Millenium 3 Standard

"Expandable" range with display

■ "High-performance" expandable solution with display - Extended memory: 120 lines in LADDER language and up to 700 "typical" blocks in FBD language

- LCD with 4 lines of 18 characters and configurable backlighting
- Selective parameter setting: You can choose the parameters that can be adjusted on the front panel
- Analogue inputs $0-10 \mathrm{~V}=$-= or $0-20 \mathrm{~mA} / \mathrm{Pt} 100$ with converters (see page 50)
- Open to XN network communication extensions and digital I/O or analogue extensions

Part numbers

Type	Input	Output	Supply	Code
XD10	6 digital (including 4 analogue)	4 relays 8 A	$24 \mathrm{~V}=-$	88970141
	6 digital (including 4 analogue)	4 solid state 0.5 A (including 1 PWM)	$24 \mathrm{~V}=-$	88970142
	6 digital	4 relays 8 A	$100 \rightarrow 240 \mathrm{~V}$ ~	88970143
	6 digital	4 relays 8 A	24 V ~	88970144
XD26	16 digital (including 6 analogue)	10 relays (8×8 A relay and 2×5 A relay)	$24 \mathrm{~V}=-$	88970161
	16 digital (including 6 analogue)	10 solid state 0.5 A (including 4 PWM)	$24 \mathrm{~V}=-$	88970162
	16 digital	10 relays ($8 \times 8 \mathrm{~A}$ relay and $2 \times 5 \mathrm{~A}$ relay)	$100 \rightarrow 240 \mathrm{~V}$ ~	88970163
	16 digital	10 relays (8×8 A relay and 2×5 A relay)	24 V ~	88970164
	16 digital (including 6 analogue)	10 relays (8x8 A relay and 2×5 A relay)	$12 \mathrm{~V}=-$	88970165
	16 digital (including 6 analogue)	10 solid state 0.5 A (including 4 PWM)	$12 \mathrm{~V}=-$	88970814

Accessories

Type	Description			Code
M3 SOFT	Multilingual programming software containing specific library functions (CD-ROM)			88970111
PA	EEPROM memory cartridge			88970108
	3 m serial link cable: $\mathrm{PC} \rightarrow$ Millenium 3			88970102
	3 m USB link cable: PC \rightarrow Millenium 3			88970109
	Millenium 3 \rightarrow Bluetooth interface (class A 10 m)			88970104
Starter kits (see page 31 for details)				
Type	Input	Output	Supply	Code
Kit 26	16 digital (including 6 analogue)	10 relays ($8 \times 8 \mathrm{~A}$ relay and $2 \times 5 \mathrm{~A}$ relay)	$24 \mathrm{~V}=-$	88970084
	16 digital	10 relays (8×8 A relay and 2×5 A relay)	$100 \rightarrow 240 \mathrm{~V}$ ~	88970085

Dimensions (mm)

XD10

XD26

Input / Output Connections

See Page 40-43 for details or to find instruction sheets visit: www.millenium3.crouzet.com in "Download"

Millenium 3 Standard

General characteristics

- Millenium 3 Compact Range

- Millenium 3 Expandable Range
- Millenium 3 Communication Options

General environment characteristics for CB, CD, XD, XB, XR and XE product types	
Certifications	UL, CSA
	GL: except for $8897032 x$ (pending)
Conformity with the low	In accordance with 73/23/EEC:
voltage directive	EN (IEC) 61131-2 (Open equipment)
Conformity with the EMC directive 0	In accordance with 89/336/EEC:
	EN (IEC) 61131-2 (Zone B)
	EN (IEC) 61000-6-2,
	EN (IEC) 61000-6-3 (*)
	EN (IEC) 61000-6-4
(*) Except configuration (88970 1.1 or 889701.2) + (88970 250 or 88970270$)+88970241$ class A (class B: using in metallic cabinet)	
Earthing	None
Protection rating ${ }^{\text {a }}$	In accordance with IEC/EN 60529:
	IP40 on front panel IP20 on terminal block
Overvoltage category	3 in accordance with IEC/EN 60664-1
Pollution	Degree: 2 in accordance with IEC/EN 61131-2
Maximum utilisation altitude	Operation: 2000 m
	Transport: 3.048 m
Mechanical resistance *	Immunity to vibrations IEC/EN 60068-2-6, Fc test Immunity to shock IEC/EN 60068-2-27, Fa test
Resistance to electrostatic discharge	Immunity to ESD IEC/EN 61000-4-2, level 3
Resistance to HF interference	Immunity to radiated electrostatic fields
	IEC/EN 61000-4-3,
	Immunity to fast transients (burst immunity)
	IEC/EN 61000-4-4, level 3
	Immunity to shock waves
	Radio frequency in common mode
	Radio frequency in common mode
	Voltage dips and breaks (\sim)
	IEC/EN 61000-4-11
	Immunity to damped oscillatory waves
	IEC/EN 61000-4-12
Class B (${ }^{*}$) in accordance with EN 55022/11 group 1$\begin{aligned} & \text { Conducted and radiated emissions } \\ & \left.\left({ }^{*}\right) \text { Except configuration (88970 } 1.1 \text { or } 889701.2\right)+(88970250 \text { or } 88970270)+88970241 \text { class A (class B in metallic cabinet) }\end{aligned}$	
Operating temperature	$-20 \rightarrow+55^{\circ} \mathrm{C}\left(+40^{\circ} \mathrm{C}\right.$ in a non-ventilated enclosure) in accordance with IEC/EN 60068-2-1 and IEC/EN 60068-2-2
Storage temperature	$-40 \rightarrow+70^{\circ} \mathrm{C}$ in accordance with IEC/EN 60068-2-1 and IEC/EN 60068-2-2
Relative humidity	95\% max. (no condensation or dripping water) in accordance with IEC/EN 60068-2-30
Mounting	On symmetrical DIN profile, $35 \times 7.5 \mathrm{~mm}$ and $35 \mathrm{~mm} \times 15$ or panel ($2 \times 4 \mathrm{~mm}$)
Screw terminals connection capacity	Flexible wire with ferrule $=$
	1 conductor: 0.25 to $2.5 \mathrm{~mm}^{2}$ (AWG 24...AWG 14)
	2 conductors 0.25 to $0.75 \mathrm{~mm}^{2}$ (AWG 24...AWG 18)
	Semi-rigid wire $=$
	1 conductor: 0.2 to $2.5 \mathrm{~mm}^{2}$ (AWG 25...AWG 14)
	Rigid wire $=$
	1 conductor: 0.2 to $2.5 \mathrm{~mm}^{2}$ (AWG 25...AWG 14)
	2 conductors 0.2 to $1.5 \mathrm{~mm}^{2}$ (AWG 25...AWG 16)
	Tightening torque $=$,
	0.5 N.m (4.5 lb-in) (tighten using screwdriver diam. 3.5 mm)

Processing characteristics of CB, CD, XD \& XB product types	
LCD display	CD, XD: Display with 4 lines of 18 characters
Programming method	Ladder or function blocks/SFC (Grafcet)
Program size	Ladder: 120 lines Function blocks: CB, CD: typically 350 blocks XB, XD: typically 700 blocks
Program memory	Flash EEPROM
Removable memory	EEPROM
Data memory	368 bits/200 words
Back-up time in the event of power failure	Program and settings in the controller: 10 years Program and settings in the plug-in memory: 10 years Data memory: 10 years
Cycle time	Ladder: typically 20 ms Function blocks: $6 \rightarrow 90 \mathrm{~ms}$
Response time	Input acquisition time +1 to 2 cycle times
Clock data retention	10 years (lithium battery) at $25^{\circ} \mathrm{C}$
Clock drift	Drift < $12 \mathrm{~min} /$ year (at $25^{\circ} \mathrm{C}$) $6 \mathrm{~s} /$ month (at $25^{\circ} \mathrm{C}$ with user-definable correction of drift)
Timer block accuracy	$1 \% \pm 2$ cycle times
Start up time on power up	<1.2 s

Characteristics of products with AC power supplied

Supply	$\begin{aligned} & 24 \text { V ~ } \\ & (88970 . .4) \end{aligned}$	$\begin{aligned} & 100 \rightarrow 240 \mathrm{~V} \sim \\ & (88970 . .3) \end{aligned}$
Nominal voltage ${ }^{\circ}$	24 V ~	$100 \rightarrow 240 \mathrm{~V}$ ~
Operating limits ${ }^{\text {- }}$	-15\% / +20\%	-15\% / +10\%
	or 20.4 V ~ $\rightarrow 28.8 \mathrm{~V}$ ~	or 85 V ~ $\rightarrow 264 \mathrm{~V}$ ~
Supply frequency range	$\begin{aligned} & 50 / 60 \mathrm{~Hz}(+4 \% /-6 \%) \\ & \text { or } 47 \rightarrow 53 \mathrm{~Hz} / 57 \rightarrow 63 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 / 60 \mathrm{~Hz}(+4 \% /-6 \%) \text { or } 47 \rightarrow 53 \mathrm{~Hz} / 57 \rightarrow 63 \\ & \mathrm{~Hz} \end{aligned}$
Immunity from micro power cuts	10 ms (repetition 20 times)	10 ms (repetition 20 times)
Max. absorbed power	CB12-CD12-XD10-XB10: 4 VA	CB12-CD12-XD10-XB10: 7 VA
	CB20-CD20: 6 VA	CB20-CD20: 11 VA
	XD10 with extension - XD26-XB26: 7.5 VA	XD10-XB10 with extension-XD26-XB26: 12 VA
	XD26-XB26 with extension: 10 VA	XD26-XB26 with extension: 17 VA
Isolation voltage	1780 V ~	1780 V ~
Inputs	$\begin{aligned} & 24 \mathrm{~V} \text { ~ } \\ & (88970 . .4) \end{aligned}$	$\begin{aligned} & 100 \rightarrow 240 \mathrm{~V} \sim \\ & (88970 . .3) \end{aligned}$
Input voltage	24 V ~ (-15\% / +20\%)	$100 \rightarrow 240$ V $\sim(-15 \% /+10 \%)$
Input current ${ }^{\circ}$	4.4 mA @ 20.4 V ~	0.24 mA @ 85 V ~
	5.2 mA @ 24.0 V ~	0.75 mA @ 264 V ~
	6.3 mA @ 28.8 V ~	
Input impedance ${ }^{\circ}$	$4.6 \mathrm{k} \Omega$	$350 \mathrm{k} \Omega$
Logic 1 voltage threshold ${ }^{\circ}$	$\geq 14 \mathrm{~V}$ ~	$\geq 79 \mathrm{~V}$
Making current at logic state 1°	$>2 \mathrm{~mA}$	$>0.17 \mathrm{~mA}$
Logic 0 voltage threshold ${ }^{\circ}$	$\leq 5 \mathrm{~V}$ ~	$\begin{aligned} & \leq 20 \vee \sim(\leq 28 \vee \sim: X E 10, X R 06, X R 10, \\ & \text { XR14) } \end{aligned}$
Release current at logic state 00	$<0.5 \mathrm{~mA}$	$<0.5 \mathrm{~mA}$
Response time with LADDER programming	50 ms - State $0 \rightarrow 1(50 / 60 \mathrm{~Hz})$	50 ms - State $0<1(50 / 60 \mathrm{~Hz})$
Response time with function blocks programming	Configurable in increments of 10 ms	Configurable in increments of 10 ms
	50 ms min. up to 255 ms State $0 \rightarrow 1(50 / 60 \mathrm{~Hz})$	50 ms min. up to 255 ms State $0 \rightarrow 1(50 / 60 \mathrm{~Hz})$
Maximum counting frequency	In accordance with cycle time (Tc) and input response time (Tr) : $1 /((2 \times T c)+\mathrm{Tr})$	In accordance with cycle time (Tc) and input response time (Tr) : $1 /((2 \times \mathrm{Tc})+\mathrm{Tr})$
Sensor type	Contact or 3-wire PNP	Contact or 3-wire PNP
Input type	Resistive	Resistive
Isolation between power supply and inputs	None	None
Isolation between inputs	None	None
Protection against polarity inversions	Yes	Yes
Status indicator	On LCD screen for CD and XD	On LCD screen for CD and XD
Characteristics of relay outputs common to the entire range		
Max. breaking voltage	$\begin{aligned} & 5 \rightarrow 30 \vee=-- \\ & 24 \rightarrow 250 \vee \end{aligned}$	
Breaking current ${ }^{\text {a }}$	CB-CD-XB10-XD10-XR06-XR10: 8 A XD26-XB26: 8×8 A relays, 2×5 A relays XE10: 4×5 A relays XR14: 4×8 A relays, 2×5 A relays	
Max. Output Common Current	12A for 08,09,OA	

Electrical durability for $\mathbf{5 0 0 0 0 0} \mathbf{0 0 0}$ operating cycles	Usage category DC-12: $24 \mathrm{~V}, 1.5 \mathrm{~A}$
	Usage category DC-13: $24 \mathrm{~V}(\mathrm{~L} / \mathrm{R}=10 \mathrm{~ms}), 0.6 \mathrm{~A}$
	Usage category AC-12: $230 \mathrm{~V}, 1.5 \mathrm{~A}$
	Usage category AC-15: $230 \mathrm{~V}, 0.9 \mathrm{~A}$
Minimum switching capacity	$10 \mathrm{~mA}($ at minimum voltage of 12 V$)$
Minimum load	$12 \mathrm{~V}, 10 \mathrm{~mA}$
Maximum rate	Off load: 10 Hz
Mechanical life	10.000 .000 operations (cycles)
Voltage for withstanding shocks	In accordance with IEC/EN 60947-1 and IEC/EN 60664-1:4 kV
Response time	Make 10 ms
	Release 5 ms
Built-in protections	Against short-circuits: None
	Against overvoltages and overloads: None
Status indicator	On LCD screen for CD and XD

Characteristics of product with DC power supplied

Supply	$12 \mathrm{~V}=$ (88970..5 \& 88970814 \& 88970840)	$\begin{aligned} & 24 \mathrm{~V}=- \\ & (88970 . .1 \& 88970 . .2) \end{aligned}$
Nominal voltage ${ }^{\circ}$	$12 \mathrm{~V}=-$	$24 \mathrm{~V}=-$
Operating limits	$\begin{aligned} & -13 \% /+20 \% \\ & \text { or } 10.4 \mathrm{~V}=--14.4 \mathrm{~V}=- \text { (including ripple) } \end{aligned}$	$-20 \% /+25 \%$ or $19.2 \mathrm{~V}=-$ < $30 \mathrm{~V}=$ (including ripple)
Immunity from micro power cuts	$\leq 1 \mathrm{~ms}$ (repetition 20 times)	$\leq 1 \mathrm{~ms}$ (repetition 20 times)
Max. absorbed power	CB12 with solid state outputs: 1.5 W CD12: 1.5 W CD20: 2.5 W XD26-XB26: 3 W XD26-XB26 with extension: 5 W XD26 with solid state outputs: 2.5 W	CB12-CD12-CD20 with solid state outputs - XD10-XB10 with solid state outputs: 3 W XD10-XB10 with relay outputs: 4 W XD26-XB26 with solid state outputs: 5 W CB20-CD20 with relay outputs-XD26 with relay outputs: 6 W XD10-XB10 with extension: 8 W XD26-XB26 with extension: 10 W
Protection against polarity inversions	Yes	Yes
Digital inputs (11 to IA and IH to IY)	$12 \mathrm{~V}=-$ (88970..5 \& 88970814 \& 88970840)	$\begin{aligned} & 24 V=- \\ & (88970 . .1 \& 88970 . .2) \end{aligned}$
Input voltage	$12 \mathrm{~V}=-\mathrm{(}-13 \% /+20 \%)$	$24 \mathrm{~V}=-\mathrm{(}-20 \% /+25 \%)$
Input current	3.9 mA @ $10.44 \mathrm{~V}=-$	2.6 mA @ $19.2 \mathrm{~V}=-$
	4.4 mA @ $12.0 \mathrm{~V}=$	3.2 mA @ $24 \mathrm{~V}=$
	5.3 mA @ $14.4 \mathrm{~V}=-$	4.0 mA @ $30.0 \mathrm{~V}=-$
Input impedance	$2.7 \mathrm{k} \Omega$	$7.4 \mathrm{k} \Omega$
Logic 1 voltage threshold	$\geq 7 \mathrm{~V}=$	$\geq 15 \mathrm{~V}=-$
Making current at logic state 1 -	$\geq 2 \mathrm{~mA}$	$\geq 2.2 \mathrm{~mA}$
Logic 0 voltage threshold	$\leq 3 \mathrm{~V}=$	$\leq 5 \mathrm{~V}=-$
Release current at logic state 0°	$<0.9 \mathrm{~mA}$	$<0.75 \mathrm{~mA}$
Response time	$1 \rightarrow 2$ cycle times	$1 \rightarrow 2$ cycle times
Maximum counting frequency	I1 \& I2: Ladder (1 kHz) \& FBD (Up to 6 kHz) I3 to IA \& IH to IY: in accordance with cycle time (Tc) and input response time (Tr) : $1 /((2 \times T c)+\mathrm{Tr})$	I1 \& I2: Ladder (1 kHz) \& FBD (Up to 6 kHz) I3 to IA \& IH to IY: in accordance with cycle time (Tc) and input response time (Tr) : $1 /((2 \times T c)+\mathrm{Tr})$
Sensor type	Contact or 3-wire PNP	Contact or 3-wire PNP
Conforming to IEC/EN 61131-2	Type 1	Type 1
Input type	Resistive	Resistive
Isolation between power supply and inputs	None	None
Isolation between inputs	None	None
Protection against polarity inversions	Yes	Yes
Status indicator	On LCD screen for CD and XD	On LCD screen for CD and XD
Analogue or digital inputs (IB to IG)	$12 \mathrm{~V}=$ (88970..5 \& 88970814 \& 88970840)	$\begin{aligned} & 24 \mathrm{~V}=- \\ & (88970 . .1 \& 88970 . .2) \end{aligned}$
CB12-CD12-XD10-XB10	4 inputs IB \rightarrow IE	4 inputs IB \rightarrow IE
CB20-CD20-XB26-XD26	6 inputs IB \rightarrow IG	6 inputs IB \rightarrow IG
Inputs used as analogue inputs		
Measurement range ${ }^{\text {a }}$	($0 \rightarrow 10 \mathrm{~V}$) or ($0 \rightarrow \mathrm{~V}$ power supply)	($0 \rightarrow 10 \mathrm{~V}$) or ($0 \rightarrow \mathrm{~V}$ power supply)
Input impedance ${ }^{\text {P }}$	$14 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$
Input voltage	$14.4 \mathrm{~V}=-\mathrm{max}$	$30 \mathrm{~V}=-\mathrm{max}$
Value of LSB -	$14 \mathrm{mV}, 4 \mathrm{~mA}$	$29 \mathrm{mV}, 4 \mathrm{~mA}$
Input type	Common mode	Common mode
Resolution	10 bit at maximum input voltage	10 bit at maximum input voltage
Conversion time	Controller cycle time	Controller cycle time
Accuracy at $25^{\circ} \mathrm{C}$	$\pm 5 \%$	$\pm 5 \%$
Accuracy at $55^{\circ} \mathrm{C}$	$\pm 6.2 \%$	$\pm 6.2 \%$
Repeat accuracy at $55^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 2 \%$
Isolation between analogue channel and power supply	None	None
Cable length	10 m maximum, with shielded cable (sensor not isolated)	10 m maximum, with shielded cable (sensor not isolated)
Protection against polarity inversions	Yes	Yes
- :For adapted products, see page page 64-65	Crouzet	
		www.millenium3.crouzet.com

Potentiometer control	$2.2 \mathrm{k} \Omega / 0.5 \mathrm{~W}$ (recommended) $10 \mathrm{k} \Omega$ max.	$2.2 \mathrm{k} \Omega / 0.5 \mathrm{~W}$ (recommended) $10 \mathrm{k} \Omega$ max.
Inputs used as digital inputs		
Input voltage ${ }^{\text {a }}$	$12 \mathrm{~V}=-\mathrm{(-13} \mathrm{\%} /+20 \%)$	$24 \mathrm{~V}=-\mathrm{(-20} \mathrm{\%} /+25 \%)$
Input current ${ }^{\text {- }}$	$\begin{aligned} & 0.7 \mathrm{~mA} @ 10.44 \mathrm{~V}=-\mathrm{-} \\ & 0.9 \mathrm{~mA} @ 12.0 \mathrm{~V}=-- \\ & 1.0 \mathrm{~mA} @ 14.4 \mathrm{~V}=- \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~mA} @ 19.2 \mathrm{~V}=-\mathrm{-} \\ & 2.0 \mathrm{~mA} @ 24.0 \mathrm{~V}=- \\ & 2.5 \mathrm{~mA} @ 30.0 \mathrm{~V}=- \end{aligned}$
Input impedance ${ }^{\text {a }}$	$14 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$
Logic 1 voltage threshold 0	$\geq 7 \mathrm{~V}=-$	$\geq 15 \mathrm{~V}-\mathrm{-}$
Making current at logic state 1 -	$\geq 0.5 \mathrm{~mA}$	$\geq 1.2 \mathrm{~mA}$
Logic 0 voltage threshold 0	$\leq 3 \mathrm{~V}=-$	$\leq 5 \mathrm{~V}=-$
Release current at logic state 00	$\leq 0.2 \mathrm{~mA}$	$\leq 0.5 \mathrm{~mA}$
Response time	$1 \rightarrow 2$ cycle times	$1 \rightarrow 2$ cycle times
Maximum counting frequency	In accordance with cycle time (Tc) and input response time (Tr) : 1/ ($(2 \times \mathrm{Tc})+\mathrm{Tr})$	In accordance with cycle time (Tc) and input response time (Tr) : 1/ (($2 \times \mathrm{Tc}$) + Tr)
Sensor type	Contact or 3-wire PNP	Contact or 3-wire PNP
Conforming to IEC/EN 61131-2	Type 1	Type 1
Input type	Resistive	Resistive
Isolation between power supply and inputs	None	None
Isolation between inputs	None	None
Protection against polarity inversions	Yes	Yes
Status indicator	On LCD screen for CD and XD	On LCD screen for CD and XD
Characteristics of relay outputs common to the entire range		
Max. breaking voltage	$\begin{aligned} & 5 \rightarrow 30 \vee=- \\ & 24 \rightarrow 250 \vee \sim \end{aligned}$	
Breaking current ${ }^{\text {a }}$	CB-CD-XD10-XB10-XR06-XR10: 8 A XD26-XB26: 8×8 A relays, 2×5 A relays XE10: 4×5 A relays XR14: 4×8 A relays, 2×5 A relays	
Max. Output Common Current	12A for 08,09,0A	
Electrical durability for 500000 operating cycles	Usage category DC-12: $24 \mathrm{~V}, 1.5 \mathrm{~A}$ Usage category DC-13: 24 V (L/R = 10 ms) Usage category AC-12: $230 \mathrm{~V}, 1.5 \mathrm{~A}$ Usage category AC-15: $230 \mathrm{~V}, 0.9 \mathrm{~A}$	
Minimum switching capacity	10 mA (at minimum voltage of 12 V)	
Minimum load	$12 \mathrm{~V}, 10 \mathrm{~mA}$	
Maximum rate	Off load: 10 Hz At operating current: 0.1 Hz	
Mechanical life	10.000.000 operations (cycles)	
Voltage for withstanding shocks	In accordance with IEC/EN 60947-1 and IEC	EN 60664-1: 4 kV
Response time	Make 10 ms Release 5 ms	
Built-in protections	Against short-circuits: None Against overvoltages and overloads: None	
Status indicator	On LCD screen for CD and XD	
Digital / PWM solid state output	$\begin{aligned} & 12-24 \mathrm{~V}=- \\ & (88970814 \& 88970840) \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V}=- \\ & (88970 . .2) \end{aligned}$
PWM solid state output* * Only available with "FBD" programming language	$\begin{aligned} & \text { CB12: O4 } \\ & \text { XD26: O4 } \rightarrow \text { O7 } \end{aligned}$	$\begin{aligned} & \text { CD12-XD10-XB10: O4 } \\ & \text { CD20-XD26-XB26: O4 } \rightarrow \text { O7 } \end{aligned}$
Breaking voltage	$10.4 \rightarrow 30 \mathrm{~V}=-$	$19.2 \rightarrow 30 \mathrm{~V}=-$
Nominal voltage ${ }^{\text {- }}$	$12-24 \mathrm{~V}=-$	24 V ---
Nominal current ${ }^{\circ}$	0.5 A	0.5 A
Max. breaking current ${ }^{\text {- }}$	0.625 A	0.625 A
Voltage drop	$\leq 2 \mathrm{~V}$ for I $=0.5 \mathrm{~A}$ (at state 1)	$\leq 2 \mathrm{~V}$ for I $=0.5 \mathrm{~A}$ (at state 1)
Response time	$\begin{aligned} & \text { Make } \leq 1 \mathrm{~ms} \\ & \text { Release } \leq 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \text { Make } \leq 1 \mathrm{~ms} \\ & \text { Release } \leq 1 \mathrm{~ms} \end{aligned}$
Built-in protections	Against overloads and short-circuits: Yes Against overvoltages (*) : Yes Against inversions of power supply: Yes	Against overloads and short-circuits: Yes Against overvoltages (*) : Yes Against inversions of power supply: Yes
(*) In the absence of a volt-free contact between the output of the logic controller and the load		
Min. Ioad	1 mA	1 mA
Maximum incandescent load	$\begin{aligned} & 0.2 \mathrm{~A} / 12 \mathrm{~V}=- \\ & 0.1 \mathrm{~A} / 24 \mathrm{~V}=- \end{aligned}$	$0.1 \mathrm{~A} / 24 \mathrm{~V}=-$
Galvanic isolation	No	No
PWM frequency	$\begin{aligned} & 14.11 \mathrm{~Hz}-56.45 \mathrm{~Hz}-112.90 \mathrm{~Hz}-225.80 \\ & \mathrm{~Hz}-451.59 \mathrm{~Hz}-1806.37 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 14.11 \mathrm{~Hz}-56.45 \mathrm{~Hz}-112.90 \mathrm{~Hz}-225.80 \\ & \mathrm{~Hz}-451.59 \mathrm{~Hz}-1806.37 \mathrm{~Hz} \end{aligned}$
PWM cyclic ratio	$\begin{aligned} & 0 \rightarrow 100 \% \text { (} 256 \text { steps for CD, XD and } 1024 \\ & \text { for XA) } \end{aligned}$	$\begin{aligned} & 0 \rightarrow 100 \% \text { (} 256 \text { steps for CD, XD and } 1024 \\ & \text { for XA) } \end{aligned}$
PWM accuracy at 120 Hz	$<5 \%(20 \% \rightarrow 80 \%)$ load at 10 mA	$<5 \%(20 \% \rightarrow 80 \%)$ load at 10 mA
PWM accuracy at 500 Hz	< 10\% (20\% $\rightarrow 80 \%$) load at 10 mA	< $10 \%(20 \% \rightarrow 80 \%)$ load at 10 mA
Status indicator	On LCD screen for XD	On LCD screen for CD and XD

