5V	-
NOMINAL	CAPACITANCE			E>	() 103=10,0	00pF 221:	=220pF 225	5=2,200,000pF=	2.2 <i>µ</i> ^E 1R5=1.5	5pF 010=1	pF		
CAPACITAN	ICE TOLERANCE			B:±0.1pF C:	±0.25pF	D:±0.5pF F	F:±1% G:±	±2% J:±5%	6 K:±10%	M:±20%	Z:-20~+80%		
	6.3V	Q	6	-	9	06	6.3	-	0J	-	J	0J	-
	10 V	Р	z	100	8	10	10	-	1A	4	L	1A	-
	16 V	0	Y	160	4	16	16	160	1C	3	E	1C	J
	25 V	А	3	250	3	25	25	250	1E	2	т	1E	х
	50 V	В	5	500	5	50	50	500	1H	5	U	1H	А
	100 V	с	1	101	1	100	100	101	2A	1	-	2A	В
® RATED	200V	D	2	201	2	200	200	201	2D	-	-	-	С
VOLTAGE	250V	E	v	-	-	250	250	251	-	-	-	2E	-
	500V	G	7	501	-	500	500	501	-	-	-	-	E
	630V	н	-	-	-	630	630	-	-	-	-	2J	-
	1000V	I	A	102	-	1000	1K	102	-	-	-	ЗA	G
	2000V	J	G	202	-	2000	2К	202	-	-	-	3D	-
	3000V	к	н	302	-	3000	ЗК	302	-	-	-	3F	н
	4000V	-	J		-	4000	-	402	-	-	-	-	-
	NICKEL BARRIER	Ν	т	V	С	A	(GRM)	N	-	(MCH)	-	-	х
	Ag/Pd	Р	1	-	-	В	(GR)	Р	-	(MC)	-	-	F
TERMINATION	Agri u					в	PB	*	х	-	в	в	в
⑦ TERMINATION	BULK(VINYL)	В	9	(NONE)	-	В							
		B	9 2, 4	(NONE) T, R	-	T, L	PT	т	E,V,W	K, L	т	т	C, P
© TERMINATION	BULK(VINYL)							т -		K, L P, Q			


► SAMSUNG : CL10B104KA8NNNC

<u>CL</u>	<u>10</u>	<u>B</u>	<u>104</u>	K	<u>A</u>	<u>8</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>C</u>
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Thickness	Electrode/	Products	Special	Packaging
							Termination/			
	03 = 0201	C = C0G	2	A = $\pm 0.05 pF$	Q = 6.3V	3 = 0.30	Plating	A = Array	Various	B = Bulk
	05 = 0402	P = P2H	significant	$B = \pm 0.1 pF$	P = 10V	5 = 0.50		(2-element)		P = Cassette
	10 = 0603	R = R2H	figures	$C = \pm 0.25 pF$	O = 16V	8 = 0.80	A = Pd/Ag/	B = Array		C = Paper 7"
	21 = 0805	S = S2H	+	$D = \pm 0.5 pF$	A = 25V	A = 0.65	Sn 100%	(4-element)		D = Paper 13"
	31 = 1206	T = T2H	number	$F = \pm 1\%$	B = 50V	C = 0.85	N = Ni/Cu/	C = High - Q		(10,000EA)
	32 = 1210	U = U2H	of zeros	$G = \pm 2\%$	C = 100V	H = 1.60	Sn 100%	L = LICC		E = Embossing 7"
	43 = 1812	L = S2L	Use "R" for	$J = \pm 5\%$	D = 200V	I = 2.00	G = Cu/Cu/	N = Normal		F = Embossing 13"
	55 = 2220	B = X7R	decimal point	$K = \pm 10\%$	E = 250V	J = 2.50	Sn 100%	P = Automotive		L = Paper 13"
	II	A = X5R		$M = \pm 20\%$	G = 500V	L = 3.20	,	W = 3 terminal		(15,000EA)
		F = Y5V		Z = +80,-20%	H = 630V			chip		O = Paper 10"
					I = 1000V				_	S = Embossing 10"

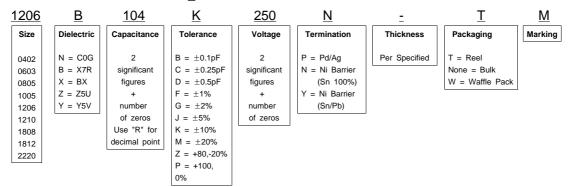
AVX : 06033C104KAT2A

<u>0603</u>	<u>3</u>	<u>C</u>	<u>104</u>	K	<u>A</u>	Ţ	<u>2</u>	<u>A</u>
Size	Voltage	Dielectric	Capacitance	Tolerance	Failure Rate	Termination	Packaging	Special
0201 0402 0603 0805 1206 1210 1812 2220 2225	$\begin{array}{l} 4 \;=\; 4V \\ 6 \;=\; 6.3V \\ Z \;=\; 10V \\ Y \;=\; 16V \\ 3 \;=\; 25V \\ B \;=\; 50V \\ C \;=\; 100V \\ D \;=\; 200V \\ E \;=\; 250V \\ G \;=\; 500V \\ I \;=\; 1000V \end{array}$	A = C0G C = X7R D = X5R E = Z5U G = Y5V	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = GMV, +100$		T = Sn 100% 7 = Gold Plated 1 = Pd/Ag	2 = 7" Reel 4 = 13" Reel 7 = Cassette 9 = Bulk	A = Standard T = 0.66mm S = 0.56mm R = 0.46mm

▶ JOHANSON : 250R14W104KV6T

▶ KEMET : C0603C104K3RAC

<u>C</u>	<u>0603</u>	<u>C</u>	<u>104</u>	K	<u>3</u>	<u>R</u>	<u>A</u>	<u>C</u>
Series	Size	Specification	Capacitance	Tolerance	Voltage	Dielectric	Failure Rate	Termination
	0402 0603 0805 1206 1210 1812 2220 2225	C = Standard A = GR900 P = Mil-C-55681 CDR01-CDR06 N = Mil-C-55681 CDR31-CDR35 Z = Mil-C-123 E = Mil Equivalent (Group A Only)	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$	9 = 6.3V 8 = 10V 4 = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V	G = C0G R = X7R P = X5R U = Z5U X = BX(Mil) V = Y5V	A = Standard M = 1.0 (Mil) P = 0.1 (Mil) R = 0.01 (Mil) S = 0.001 (Mil)	C = Ni w/Tin Plate H = Ni w/Solder T = Silver G = Gold Plated
	2223							


► KYOCERA : CM105X7R104K25AT

<u>CM</u>	<u>105</u>	<u>X7R</u>	<u>104</u>	K	<u>25</u>	<u>A</u>	Ţ
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Termination	Packaging
	$\begin{array}{l} 03 \ = \ 0201 \\ 05 \ = \ 0402 \\ 105 \ = \ 0603 \\ 21 \ = \ 0805 \\ 316 \ = \ 1206 \\ 32 \ = \ 1210 \\ 42 \ = \ 1808 \\ 43 \ = \ 1812 \\ 55 \ = \ 2220 \end{array}$	CG X8R X7R X5R Z5U Y5V Y5U	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = +100, 0\%$	04 = 4V 06 = 6.3V 10 = 10V 16 = 16V 25 = 25V 50 = 50V 100 = 100V 250 = 250V 500 = 500V 1000 = 1000V	A = Ni Barrier	T = 7" Reel (4mm Pitch) L = 13" Reel (4mm Pitch) H = 7" Reel (2mm Pitch) N = 13" Reel (2mm Pitch) B = Bulk (Vinyl Bags) C = Bulk Cassette

MURATA : GRM188R71E104KA01D

<u>GRM</u>	<u>18</u>	<u>8</u>	<u>R7</u>	<u>1E</u>	<u>104</u>	<u>K</u>	<u>A01</u>	<u>D</u>
Series	Size	Thickness	Dielectric	Voltage	Capacitance	Tolerance	Individual Specification	Packaging
Ni Barrier	03 = 0201	3 = 0.3mm	5C = C0G	0J = 6.3V	2	$B = \pm 0.1 pF$	Code	D = 7" Reel Paper
	15 = 0402	5 = 0.5mm	R7 = X7R	1A = 10V	significant	$C = \pm 0.25 pF$		L = 7" Reel Plastic
	18 = 0603	8 = 0.8mm	R6 = X5R	1C = 16V	figures	$D = \pm 0.5 pF$		J = 13" Reel Paper
	21 = 0805	A = 1.0mm	E4 = Z5U	1E = 25V	+	$F = \pm 1\%$		K = 13" Reel Plastic
	31 = 1206	B = 1.25mm	F5 = Y5V	1H = 50V	number	$G = \pm 2\%$		B = Bulk
	32 = 1210	C = 1.6mm		2A = 100V	of zeros	$J = \pm 5\%$		C = Bulk Cassette
	42 = 1808	D = 2.0mm		2E = 250V	Use "R" for	$K = \pm 10\%$		T = Bulk Tray
	43 = 1812	E = 2.5mm		2H = 500V	decimal	$M = \pm 20\%$		L
	55 = 2220	F = 3.2mm		3A = 1000V	point	Z = +80,-20%		
]					P = +100, 0%		

▶ NOVACAP : 0603B104K250N_TM

▶ PANASONIC : ECJ1EB1E104K

<u>ECJ</u>	<u>1</u>	E	<u>B</u>	<u>1E</u>	<u>104</u>	K
Series	Size	Packaging	Dielectric	Voltage	Capacitance	Tolerance
	Z = 0201 0 = 0402 1 = 0603 2 = 0805 3 = 1206 4 = 1210	$\begin{array}{llllllllllllllllllllllllllllllllllll$	C = COG B = X7R, X5R F = Y5V	0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V 2A = 100V 2D = 200V	2 significant figures + number of zeros Use "R" for decimal point	$\begin{array}{l} C = \pm 0.25 p F \\ D = \pm 0.5 p F \\ F = \pm 1 \% \\ J = \pm 5 \% \\ K = \pm 10 \% \\ M = \pm 20 \% \\ Z = +80, -20 \% \end{array}$

▶ ROHM : MCH182C104KKN

<u>MCH</u>	<u>18</u>	<u>2</u>	<u>C</u>	<u>104</u>	K	K	<u>N</u>
Series	Size	Voltag	Dielectric	Capacitance	Tolerance	Packaging	Marking/Thickness
	15 = 0402 18 = 0603	e 4 = 10V	A = C0G C = X7R	2 significant	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$	K = 7" Reel Paper P = 7" Reel Plastic	N = Marked Special Thickness
	21 = 0805 31 = 1206	3 = 16V 2 = 25V	F = Y5V	figures +	$D = \pm 0.5 pF$ F = ±1%	L = 13" Reel Paper Q = 13" Reel Plastic	
	32 = 1210 43 = 1812	5 = 50V		number of zeros	$G = \pm 2\%$ J = ±5%	B = Bulk C = Bulk Cassette	
				Use "R" for decimal point	$K = \pm 10\%$ $M = \pm 20\%$ Z = +8020%		
					P = +100, 0%		

► TAIYO-YUDEN : TMK107BJ104K_T

T	<u>M</u>	<u>K</u>	<u>107</u>	<u>BJ</u>	<u>104</u>	<u>K</u>	-	T
Voltage	Туре	Termination	Size	Dielectric	Capacitance	Tolerance	Special	Packaging
$\begin{array}{l} A = 4V \\ J = 6.3V \\ L = 10V \\ E = 16V \\ T = 25V \\ U = 50V \end{array}$	M = Multilayer V = Hi Q	K = Ni Barrier	105 = 0402 $107 = 0603$ $212 = 0805$ $316 = 1206$ $325 = 1210$ $432 = 1812$ $550 = 2220$	$\begin{array}{l} CG \ = \ C0G \\ CH \ = \ C0H \\ CJ \ = \ C0J \\ CK \ = \ C0K \\ BJ \ = \ X5R, \\ X7R \\ F \ = \ Y5V \end{array}$	2 significant figures + number of zeros Use "R" for decimal point	$C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ Z = +80,-20%	Various	T = Reel B = Bulk

▶ TDK : C1608X7R1E104KT

<u>C</u>	<u>1608</u>	<u>X7R</u>	<u>1E</u>	<u>104</u>	<u>K</u>	I
Series	Size	Dielectric	Voltage	Capacitance	Tolerance	Packaging
	$\begin{array}{r} 0603 = 0201\\ 1005 = 0402\\ 1608 = 0603\\ 2012 = 0805\\ 3216 = 1206\\ 3225 = 1210\\ 4532 = 1812\\ 5650 = 2220 \end{array}$	CG X7R Z5U Y5V	0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V	2 significant figures + number of zeros Use "R" for decimal point	$\begin{array}{l} C = \pm 0.25 p F \\ D = \pm 0.5 p F \\ F = \pm 1\% \\ G = \pm 2\% \\ J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\% \\ Z = +80, -20\% \end{array}$	T = Reel B = Bulk

► VITRAMON : VJ0603Y104KXXMC

VJ	<u>0603</u>	<u>Y</u>	<u>104</u>	<u>K</u>	<u>X</u>	<u>X</u>	<u>M</u>	<u>C</u>
Series	Size	Dielectric	Capacitance	Tolerance	Termination	Voltage	Marking	Packaging
	0402 0603 0805 1206 1210 1812 2225	X = BX A,N = C0G Y = X7R U = Z5U H = X8R	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = +100, 0\%$	X = Silver, Ni Barrier Tin Plated	J = 16V X = 25V A = 50V B = 100V C = 200V	M = Marking A = No Marking	C = 7" Reel Paper T = 7" Reel Plastic P = 13" Reel Paper R = 13" Reel Plastic B = Bulk

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for samsung manufacturer:

Other Similar products are found below :

DA61-04475B DA97-17194A RC2012F2001CS CL10B472JB8NNND KM44C4100BK-60 CL05C160JB5NCNC CL21C151FBANNWC M471B5673EH1-CH900 K4H510838B-TCB3 RC1608F86R6CS CL31C120JBCNNNC CL21CR47BBANNNC CL32C103JBFNNNE CL31B223JBCNNNC CL21C221JDCNFNC CL21B223KBANNWC CL10B563KB8NFNC CL10B473KB8SFNC CL10B122KB8NFNC SI-B8T171550WW SL-B8V2N70LAWW BN96-35590A BN96-31876D DC97-15103A DA67-02638B BN96-32239D BN39-02189A BN39-02190A DA61-08574A DA97-17215A DC47-00027F AH59-02748B 3903-001209 RC1005F103CS RF062PJ150CS CL10A335MQ8NNNC CL10B823KA8NNNC CL10C680JB8NFNC CL31B681KHFNFNE CL31C101JCCNFNC RC1608F753CS RC1005FR100CS CL10F334ZO8NNNC CL31C331KBCNBNC CL31B683KBCNNNC CL21C2R4CBANNNC CL05B104MP5NNNC DC97-16350E AH81-09068A DC66-00814A