

GaAs HBT INTEGRATED CIRCUIT

μ PG2314T5N

POWER AMPLIFIER FOR Bluetooth™ Class 1

DESCRIPTION

The µPG2314T5N is GaAs HBT MMIC for power amplifier which was developed for Bluetooth Class 1.

This device realizes high efficiency, high gain and high output power by using InGaP HBT. This device is housed in a 6-pin plastic TSON (\underline{T} hin \underline{S} mall \underline{O} ut-line \underline{N} on-leaded) package. And this package is able to high-density surface mounting.

FEATURES

• Operation frequency : f_{opt} = 2 400 to 2 500 MHz (2 450 MHz TYP.)

Supply voltage : Vcc1, 2 = 2.7 to 3.6 V (3.0 V TYP.)
Control voltage : Vccnt = 0 to 3.6 V (3.0 V TYP.)

: Vbias + Venable = 0 to 3.1 V (3.0 V TYP.)

• Circuit current : Icc = 65 mA TYP. @ Vcc1, 2 = 3.0 V, Vbias + Venable = 3.0 V, Vcont = 3.0 V,

 $P_{in} = 0 dBm$

• Output power : Pout = +20 dBm TYP. @ Vcc1, 2 = 3.0 V, Vbias + Venable = 3.0 V, Vcont = 3.0 V,

 $P_{in} = 0 dBm$

• Gain control range : GCR = 23 dB TYP. @ Vcc1, 2 = 3.0 V, Vbias + Venable = 3.0 V, Vcont = 0 to 3.0 V,

 $P_{in} = 0 dBm$

High efficiency : PAE = 50% TYP.

• High-density surface mounting : 6-pin plastic TSON package (1.5 \times 1.5 \times 0.37 mm)

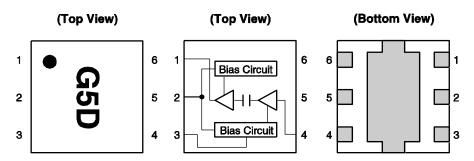
APPLICATIONS

Power Amplifier for Bluetooth Class 1

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPG2314T5N-E2	μPG2314T5N-E2-A	6-pin plastic TSON (Pb-Free)	· ·	

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: μPG2314T5N-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PG10624EJ02V0DS (2nd edition) Date Published February 2008 NS

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	OUTPUT/Vcc2
2	V _{bias} + V _{enable}
3	Vcont
4	INPUT
5	Vcc1
6	GND

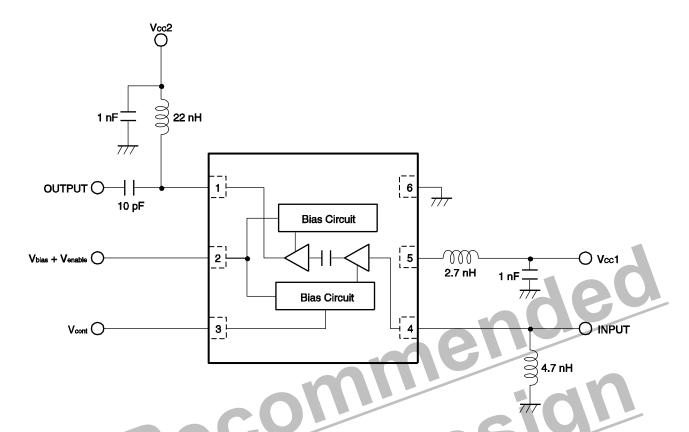
Remark Exposed pad: GND

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vcc1, 2	5.5	V
	Vbias + Venable	3.6	V
Control Voltage	Vcont	3.6	V
Circuit Current	Icc	400	mA
Control Current	Icont	0.5	mA
Input Power	Pin	+10	dBm
Power Dissipation	PD	700 ^{Note}	mW
Operating Ambient Temperature	TA	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

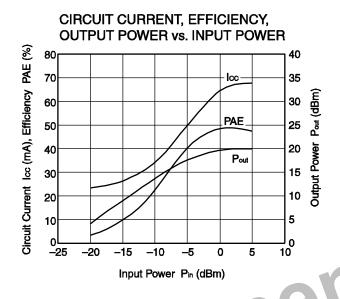
RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

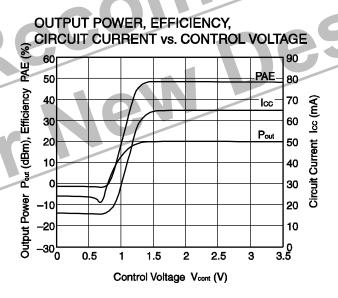
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	fopt	2 400	2 450	2 500	MHz
Supply Voltage	Vcc1, 2	2.7	3.0	3.6	V
	V _{bias} + V _{enable}	0	3.0	3.1	V
Control Voltage	Vcont	0	3.0	3.6	V


ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcc1, 2 = Vbias + Venable = 3.0 V, f = 2 450 MHz, Pout = +20 dBm, External input and output matching, unless otherwise specified)

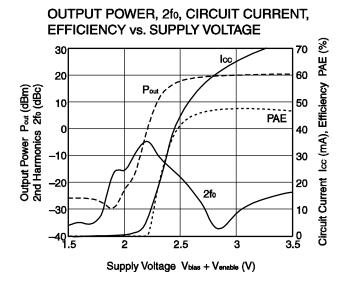
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	V _{cont} = 3.0 V, P _{in} = 0 dBm	-	65	70	mA
Shut Down Current	Ishut down	$\begin{aligned} &V_{cont} = 3.0 \text{ V, Pin} = 0 \text{ dBm ,} \\ &V_{bias} + V_{enable} = 0 \text{ V} \end{aligned}$	-	0	1	μΑ
Output Power 1	Pout1	V _{cont} = 3.0 V, P _{in} = 0 dBm	+18.0	+20.0	-	dBm
Output Power 2	Pout2	V _{cont} = 0 V, P _{in} = 0 dBm	_	-3.0	+1.0	dBm
Gain Control Range	GCR	V _{cont} = 0 to 3.0 V, P _{in} = 0 dBm	17	23	-	dB
Efficiency	PAE	V _{cont} = 3.0 V, P _{in} = 0 dBm	-	50	-	%


EVALUATION CIRCUIT

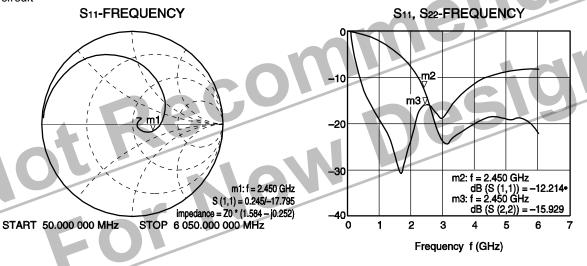

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

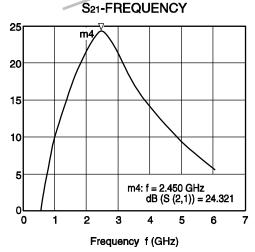
TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vbias + Venable = Vcont = 3.0 V, with external input and output matching circuit

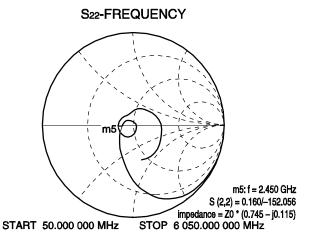


Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vbias + Venable = 3.0 V, Pin = 0 dBm, with external input and output matching circuit

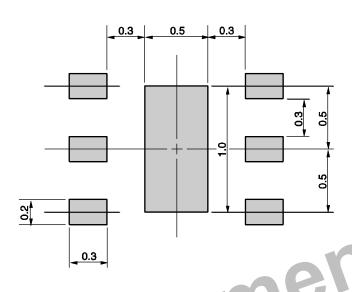


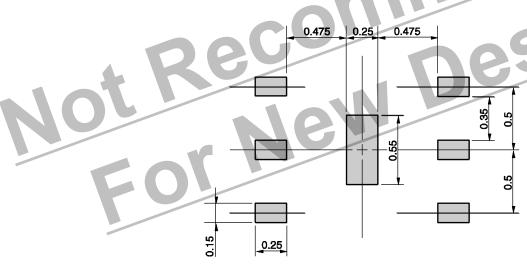

Remark The graphs indicate nominal characteristics.

Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vcont = 3.0 V, Pin = 0 dBm, with external input and output matching circuit



Condition : $Vcc1 = Vcc2 = V_{bias} + V_{enable} = V_{cont} = 3.0 \text{ V}$, $P_{in} = -20 \text{ dBm}$, with external input and output matching circuit

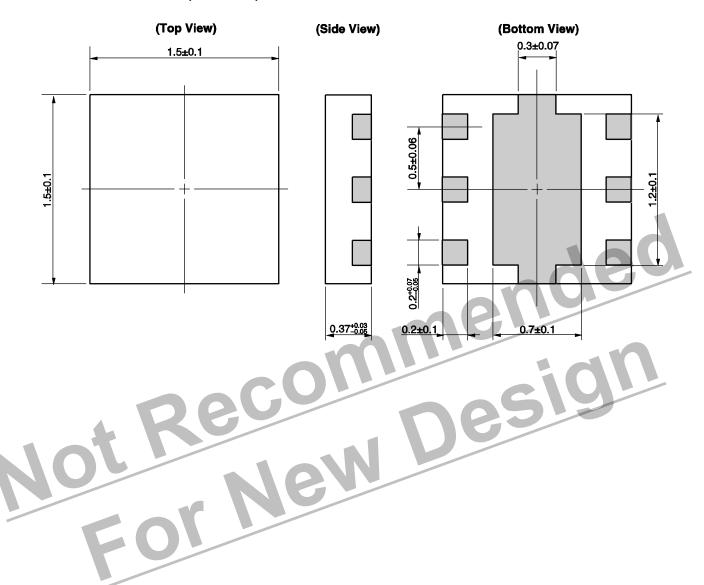

Remark The graphs indicate nominal characteristics.


MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

MOUNTING PAD

SOLDER MASK



Solder thickness: 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.

<R> PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
-	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	ass

Caution Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
- Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

