

Anaren Integrated Radio

A1101R04C User's Manual

Release Date 02/20/12

THIS PAGE LEFT INTENTIONALLY BLANK

USER'S MANUAL

A1101R04C

Contents

1.	Overview	5
	1.1. Features	6
	1.2. Theory of Operation	6
	1.2.1. Typical Flow	
	1.3. Configuration	
	1.4. Applications	10
2.	Approvals and Usage	
	2.1. Product Approvals	12
	2.1.1. Europe (Conformité Européenne, C €)	12
	2.2. Potential Interference Sources	
	2.2.1. Time critical data	13
	2.3. Approved Usage	13
	2.3.1. Europe	13
3.	Electrical Characteristics	16
	3.1. Absolute Maximum Ratings	16
	3.2. Operating Conditions	17
	3.3. Pin Out	17
	3.4. Recommended Layout (Dimensions in mm)	19
	3.5. Power Supply Considerations	19
4.	Mechanical and Process	20
	4.1. Radio Module Details (Dimensions in mm)	20
	4.1.1. A1101R04C	20
	4.2. Packaging Details (Dimensions in mm)	21
	4.2.1. Matrix Tray Packaging	
	4.2.2. Tape-Reel Packaging	
	4.3. Soldering	
	4.3.1. Manual Mounting Procedure	
	4.3.2. Automated Mounting Procedure	23

THIS PAGE LEFT INTENTIONALLY BLANK

1. Overview

The A1101R04C is a surface mount module with an integrated crystal, internal voltage regulator, matching circuitry and filtering. The A1101R04C utilizes an external antenna through a U.FL connector (see Table 1). The module operates in the European band of 433.05 to 434.79 MHz, is ideal for achieving low power wireless connectivity without having to deal with extensive RF design and regulatory compliance, and provides quick time to market. The modules are 100% tested to provide consistent performance.

The A1101R04C has received regulatory approvals for modular devices in Europe (ETSI). The modular approval allows the OEM or end user to place A1101R04C with an approved antenna inside a finished product without having to perform costly regulatory testing for an intentional radiator. Section 2 has information on the requirements the end user/integrator must fulfill to use the modules without intentional radiator regulatory testing.

The A1101R04C is based on the CC1101 transceiver IC from Texas Instruments. All control lines for the transceiver are provided at module level for full control of its operation. Please see the CC1101 data sheet (www.ti.com) for how to control the modules. Please see section 2.3 for the recommended register settings to achieve optimal performance and regulatory compliance.

The A1101R04C has a compact antenna connector that allows for locating the antenna away from the module due to form/function or in order to exit a metal enclosure.

The A1101R04C module measures 9x12x2.5mm.

1.1. Features

Features:

- Frequency range: 433.05 434.79
 MHz
- Ultra small package size 9mm x 12mm x 2.5mm
- Impedance controlled multi-layer PCB
- Shielded Package
- 1.8 to 3.6 V operation
- SPI Interface
- RoHS Compliant
- LGA Footprint
- Low Power Consumption
- Regulatory compliance for ETSI
- Digital RSSI output
- Programmable channel filter bandwidth
- Programmable output power up to +12 dBm
- High sensitivity (–116 dBm at 0.6kBaud, 1% packet error rate)
- Low current consumption (15.7 mA in RX, 250 kBaud, input well above sensitivity limit)
- Separate 64-byte RX and TX data FIFOs
- Fast startup time: 240us from SLEEP to Rx or Tx mode
- Data Rate: 0.6 600 Kbit/Sec
- Sleep state: 0.2uAIdle State: 1.7mA

Benefits Summary:

- Operating temperature -40 to +85C
- 100% RF Tested in production
- Common footprint for all family members
- No RF engineering experience necessary
- Only requires a 2 layer PCB implementation
- Excellent receiver selectivity and blocking Performance
- Suitable for frequency hopping and multichannel systems due to a fast settling frequency synthesizer with 75 us settling time
- Suited for systems compliant with EN 300 220
- No regulatory "Intentional radiator" testing is required to integrate module into end product. Simple certification labeling replaces testing.

1.2. Theory of Operation

The A1101R04C is designed for low power wireless applications in the European band of 433.05 MHz to 434.79 MHz. It can be used to implement a variety of networks, including point to point, point to multipoint, peer to peer and mesh networks.

The A1101R04C interfaces to an application microcontroller via an SPI bus. Physical and MAC layer functionality are accessed via the SPI bus, through addressable registers as well as execution commands. Data received or to be transmitted are also accessed through the SPI bus and are implemented as a FIFO register (64 bytes each for Tx and Rx).

To transmit, a frame of data is placed in the FIFO; this may include a destination address. A transmit command is given, which will transmit the data according to the initial setup of the registers. To receive data, a receive command is given, which enables the unit to "listen" for a

transmission and when one occurs put the received frame in the FIFO. When neither transmit nor receive is required, the device can enter either an Idle mode, from which it can quickly reenter receive or transmit mode, or a low power sleep mode, from which a crystal startup is also required prior to transmit or receive operation.

Below a block diagram is given for the A1101R04C module.

Antenna

The antenna couples energy between the air and the AIR module. For applications where installations are done by an end user (non-professional), an omni-directional antenna pattern is desired, such that the application will work equally well in any direction. Similarly for peer to peer or point to multipoint applications an omni-directional pattern is desired such that all nodes have a fair chance of communicating. The A1101R04C has an approved near omni-directional monopole antenna listed in Table 1. Note that the end radiation pattern depends not only on the antenna, but also on the ground plane, enclosure and installation environment.

Filtering

 Filtering removes spurious signals to comply with regulatory intentional radiator requirements.

Matching

 Matching provides the correct loading of the transmit amplifier to achieve the highest output power as well as the correct loading for the receive LNA to achieve the best sensitivity.

Physical

o The physical layer provides conversions between data, symbol and RF signal.

MAC

 The MAC layer is part of the Logical Link Layer and provides frame handling, addressing and medium access services.

Microcontroller Interface

 The microcontroller interface exposes registers and commands for the physical and MAC layers to a microcontroller.

Power Management

 Power management ensures a stable supply for the internal functions as well as providing means for a low power sleep mode (in which case, most of the transceiver is power off).

Table 1 Approved Antenna

Item	Part Number	Manufacturer	Туре	Gain (dBi)
1	66089-0406	Anaren	Monopole whip, 173mm lead	3

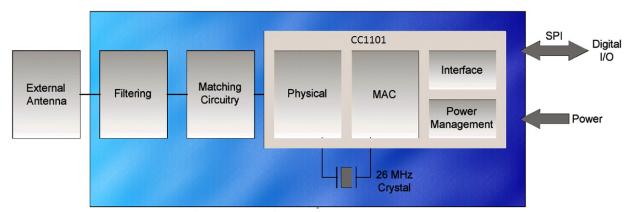


Figure 1 The functionality of the A1101R04C, using an external antenna.

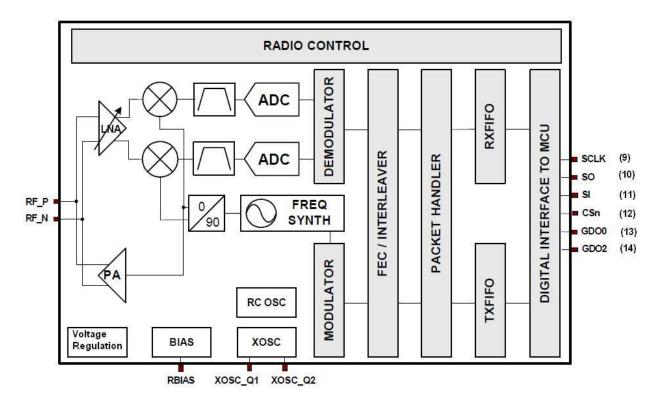


Figure 2 Transceiver IC block diagram.

1.2.1. Typical Flow

After initial setup of registers for desired behavior, the normal operation flow diagram is shown in Figure 3 . In applications of infrequent data transmissions the transceiver would be in "sleep" mode to save power (200nA). From there it would awaken and then enter "idle" mode. As part of the wake up process the crystal oscillator is started (\sim 240µs) and the digital microcontroller interface is powered up. Before transmit or receive, the frequency synthesizer needs to be started ("FS_Wakeup") and, having been powered off (or idle for a while), the control loop of the VCO/PLL needs to be calibrated ("calibrate").

A data frame is loaded into the transmit FIFO and the "TX" mode is entered. The transceiver will transmit the data and enter "idle" mode after completion. When transmit is complete "RX" mode is entered to wait for the acknowledge frame. Once a frame is received the transceiver will again enter "idle" mode. If no acknowledge frame is received within a given timeout the data frame would be re-transmitted. If the acknowledge frame indicates that the data was received the next data frame will be transmitted. After the last data frame has been transmitted successfully, the transceiver will again be put in "sleep" mode.

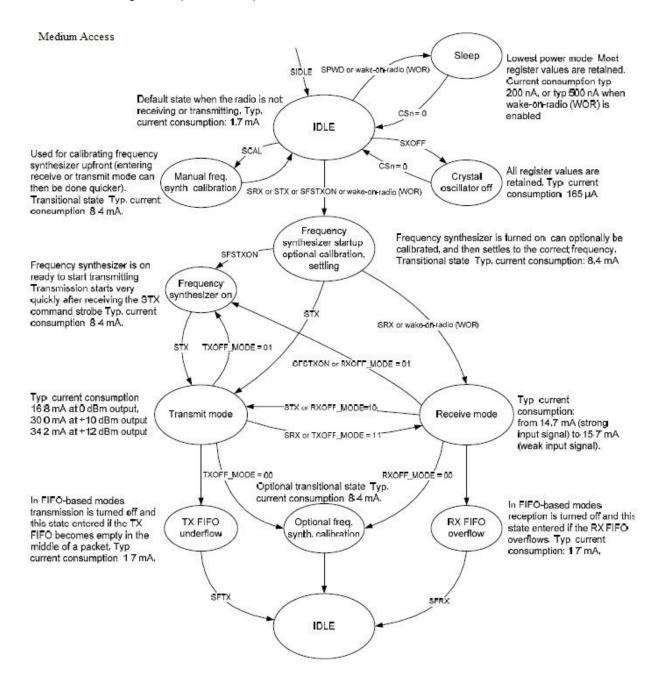


Figure 3 Transceiver state diagram

1.3. Configuration

Table 2 lists the radio module configuration parameters, and the level of configurability by the user.

Legend:

Certification is valid for any value choosen

Use the provided certified settings as other may degrade performance

Any modification of this value is a violation of the certification and the customer is responsible for optaining their own certification

Unused/undocumented function. The provided default value must be written.

No assumption should be made on the value read from this field

Read only register (burst mode read only, command strobes otherwise).

1.4. Applications

Ultra low-power wireless applications, operating in the 433.05 – 434.79 MHz ISM/SRD bands:

- Wireless alarm and security systems
- Industrial monitoring and control
- Wireless sensor networks
- AMR Automatic Meter Reading
- Home and building automation

Existing applications where simple upgrade to wireless is desired

Table 2 Configuration Parameters

			Bit Fields Within Register							
	Register	Retained								
	Address	during								
Register Name	(Hex)	sleep	7	6	5	4	3	2	1	0
IOCFG2	00 01	1	O GDO DS	GDO2_INV GDO1 INV				2_CFG 1_CFG		
IOCFG1	02	1	GDO_DS GDOO_TEMP_SENSOR_ENABLE	GDO1_INV GDO0_INV				CFG		
FIFOTHR	03	1	Reserved	ADC RETENTION	CLOSE	IN RX	T GDO		_THR	
SYNC1	04	1					MSB			
SYNC0	05	1				SYN	C_LSB			
PKTLEN	06	1				PACKET	_LENGTH			
PKTCTRL1	07	1		PQT		0		APPEND_STATUS	ADR_	
PKTCTRL0	08	1	0	WHITE_DATA	PKT_F		0 E ADDR	CRC_EN	LENGTH_	CONFIG
ADDR CHANNR	09 0A	1					E_ADDR IAN			
FSCTRL1	OB	1	(0	0		ICIN	FREQ IF		
FSCTRLO	OC	1				FRE	QOFF			
FREQ2	0D	1	FREQ[2	23:22]=0			FREQ	[21:16]		
FREQ1	0E	1				FREC	[15:8]			
FREQ0	0F	1					ૂ[7:0]			
MDMCFG4	10	1	CHAN	BW_E	CHAN	BW_M	TE 14	DRA	TE_E	
MDMCFG3 MDMCFG2	11 12	1	DEM DCFILT OFF		MOD FORMAT	DKA	TE_M MANCHESTER_EN		SYNC MODE	
MDMCFG1	13	1	FEC EN		NUM PREAMBLE			0	CHAN:	SPC F
MDMCFG0	14	1					SPC M			· · · -
DEVIATN	15	1	0		DEVIATION_E		0		DEVIATION_M	
MCSM2	16	1		0		RX_TIME_RSSI	RX_TIME_QUAL		RX_TIME	
MCSM1	17	1		0		MODE		_MODE	TXOFF_	
MCSM0	18	1		0		TOCAL	· -	MEOUT		XOSC_FORCE_ON
FOCCFG BSCFG	19 1A	1		RE K	FOC_BS_CS_GATE	RE KP	PRE_K	FOC_POST_K	FOC_I	
AGCCTRL2	1B	1	MAX DV		B3_P	MAX LNA GAIN	BS_POST_K BS_POST_KP BS_LIMIT GAIN MAGN TARGET			IVII I
AGCCTRL1	1C	1	_	AGC_LNA_PRIORITY	CARRIER SEI	NSE REL THR		CARRIER SEN	NSE ABS THR	
AGCCTRL0	1D	1	HYST_	LEVEL	WAIT	TIME	AGC_I	REEZE	FILTER_I	ENGTH
WOREVT1	1E	1					TO[15:8]			
WOREVTO	1F	1	00.00		E) (ENTA	EVEN'	T0[7:0]		14/05	DEC
WORCTRL FREND1	20 21	1	RC_PD	JRRENT	EVENT1	CURRENT	RC_CAL	0 CURRENT	WOR MIX CL	
FRENDO	22	1	_)		CURRENT TX	0	CORRENT	PA POWER	IMALINI
FSCAL3	23	1	FSCAL	_3[7:6]	CHP_CUR	R_CAL_EN		FSCAI	L3[3:0]	
FSCAL2	24	1		0	VCO_CORE_H_EN			FSCAL2		
FSCAL1	25	1		0				AL1		
FSCAL0 RCCTRL1	26 27	1	0				FSCAL0 RCCTRL1			
RCCTRLO	28	1	0				RCCTRLO			
FSTEST	29	0	Ü			FST	TEST			
PTEST	2A	0				PT	EST			
AGCTEST	2B	0					CTEST			
TEST2	2C	0					ST2			
TEST1 TEST0	2D 2E	0			TEST	TE 0[7:2]	ST1		VCO SEL CAL EN	TESTO[0]
.2310	2F	Ť			1251				. JO_UZZ_GAZ_EN	.20.0[0]
PARTNUM	30	1				PART	TNUM			
VERSION	31	1					SION			
FREQOFF_EST	32	0				FREQC	OFF_EST			
LQI RSSI	33 34	0	CRC_OK	CRC_OK LQI_EST RSSI						
MARC STATE	35	0	MARC STATE							
WORTIME1	36	0		TIME[15:8]						
WORTIME0	37	0					E[7:0]			
PKTSTATUS	38	0	CRC_OK							
VCO_VC_DAC	39	0	VCO_VC_DAC							
TXBYTES	3A 3B	0	TXFIFO_UNDERFLOW NUM_TXBYTES RXFIFO_OVERFLOW NUM_RXBYTES							
RXBYTES RCCTRL1 STATUS	3C	0	KAFIFU_OVERFLOW	REFFO_OVERFLOW NUM_RXBYTES RCCTRL1 STATUS						
RCCTRLO_STATUS	3D	0		RCCTRLO STATUS						
PATABLE	3E	1					ABLE			
FIFO	3F	0		TXFIFO/RXFIFO						

2. Approvals and Usage

The A1101R04C has been designed to meet most national regulations for world-wide ISM-band use. In particular the radio modules have been certified to the following standards.

2.1. Product Approvals

2.1.1. Europe (Conformité Européenne, C€)

The A1101R04C module has been certified for use in European countries. The following testing has been completed:

Test standard ETSI EN 300 220-2 V2.3.1 (2010-02)

- Frequency Error
- Conducted Average Power (10% and 100% Duty Cycle Operation)
- Effective Radiated Power
- Spread Spectrum Spectral Power Density
- Transient Power
- Modulation Bandwidth
- TX/RX Spurious Emissions

Test standards ETSI EN 301 489-3 V1.4.1 (2002-08), ETSI EN 62311:2008 and ETSI EN 60950-1:2006

- Radiated Emissions
- Electro-Static Discharge
- Radiated RF Susceptibility

A helpful document that can be used as a starting point in understanding the use of short range devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, downloadable from the European Radio Communications Office (ERO) http://www.ero.dk.

The end user is responsible for ensuring compliance with harmonized frequencies and labeling requirements for each country the end device is marketed and sold.

For more information see:

- Radio And Telecommunications Terminal Equipment (R&TTE) http://ec.europa.eu/enterprise/rtte/index en.htm
- European Conference of Postal and Telecommunications Administrations (CEPT) http://www.cept.org/
- European Telecommunications Standards Institute (ETSI) http://www.etsi.org/
- European Radio Communications Office (ERO) http://www.ero.dk/

2.2. Potential Interference Sources

Systems similar to the user's system may also exist within range and may also be a source of interference; some typical applications to consider are:

- Alarm systems
 - These typically use low duty cycles and are therefore easy to avoid using acknowledge/retransmit methods
- Car alarms (internal motion sensors)
- Weather stations.

2.2.1. Time critical data

If the user requires specific time critical data throughput that cannot tolerate the delays of potentially many re-transmissions, the user is encouraged to implement an environment-aware algorithm that periodically monitors/scans the frequency band and maintain a list of "best available" channels.

2.3. Approved Usage

The radio modules can be used in a variety of physical layer configurations. The following restricts the use to maintain compliance with the above-referenced certification bodies. The user is encouraged to use minimum power required to establish a link, thus minimizing interference.

Changes or modifications to the module and/or operation outside the limits set forth below are prohibited and could void the user's authority to operate the modules.

Uses of these radio modules are limited to the specified frequency ranges and configuration settings. Using the radio modules outside of these limitations are prohibited and could void the user's authority to operate the modules. The register setting files for these configurations are provided online at www.anaren.com.

2.3.1. Europe

Table 3 shows the approved configurations for use in Europe.

The maximum output power is 10 mW (10 dBm) if the module operates on a 10% Duty Cycle. If 100% Duty Cycle operation is desired, then the output power should be limited to 1 mW (0 dBm) for the signals with less than 250 kHz BW, and -13 dBm/10 kHz for the signals with greater than 250 kHz BW.

In order to comply with the output power limitations in Europe, the maximum values given in the tables below should be observed. Table 4 is for 10% Duty Cycle operation where higher power levels can be used. The first number in each cell indicates the power level in dBm, and the one inside the parenthesis is the PA Table value that is written to the transceiver chip.



Table 3 Approved European configurations

Code	Modulation Type	Datarate(kbps)	Deviation(kHz)/ PhaseTransition Time (Tb)
M1	MSK	500	5/8 Tb
M2	MSK	100	5/8 Tb
M3	MSK	38	5/8 Tb
M4	2-FSK	1.2	25.4
M5	2-FSK	10	34.9
M6	GFSK	10	12.7
M7	GFSK	38	17.5
M8	GFSK	100	44.4
M9	4-FSK	250	114.3
M10	4-FSK	500	203/228.5 (Tx/Rx)
M11	2-FSK	0.6	15.9
M12	GFSK	4.8	12.7
M13	GFSK	19.2	12.7
M14	4-FSK	600	228.5/253.9 (Tx/Rx)
M15	MSK	600	5/8 Tb
MN1	2-FSK	0.6	5.2
MN5	4-FSK	2.4	5.2
MN6	GFSK	1.2	5.2
MN8	4-FSK	20	19
MN11	4-FSK	153.6	32
MN12	GFSK	76.8	32
MN14	4-FSK	200	47

Table 4 Maximum output power (10% duty cycle)

10 % Duty Cycle						
Modulation Code	Low Temp [dBm (Hex)]	Room Temp [dBm (Hex)]	High Temp [dBm (Hex)]			
All Modulation Types	8.3 (C9)	9.4 (C6)	9.7 (C5)			

Table 5 is for 100% Duty Cycle operation where a continuous transmission is possible. In this case, the output power is lowered, and in wideband case (BW greater than 250 kHz), power spectral density requirements are observed.

Table 5 Maximum output power (100% duty cycle)

100 % Duty Cycle								
Modulation Code	Low Temp [dBm (Hex)]	Room Temp [dBm (Hex)]	High Temp [dBm (Hex)]					
M1	1 (8C)	1 (8C)	1.7 (8B)					
M2	-6.5 (2B)	-5.3 (2D)	-4.3 (66)					
M9	-1 (51)	-0.5 (60)	-0.8 (8E)					
M10	1.7 (8B)	1.7 (8B)	2.5 (89)					
M14	1.7 (8B)	2.5 (89)	3.7 (87)					
M15	1.7 (8B)	1.7 (8B)	2.5 (89)					
All other types	-2 (53)	-1.5 (40)	0 (50)					

The A1101R04C output power changes with ambient temperature. To obtain best possible range and at the same time maintain certification compliance it is possible to trim the output power as a function of temperature to maintain an approximate constant output power over temperature. This can be done by changing the output power according to Table 6. The same information is provided graphically in Figure 4. Note that the power level mentioned is the power level one would measure at room temperature (i.e. the power level is in fact not increasing with temperature, but is kept relatively stable when implementing this feature). If temperature dependent control is not implemented the user must use the lowest power value for all temperatures in order to maintain power within certification limits. A breakdown of the temperature levels is given below for each Duty Cycle operation.

Table 6	Power	adjusi	tment	for	tempera	ture

	10 % Duty Cycle	100 % Duty Cycle						
Temp Range (C°)	All Modulations	M1	M2	M9	M10	M14	M15	All Others
(-40, -20)	0xC9	0x8C	0x2B	0x51	0x8B	0x8B	0x8B	0x53
(-20, 55)	0xC6	0x8C	0x2D	0x60	0x8B	0x89	0x8B	0x40
(55, 85)	0xC5	0x8B	0x66	0x8E	0x89	0x87	0x89	0x50

A graphical view of these levels is also provided in the chart below.

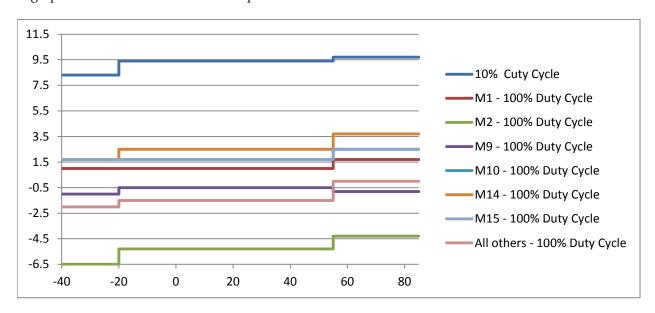


Figure 4 Output Power over temperature

3. Electrical Characteristics

3.1. Absolute Maximum Ratings

Under no circumstances must the absolute maximum ratings given in Table 7 be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Caution!

ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Caution!

This assembly contains moisture sensitive devices and requires proper handling per IPC/JEDEC J-STD-033

Table 7 Absolute maximum ratings

Parameter	Min	Max	Unit	Condition/Note
Supply Voltage (Vdd)	-0.3	3.9	V	All supply pins must have the same voltage
Voltage on any digital pin	-0.3	Vdd+0.3, max 3.9	V	
RF input power		+10	dBm	
Storage Temperature	-50	150	°C	
Solder reflow temperature		260	°C	According to IPC/JEDEC J-STD- 020D
ESD		750	V	According to JEDEC STD 22, method A114, Human body model
ESD		400	V	According to JEDEC STD 22, C101C, Charged Device Model (CDM)

3.2. Operating Conditions

Table 8 Operating conditions

Parameter	Min	Max	Unit	Condition/Note
Supply Voltage (Vdd)	1.8	3.6	V	
Temperature Range	-40	+85	°C	

3.3. Pin Out

The A1101R04C radio module shares a common pin-out and foot print with other Anaren modules using different frequencies, thus enabling easy changeover from one to another, e.g. if changing the frequency, antenna scheme, or adaptive antenna tuning is desired. Below the common footprint is shown.

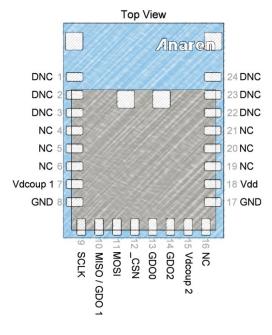


Figure 5 Pin Out

NC = NO Connection. Pin is NOT connected internally.

DNC = Do Not Connect. Internal connection used during assembly, do not connect.

Table 9 Pin descriptions

Pin#	Pin Name	Pin Type	Description
1	31		Internal GND connection used during testing, not recommended to
			connect to main GND.
2	DNC	NC	Internal RF output connection used during test. Connecting this pin
			to anything will require recertification for intentional radiators.
3	DNC	NC	Internal GND connection used during testing, not recommended to
			connect to main GND.
4	NC	NC	Pin is not connected internally, but is reserved for future expansion.
			It is recommended not to connect this pin to anything.
5	NC	NC	Pin is not connected internally, but is reserved for future expansion.
			It is recommended not to connect this pin to anything.
6	NC	NC	Pin is not connected internally, but is reserved for future expansion.
			It is recommended not to connect this pin to anything.
7	Vdcoup1	Analog	Optional decoupling of the modules internal Vdd supply. It is
			recommended to not connect anything to this pin. In particular noisy
			environment this pin can be used to further reduce the noise on the
			modules internal Vdd, please see section 3.5 for further information.
8	GND	Ground	One of two primary ground pins
9	SCLK	Digital Input	SPI bus clock signal
10	MISO/GDO1	Digital	SPI bus data out from radio when CSN is low, and general purpose
		Output	I/O pin when CSN is high
11	MOSI	Digital Input	SPI bus data into radio
12	_CSN	Digital Input	SPI bus select (active low)
13	GDO0	Digital I/O	General purpose port
		(Analog	
		output)	
14	GDO2	Digital I/O	General purpose port
15	Vdcoup2	Analog	Optional decoupling of the modules internal Vdd supply. It is
			recommended to not connect anything to this pin. In particular noisy
			environment this pin can be used to further reduce the noise on the
16	NC	NC	modules internal Vdd, please see section 3.5 for further information.
10	INC	INC	No Connect, the pin is not connected internally, but is reserved for
			future expansion. It is recommended not to connect this pin to anything.
17	GND	Ground	One of two primary ground pins
18	Vdd	Power	Power supply pin
10	Vuu	Supply	1 Ower Suppry piri
19	NC	NC NC	Pin is not connected internally, but is reserved for future expansion.
10	110	110	It is recommended not to connect this pin to anything.
20	NC	NC	Pin is not connected internally, but is reserved for future expansion.
_0	110		It is recommended not to connect this pin to anything.
21	NC	NC	Pin is not connected internally, but is reserved for future expansion.
- -			It is recommended not to connect this pin to anything.
22	DNC	NC	Internal GND connection used during testing, not recommended to
	-		connect to main GND.
23	DNC	NC	Pin is not connected internally, but is reserved for future expansion.
			It is recommended not to connect this pin to anything.
24	DNC	NC	Internal GND connection used during testing, not recommended to
			connect to main GND.

3.4. Recommended Layout (Dimensions in mm)

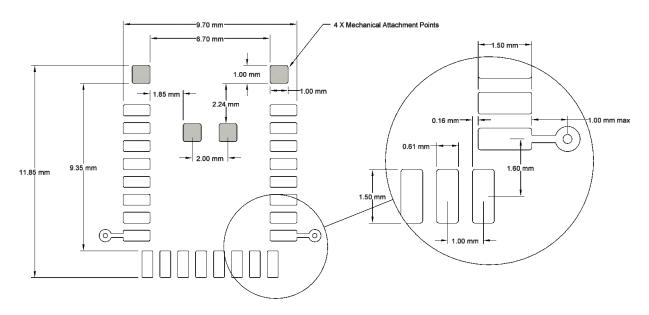


Figure 6 Recommended PCB layout.

3.5. Power Supply Considerations

Noise on the power supply line reduces the sensitivity of a receiver and modulates onto a transmitters signal, both of which causes a degradation of link quality and hence a reduction in range.

The A1101R04C radio module has an integral ferrite bead in the supply line from pin 18 (Vdd) and a decoupling capacitance to reduce any noise on the incoming power supply line. This arrangement will eliminate most supply voltage noise. In particular noisy environments (switching regulators, motor controls, etc.), it may be necessary to add additional noise reduction means.

Pin 7 (Vdcoup1) is connected to the module's internal supply line after the ferrite bead and decoupling capacitors and can be used to probe the noise at module level. The noise level measured on pin 7 should not exceed 120mVpp when in transmit or receive mode, it may however exceed this value when setting up or accessing data to/from the FIFO's while not actively transmitting or receiving.

If the level measured is exceeding the above limit, steps should be taken to ensure maximum range, including:

- Adding decoupling capacitance to pin 7 (Vdcoup1).
- Adding additional filtering in the supply line.
- Adding an LDO in the supply line (the TPS734xx low Dropout Regulator from TI is recommended).

4. Mechanical and Process

4.1. Radio Module Details (Dimensions in mm)

4.1.1. A1101R04C

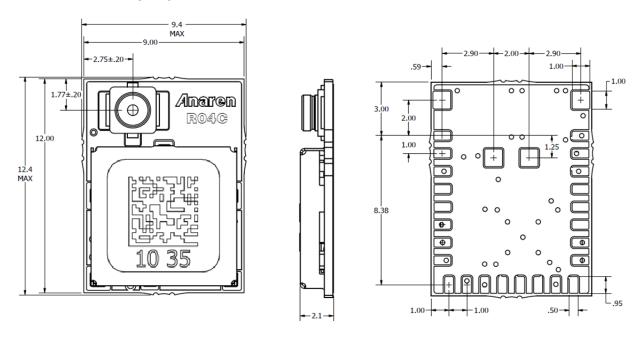


Figure 7 A1101R04C dimensions

4.2. Packaging Details (Dimensions in mm)

AIR modules are available in Matrix Tray and Tape & Reel packaging for high-volume assembly. Details of packaging provided below:

4.2.1. Matrix Tray Packaging

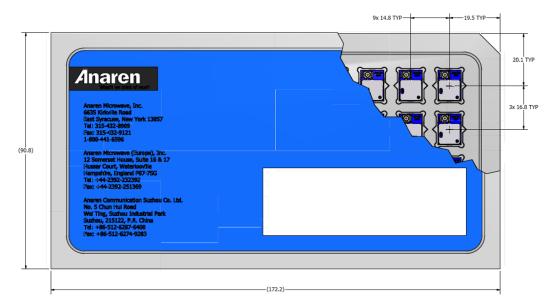


Figure 8 A1101R04C00GM Matrix Tray Packaging Detail (40/Tray)

4.2.2. Tape-Reel Packaging

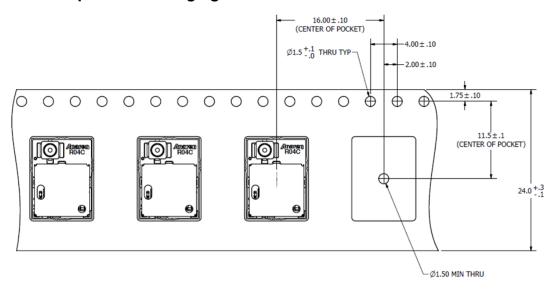


Figure 9 A1101R04C00GR Tape-Reel Packaging Detail (500/Reel)

4.3. Soldering

AIR Modules may be mounted either manually (for prototyping or low volume production), or automatically for high-volume production.

A no-clean tin/silver/copper (SAC) solder is recommended, however lead based no-clean pastes may also be used.

CAUTION: AIR Modules are designed for no-clean fluxes only. DO NOT use water-based fluxes that require aqueous cleaning after solder. Spot cleaning with a flux remover and toothbrush may be performed with care.

4.3.1. Manual Mounting Procedure

The recommended soldering method is reflow of a paste solder on a hot plate. This method works provided the bottom of the board where the AIR module is to be mounted is accessible, and there are no bottom-side components in the way.

An aluminum or copper block may be placed on the hot plate surface to transfer heat to a localized area on the board where the AIR module is mounted

- Set the hot plate to the reflow temperature solder manufacturer's recommended
- Apply solder paste to the pads on the board receiving the AIR module
- Place the AIR module carefully onto the dispensed solder
- Using tweezers or another holding device, carefully place board with AIR module onto the hot plate surface (or metal block)
- Apply heat until reflow occurs, per solder paste manufacturer's recommendations
- Carefully remove the board and place on a heat-resistant surface to cool
- Check assembly electrically to confirm there are no opens or shorts

4.3.2. Automated Mounting Procedure

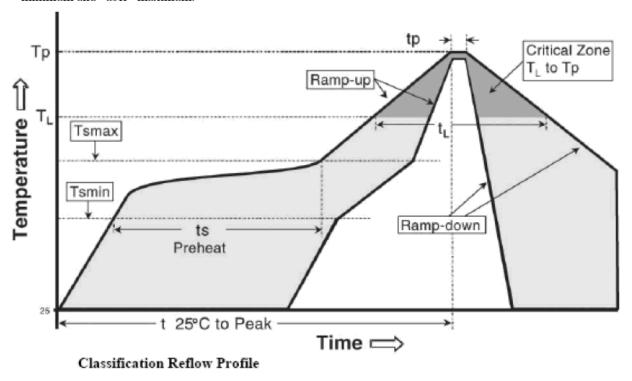

The AIR Radio Module recommended solder reflow profile is based on IPC/JEDEC J-STD-020.

Table 5-2 Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average ramp-up rate (Tsmax to Tp)	3° C/second max.	3° C/second max.	
Preheat - Temperature Min (Ts _{min}) - Temperature Max (Ts _{max}) - Time (Ts _{min} to Ts _{max}) (ts)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds	
Time maintained above: - Temperature (T _L) - Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds	
Peak Temperature (Tp)	See Table 4.1	See Table 4.2	
Time within 5°C of actual Peak Temperature (tp) ²	10-30 seconds	20-40 seconds	
Ramp-down Rate	6 °C/second max.	6 °C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5 °C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

SnPb Eutectic Process - Package Peak Reflow Temperatures

	Volume mm ³	Volume mm ³	
Package Thickness	<350	≥ 350	
<2.5 mm	240 +0/-5 °C	225 +0/-5°C	
≥ 2.5 mm	225 +0/-5°C	225 +0/-5°C	

Pb-free Process - Package Peak Reflow Temperatures

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	< 350	350 - 2000	> 2000
< 1.6 mm	260 °C *	260 °C *	260 °C *
1.6 mm - 2.5 mm	260 °C *	250 °C *	245 °C *
> 2.5 mm	250 °C *	245 °C *	245 °C *

^{*} Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature at the rated MSL level

DOCUMENT HISTORY

Date	Author	Change Note No./Notes
07/21/11	Sula	Initial Draft
02/20/12	Richardson	Initial Release

Attach distributor contact information

If you have additional questions, need samples, or would like a quote – please email the AIR team at AIR@anaren.com .

For a full list of our franchised distributors, please visit our website:

http://www.anaren.com/air/

Anaren Microwave, Inc. 6635 Kirkville Road East Syracuse, NY 13057

Tel: +1 315 432 8909 +1 800 411 6596 Fax: +1 315 432 8970 Anaren Microwave (Europe), Inc. 12 Somerset House, Suite 16 & 17

Hussar Court, Waterlooville Hampshire, England P07-7SG Tel: +44 2392 232392

Fax: +44 2392 251369

Anaren Communication Suzhou Co. Ltd.

No. 5 Chun Hui Road Wei Ting, Suzhou Industrial Park Suzhou 215122, PR China

Tel: +86 512 6287 6400 Fax: +86 512 6274 9283