

The following document contains information on Cypress products. Although the document is marked with the name "Spansion", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

MB39C811-EVBSK-02

Energy Harvesting Starter Kit for Buck Power Management IC with Bluetooth® Smart (Low Energy) Beacon

Operation Manual

PREFACE

This manual explains how to use the Starter Kit. Be sure to read this manual before using the product. For mass production/evaluation PMICs for this product, consult with sales representatives or support representatives.

Handling and use

Handling and use of this product and notes regarding its safe use are described in the manuals for products bundled with the Starter Kit.

Follow the instructions in the manuals to use this product.

Keep this manual at hand so that you can refer to it anytime during use of this product.

Notice on this document

All information included in this document is current as of the date it is issued. Such information is subject to change without any prior notice.

Please confirm the latest relevant information with the sales representatives.

Caution of the products described in this document

The following precautions apply to the product described in this manual.

Indicates a potentially hazardous situation which could result in death or serious injury a fault in the user's system if the product is not used correctly.			
	Defects performing any exerction described in this manual turn off all the negure complice to the		

Electric shock,	Before performing any operation described in this manual, turn off all the power supplies to the				
Damage	system.				
Damage	Performing such an operation with the power on may cause an electric shock or device fault.				
Electric shock,	Once the product has been turned on, do not touch any metal part of it.				
Damage	Doing so may cause an electric shock or device fault.				

	Indicates the presence of a hazard that may cause a minor or moderate injury, damages to this
CAUTION	product or devices connected to it, or may cause to loose software resources and other
	properties such as data, if the device is not used appropriately.

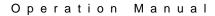

Before moving the produc	t, be sure to turn off all the power supplies and unplug the cables.
Cuts, Damage Watch your step when car	rrying the product. Do not use the product in an unstable location such
as a place exposed to stro	ong vibration or a sloping surface. Doing so may cause the product to
fall, resulting in an injury of	or fault.
Cuts The product contains sha	rp edges that are left unavoidably exposed, such as jumper plugs.
Handle the product with d	ue care not to get injured with such pointed parts.
Do not place anything on	the product or expose the product to physical shocks. Do not carry the
Damage product after the power ha	as been turned on.
Doing so may cause a ma	alfunction due to overloading or shock.
Since the product contain	s many electronic components, keep it away from direct sunlight, high
temperature, and high hu	midity to prevent condensation. Do not use or store the product where
Damage it is exposed to much dus	t or a strong magnetic or electric field for an extended period of time.
Inappropriate operating of	r storage environments may cause a fault.
Use the product within the	e ranges given in the specifications.
Damage Operation over the specific	ed ranges may cause a fault.
To prevent electrostatic but	reakdown, do not let your finger or other object come into contact with
Damage the metal parts of any of t	he connectors. Before handling the product, touch a metal object
(such as a door knob) to	discharge any static electricity from your body.
When turning the power of	on or off, follow the relevant procedure as described in this document.
Before turning the power	on, in particular, be sure to finish making all the required connections.
Damage Furthermore, be sure to c	onfigure and use the product by following the instructions given in this
document. Using the prod	luct incorrectly or inappropriately may cause a fault.
Always turn the power off	before connecting or disconnecting any cables from the product.
When unplugging a cable	, unplug the cable by holding the connector part without pulling on the
Damage cable itself. Pulling the ca	ble itself or bending it may expose or disconnect the cable core,
resulting in a fault.	
Because the product has	no casing, it is recommended that it be stored in the original
Damage packaging. Transporting t	he product may cause a damage or fault. Therefore, keep the
packaging materials and	use them when re-shipping the product.

Table of Contents

1.	DESC	JRIPTION		6
2.	FEAT	URES		7
3.	APPL	ICATIONS		7
4.	Setup)		8
	4.1	Contents	in a package	8
	4.2	Preparation	on	8
		4.2.1	Preparation of Receiver	8
		4.2.2	Setup of Receiving (iPhone or Smart Phone etc)	g
	4.3	Other		1C
		4.3.1	Method of Rewriting Beacon IDs	1C
5.	Spec	ification of E	Energy Harvesting PMIC (MB39C811)	16
	5.1		ended Operating Conditions	
	5.2		acteristics	
	5.3	Block Dia	gramgram	18
6.	Spec		Starter Kit	
	6.1	Layout of	the Board	19
	6.2	Input/Out	put Pin Description	20
	6.3	Switch De	escription	21
	6.4	Jumper D	Description	21
	6.5	Circuit		22
	6.6	BOM List		23
	6.7	Layout		24
7.	Samp	ole Software	e for BLE Beacon	26
	7.1	State Cha	ange Diagram of Sample Software	26
8.	Progr	aming and	Debug	28
	8.1	Structure	of Files	28
	8.2	Programir	ng and executing using JTAG Debugger	30
		8.2.1	Example for JTAG Converter Cable	30
		8.2.2	KEIL integrated development tool (MDK-ARM)	32
9.	APPE	ENDIX		34
	9.1	Assemble	e Case	34
10.	Orde	ring Informa	ation	36
11.	Majo	Changes		37
_		•	ne Starter Kit	
-		_	m	
_		•	211	
			SH	
-			program	
iguit	; O-4 ⊑.	vecare rise t	ภษฎเลเท	

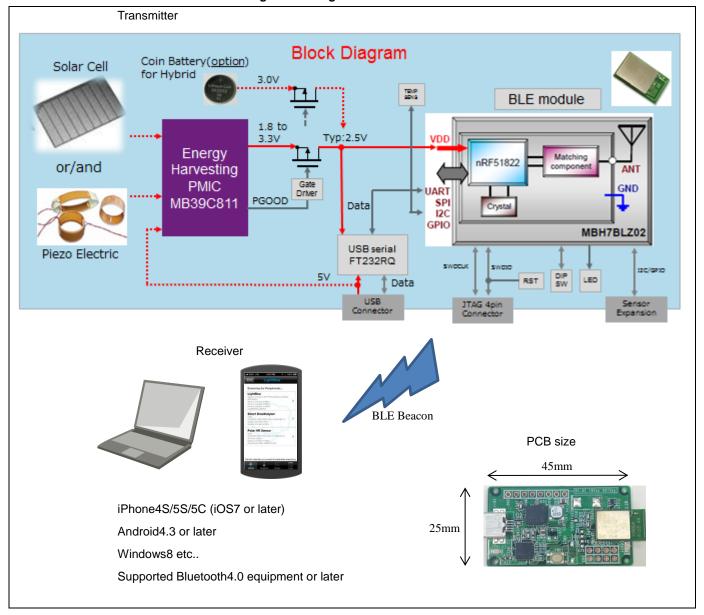
Figures

Tables

Table 4-1 Commands List	
Table 5-1 Recommended Operating Conditions	16
Table 5-2 DC Characteristics	17
Table 6-1 Input/Output Pin Description	20
Table 6-2 Switch Description	21
Table 6-3 Jumper Description	21
Table 6-4 Output Voltage Setting	21
Table 7-1 Flow of sample software	
Table 10-1 Ordering Information	

MB39C811-EVBSK-02

Energy Harvesting Starter Kit for Buck Power Management IC with Bluetooth® Smart (Low Energy) Beacon



1. DESCRIPTION

The MB39C811-EVBSK-02 is an evaluation board that contains Energy Harvesting Power Management IC, MB39C811 (Buck DC/DC converter) with Bluetooth® Smart (Low Energy), which can be used in application on the Solar and Piezoelectric Energy Harvester. The MB39C811 has a wide input range from 4V up to 23V, and the output voltages are selectable from 1.5V to 5V. The board contains a Programmable (application block only) Bluetooth® Smart module, Fujitsu Component: MBH7BLZ02-109004, which allows BLE (Bluetooth Low Energy) Beacon and wireless data communications.

Figure 1-1 Diagram of the Starter Kit

2. FEATURES

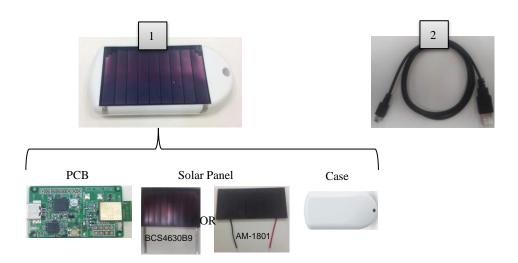
- Installed Energy Harvesting Power Management IC: MB39C811
- Programmable (application block only) Bluetooth® Smart Module: MBH7BLZ02-109004 (*1)
- Transmit BLE Beacon using Solar energy and Vibration energy only
- Transmit about 1 second intervals under 500lx
- Support a lot of energy inputs
 - Solar Cell
 - Piezo Electric
 - USB Bus Power
 - Coin Battery (Expandable: For Hybrid)
 - NFC: Near Field Communication (Expandable: Power supply only)
 - Commercial Power Supply: AC85~265V (Expandable: Need additional resister)
- Installed Temperature Sensor
- Installed USB Serial Converter IC for changing Beacon IDs
- Attached Solar Cell for Evaluation
- Attached Case & USB Cable
- Schematic, BOM List, Layout Data, Sample Software
- Installed Expandable Terminal.
 - Reset Button for MCU (Standard mount)
 - JTAG Connector for MCU Program
 - Expandable Sensor Interface (I2C/GPIO)
 - DIPSW (Expandable)
 - LED (Expandable)
- Small Size PCB: 45mm x 25mm

3. APPLICATIONS

- Battery-less BLE Beacon
- AC Power supply BLE Beacon
- Wireless Sensor node for IoT
- BEMS/HEMS/FEMS
- Active RFID
- Solar Energy Harvesting
- Wireless Illumination Control
- Wireless HVAC Sensors
- Security System

^{*1} Need the "Software Development Kit (SDK)" of Nordic semiconductor to program the software.

To get SDK on WEB site of Nordic semiconductor, use "Product Key" including in this starter kit.


4. Setup

4.1 Contents in a package

No.	Contents		Description	Qty	Note
		PCB	Energy Harvesting with BLE Board	1	Installed
MB39C811-EVB	MB39C811-EVBSK-02 (*1) Solar Panel (*2	0-1 0 1 (*0)	TDK: BCS4630B9 or	4	Installed
1		Solar Panel ("2)	Panasonic: AM-1801	1	either one
		Case	TAKACHI: PS-65	1	Installed
2	USB Cable		USB Mini Converter Cable	1	

- *1 : Check the radio law of each country to use it. Please access to Fujitsu Component about detail of BLE
- *2 : The solar panel is sample for operation check. It isn't guaranteed the electrical characteristics, etc.

 Please be careful because the solar panel doesn't have the guard film of surface.

4.2 Preparation

Requirement for preparation

■ MB39C811-EVBSK-02 Starter Kit

- 1set
- iPhone4S/5 etc.. (iOS7 or later), Android4.3 or later
- 1device

4.2.1 Preparation of Receiver

- 1. Place a MB39C811-EVBSK-02 under office light about 500lx.
- 2. After placing, the Beacon packet is transmitted automatically. Regarding to receiver data, please refer to next step.

Place under office light about 500lx

4.2.2 Setup of Receiving (iPhone or Smart Phone etc...)

Note:

- Need supported Bluetooth v4.0 equipment which is iOS7 or Android 4.3 or later, to check operation.
- 1. The default setting is following.

- UUID 11111111-1111-1111-1111-1111111111

Major 1
 Minor 1
 TX power 4dBm
 RSSI -61dBm
 Advertise interval 100ms

- Bluetooth company 0x0059 (Nordic Semiconductor ASA)

- 2. Set the Bluetooth setting to "ON" on your equipment.
- Check the BLE Beacon operation using an application. The following are example of application for iOS and Android.

For iOS, install either following application on App Store.

- Beecon ©BeaconSandwich

- eBeacon ©Jaalee Inc

- LightBlue ©Punch Through Design LLC- Particle Detector ©KS Technologies LLC

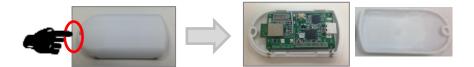
For Android, install either following application on Play Store.

iBeacon Detector
 iBeacon Finder
 iBeacon Scanner
 iBeacon Maps
 ©youten
 ©Mobisfera
 ©ixsoft, inc.
 ©Hint Solutions

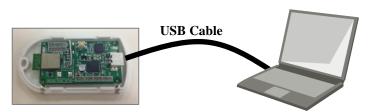
- 4. After installed, execute these applications.
- Set "Proximity UUID", "Major", "Minor" while refer the default setting. To learn detail, refer to the operation manual for each application.
- 6. The set of receiving will be finished when can check BLE beacon data on an application.

If can't check the data, retry checking as shown in below.

- Check Bluetooth setting on your equipment
- Check "Proximity UUID", "Major" and "Minor" on an application.
- If use iOS8 equipment or later, it can't occasionally receive BLE data, otherwise "Bluetooth Company" is 0x004C (Apple, Inc.). Refer to "4.3.1 Method of Rewriting Beacon IDs" to change "Bluetooth Company" to 0x004C.
- Restart your receiver equipment.

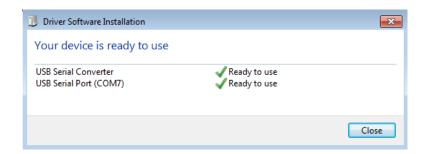

4.3 Other

4.3.1 Method of Rewriting Beacon IDs

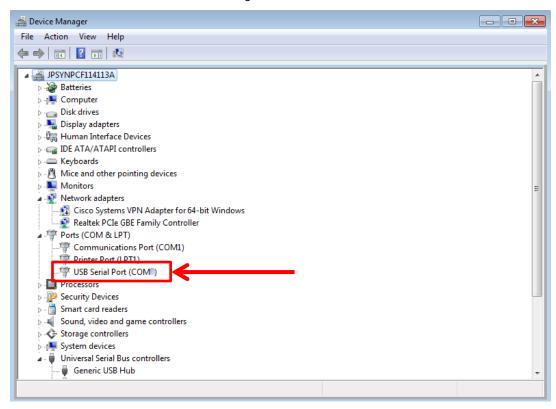

- 1. Prepare attached USB mini converter cable, MB39C811-EVBSK-02 and PC for rewriting ID.
- 2. Install a serial communication tool named "Tera Term" and so on.
- 3. Download the driver for "USB serial converter IC (FT232RL)", and then defreeze it to any directory on PC.

FTDI maker website (FT232 Driver is available) http://www.ftdichip.com/

4. Open the case of MB39C811-EVBSK-02. Insert your fingernail to case, then open case.


5. Connect USB cable both PC and MB39C811-EVBSK-02 board. There is no problem that connect USB cable while a solar cell is connected.

6. The driver Installation starts automatically and the message window will pop appear.


7. When the following window appears, the installation is completed.

8. After the device driver installation, make sure that new COM port was added in the Windows Device Manager.

Start Menu > Control Panel > Device Manager

- Execute installed serial communication tool.
 (Operation check information: Windows7 SP1 32bit, Tera Term Version 4.74)
- 10. Select USB serial port (COMxx) that was added in the Windows Device Manager.
- 11. The setting of a serial communication tool is following.

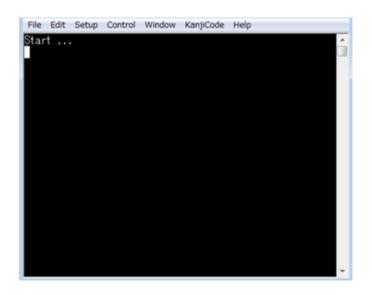
Menu > Setup > Serial Port...

Baud rate : 9600
Data : 8 bit
Parity : none
Stop : 1 bit
Flow control : none

Menu > Setup > Terminal...

New-line

Receive : AUTO
Transmit : CR+LF
Local echo : Check
Other : Default



12. Push a MCU reset button. At this time, the mode is changed to ID rewriting mode, and then stop the BLE Beacon transmitter.

MCU Reset Button

13. The "Start...." message is appeared on a serial communication tool window, and then changes to the command waiting mode. The detail of a serial command is following.

Table 4-1 Commands List

No.	Commands Name	Description	Default
[1]	UUID	Read/Write of UUID	1111111-1111-1111-1111-11111111111 [hex]
[2]	MAJOR	Read/Write of MAJOR	0x0001
[3]	MINOR	Read/Write of MINOR	0x0001
[4]	TXPWR	Read/Write of Transmitter Power Strength	+4 dBm
[5]	RSSI	Read/Write of Receiver Power Strength for distance 1m (RSSI)	-61 dBm
[6]	ITRVL	Read/Write of Advertise Interval	100ms
[7]	COID	Read/Write of Bluetooth Company	0x0059 (Nordic Semiconductor ASA)
[8]	ERASE	Default parameters	-
[9]	EXIT	Finish the command waiting mode, and then retransmit the BLE Beacon data	-
[10]	VER	Display Firmware Version	-


```
[1] Read/Write of UUID
  [1-1] Read
    <Example>
  UUID∜
     (echo) UUID
     (output) -> UUID: 11111111-1111-1111-1111-11111111111
  [1-2] Write
    Write UUID data.
  <Example>
  UUID EEEEDDDD-CCCC-BBBB-AAAA-999988887777∜
     (echo) UUID EEEEDDDD-CCCC-BBBB-AAAA-999988887777
     (output) -> New UUID: EEEEDDDD-CCCC-BBBB-AAAA-999988887777
[2] Read/Write of MAJOR
  [2-1] Read
    Read MAJOR.
                Default: 0x0001
  <Example>
  MAJOR<₽
   (echo) MAJOR
   (output) -> MAJOR: 0001
  [2-2] Write
    Write MAJOR.
  <Example>
  <- Input HEX data
   (echo) MAJOR 1A2F
   (output) -> New MAJOR: 1A2F
[3] Read/Write of MINOR
  [3-1] Read
    Read MINOR.
                  Default: 0x0001
  <Example>
  MINOR <₽
   (echo) MINOR
   (output) -> MINOR: 0001
  [3-2] Write
    Write MINOR.
  <Example>
  <- Input HEX data
   (echo) MINOR 2C3D
   (output) -> New MINOR: 2C3D
```



```
[4] Read/Write of Transmitter Power Strength
   [4-1] Read
     Read Power Strength.
                              Default: +4dBm
   <Example>
   TXPWR<₽
    (echo) TXPWR
    (output) -> TX power in dBm: 4
   [4-2] Write
     Set Power Strength.
                             Set Value: -40, -30, -20, -16, -12, -8, -4, 0, 4
   <Example>
   TXPWR -40⊄
    (echo) TXPWR -40
    (output) -> New TX power in dBm: -40
[5] Read/Write of Receiver Power Strength for distance 1m (RSSI)
   [5-1] Read
                                       Default: -61dBm
     Read RSSI.
   <Example>
   RSSI⊄
    (echo) RSSI
    (output) -> RSSI in dBm: -61
   [5-2] Write
     Set RSSI.
   <Example>
   RSSI -90⊄
    (echo) RSSI-90
    (output) -> New RSSI in dBm: -90
[6] Read/Write of Advertise Interval
   [6-1] Read
     Read Advertise Interval. Default: 100ms
   <Example>
   ITRVL⊲
    (echo) ITRVL
    (output) -> Advertise Interval in msec:
                                          100
   [6-2] Write
     Set Advertise Interval.
                             Set Value: 100~10240 ms
   <Example>
   ITRVL 10240⊲
    (echo) ITRVL 10240
    (output) -> New Advertise Interval in msec: 10240
```



```
[7] Read/Write of Bluetooth Company
   [7-1] Read
     Read Bluetooth Company.
                                 Default: 0x0059 (Nordic Semiconductor ASA)
   <Example>
   COID⊲
    (echo) COID
    (output) -> Company ID: 0059
   [7-2] Write
     Write Bluetooth Company.
   <Example>
   COID 004C⊲
                             <- Input HEX data
    (echo) COID 004C
    (output) -> New Company ID: 004C
[8] ERASE
     Erase the flash memory in MCU. After erase, all value will be default parameters.
   <Example>
  ERASE⊄
      (echo) ERASE
      (output) Erase completed!
[9] EXIT
     Finish the command waiting mode, and then retransmit the BLE Beacon data.
   <Example>
   EXIT∜
      (echo) EXIT
      (output) ---
[10] VER
     Display Firmware Version.
   <Example>
   VER⊲
      (echo) VER
      (output) -> MB39C811-EVBSK-02 Sample Firmware, Version 1.0
[*] Input another command (Error Handling)
   TEST
      (echo) TEST
      (output) Command format error!!
```

14. Enter "EXIT" command when all settings are finished, and then retransmit the BLE Beacon data. The changed IDs are transmitted by solar energy when disconnect the USB cable.

5. Specification of Energy Harvesting PMIC (MB39C811)

The following is the specification of Energy Harvesting Power Management IC (MB39C811) on this starter kit. Regarding to newest information, refer to the datasheet of MB39C811 (DS405-00013).

5.1 Recommended Operating Conditions

Table 5-1 Recommended Operating Conditions

Parameter	Symbol Condition			Unit		
Parameter	Symbol	Condition	Min	Тур	Max	Unit
VIN pin input voltage	VVIN	VIN pin	2.6	ı	23	V
AC pin input voltage	VPV	AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-	-	23	V
Input voltage	VSI	S0 pin, S1 pin, S2 pin	0	-	VVB (*1)	V
	VFB	VOUT pin	0	-	5.5	V
Operating ambient temperature	Та	-	-40	-	+85	°C

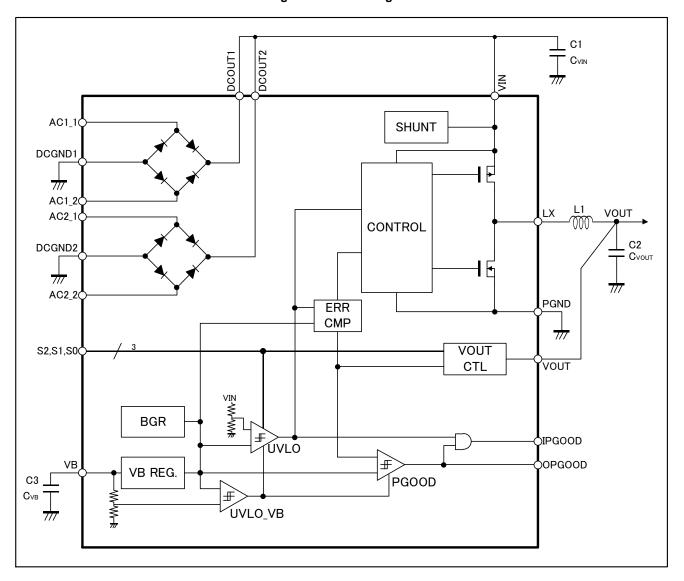
^{*1 :} Output Voltage for internal circuit

5.2 DC Characteristics

Table 5-2 DC Characteristics

(Ta= -40°C to +85 °C, VVIN=7.0 V, L1=22 $\mu H,$ C2=47 $\mu F)$

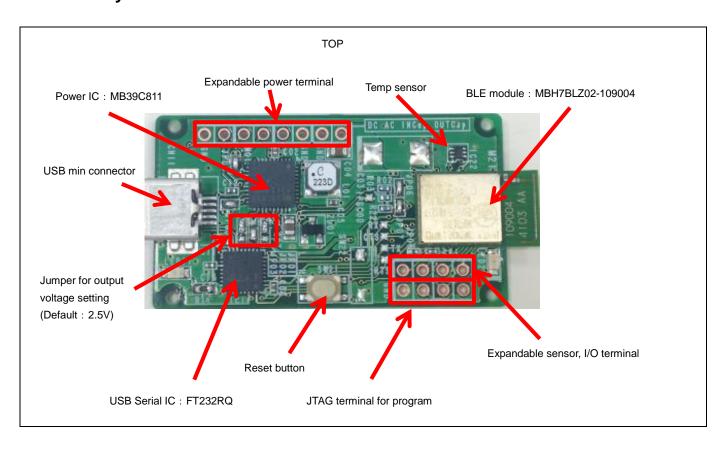
.			Valu		e	
Parameter	Symbol	Condition	Min	Тур	Max	Unit
		VVIN = 2.5 V (UVLO),	_	550	775	nA
		Ta = + 25 °C		330	773	IIA
Quiescent current	IVIN	VVIN = 4.5 V (sleep mode),	_	1.5	2.25	μA
Quicocon current	1	Ta = + 25 °C		1.0	2.20	μ/ (
		VVIN = 18 V (sleep mode),	_	1.9	2.85	μA
		Ta = + 25 °C		1.0	2.00	μ, ,
		S2 = L, S1 = L, S0 = L	1.457	1.5	1.544	V
		IOUT = 1mA				
		S2 = L, S1 = L, S0 = H	1.748	1.8	1.852	V
		IOUT = 1mA				
		S2 = L, S1 = H, S0 = L	2.428	2.5	2.573	V
		IOUT = 1mA				
		S2 = L, S1 = H, S0 = H	3.214	3.3	3.386	V
Preset output voltage	VVOUT	IOUT = 1mA				
		S2 = H, S1 = L, S0 = L IOUT = 1mA	3.506	3.6	3.694	V
		S2 = H, S1 = L, S0 = H			4.207	
		IOUT = 1mA	3.993	4.1		V
		S2 = H, S1 = H, S0 = L				
		IOUT = 1mA	4.383	4.5	4.617	V
		S2 = H, S1 = H, S0 = H		1		
		IOUT = 1mA	4.870	5.0	5.130	V
Peak switching current	IPEAK	-	200	250	400	mA
Maximum Output current	IOUTMAX	Ta = 25°C	100 [*]	-	-	mA
		S2 = L, S1 = L, S0 = L		4.0	4.2	٧
		S2 = L, S1 = L, S0 = H	3.8			
		S2 = L, S1 = H, S0 = L				
UVLO release voltage		S2 = L, S1 = H, S0 = H				
(Input Power-Good detection	VUVLOH	S2 = H, S1 = L, S0 = L	4.94	5.2	5.46	V
voltage)		S2 = H, S1 = L, S0 = H		7.2	7.56	
		S2 = H, S1 = H, S0 = L	6.84			V
		S2 = H, S1 = H, S0 = H				
		S2 = L, S1 = L, S0 = L				
		S2 = L, S1 = L, S0 = H	2.6	2.8	3.0	V
		S2 = L, S1 = H, S0 = L				
UVLO detection voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S2 = L, S1 = H, S0 = H	0.0	4.0	4.0	.,
(Input Power-Good reset	VUVLOL	S2 = H, S1 = L, S0 = L	3.8	4.0	4.2	V
voltage)		S2 = H, S1 = L, S0 = H				
		S2 = H, S1 = H, S0 = L	5.7	6.0	6.3	V
		S2 = H, S1 = H, S0 = H				
VIN pin shunt voltage	VSHUNT		19	21	23	V
VIN pin shunt current	ISHUNT	-	100	=		mA
Output Power-Good detection	VOPGH	To preset voltage ratio	90	94	98	%
voltage (Rising)	VOFGR	10 preset voltage ratio	90	34	90	70
Output Power-Good reset	VOPGL	To preset voltage ratio	65.5	70	74.5	%
voltage (Falling)	V 31 3E	10 prooot voltage ratio	00.0	, ,	, 4.5	/0

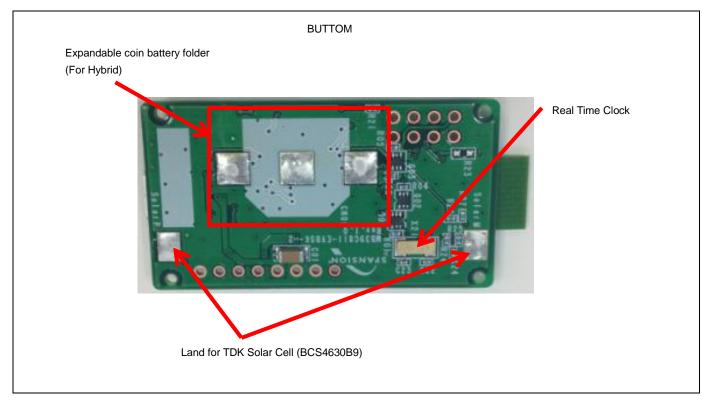


Dorometer	Cumbal	Condition		Value		Unit
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Power supply output voltage for internal circuit	VVB	VVIN = 6 V to 20 V	-	5.0 [*]	-	V

^{*:} This parameter is not be specified. This should be used as a reference to support designing the circuits.

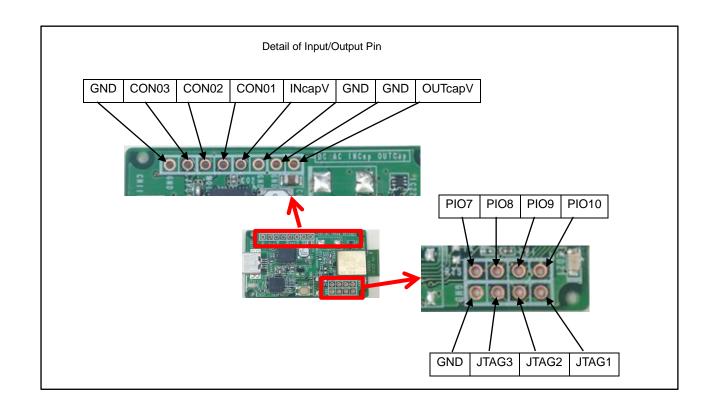
5.3 Block Diagram


Figure 5-1 Block Diagram



6. Specification of Starter Kit

6.1 Layout of the Board



6.2 Input/Output Pin Description

Table 6-1 Input/Output Pin Description

Circuit Pin No.	Silk-Printed Name	I/O	Description
CN001	4.0	I	Bridge Rectifier1 AC input pin1
CN002	AC	I	Bridge Rectifier1 AC input pin2
CN003	DC	I	Solar Cell Input (Inputting to either SolarP or CN003)
AC2_G	GND	-	GND pin
SolarP	SolarP	I	Input TDK Solar Cell (Inputting to either SolarP or CN003)
SolarN	SolarN	-	GND pin for TDK Solar Cell
INCapV	INcap	-	Expandable input capacitor +pin
INCapG	GND	-	Expandable input capacitor -pin
OUTCapV	OUTcap	-	Expandable output capacitor +pin
OUTCapG	GND	-	Expandable output capacitor -pin
PIO7	-	I/O	GPIO_7 of BLE module
PIO8	-	I/O	GPIO_8 of BLE module
PIO9	-	I/O	GPIO_9 of BLE module
PIO10	-	I/O	GPIO_10 of BLE module
JTAG1	-	-	Power Pin for JTAG
JTAG2	-	-	SWDIO pin of BLE module
JTAG3	-	-	SWDCLK pin of BLE module
JTAG4	GND	-	GND pin for JTAG

6.3 Switch Description

Table 6-2 Switch Description

Circuit Pin No.	Silk-Printed Name	Description
SW21	SW21	Reset Button for BLE module
SW22	SW22 (No mounted)	Expandable DIPSW

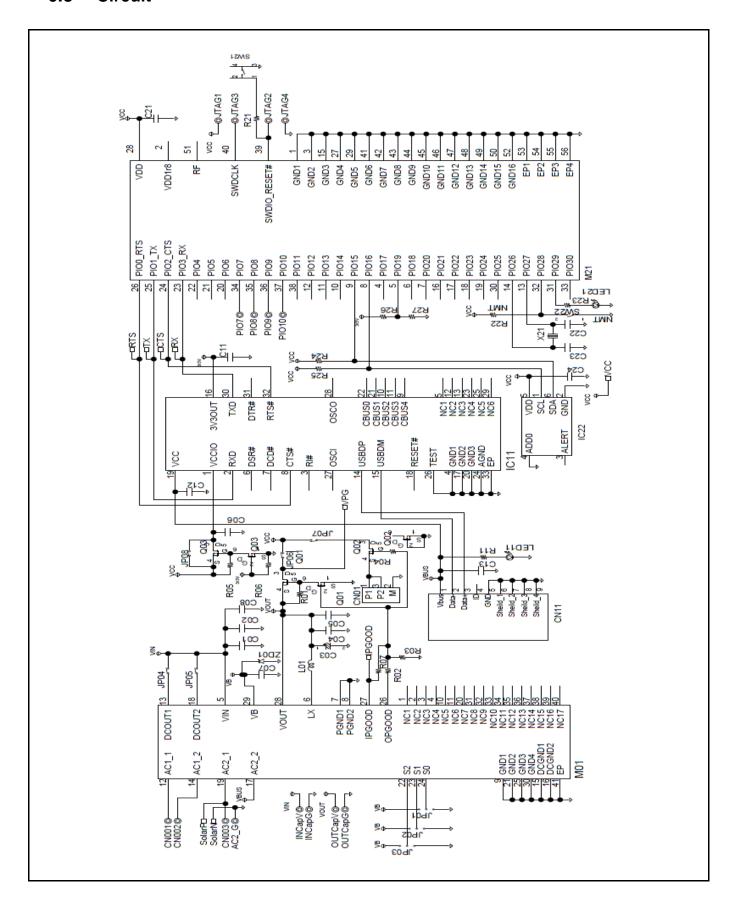
6.4 Jumper Description

Table 6-3 Jumper Description

Circuit Pin No.	Description	Default Settings
JP01 (*2)	Output Voltage Setting Switching H/L for S0 Pin of MB39C811	L (*1)
JP02 (*2)	Output Voltage Setting Switching H/L for S1 Pin of MB39C811	H (*1)
JP03 (*2)	Output Voltage Setting Switching H/L for S2 Pin of MB39C811	L (*1)
JP04	Bridge Rectifier1 Select "Open" or "Short" Open: DC Output Pin (DCOUT1) Short: DC Power Input Pin (VIN)	Short (*1)
JP05	Bridge Rectifier2 Select "Open" or "Short" Open: DC Output Pin (DCOUT2) Short: DC Power Input Pin (VIN)	Short (*1)
JP06	Connect the MB39C811 output and Load	Short (*1)
JP07	Connect the Coin battery and Load	Open (*1)

^{*1:} Set "Open/Short" and "H/L" by soldering.

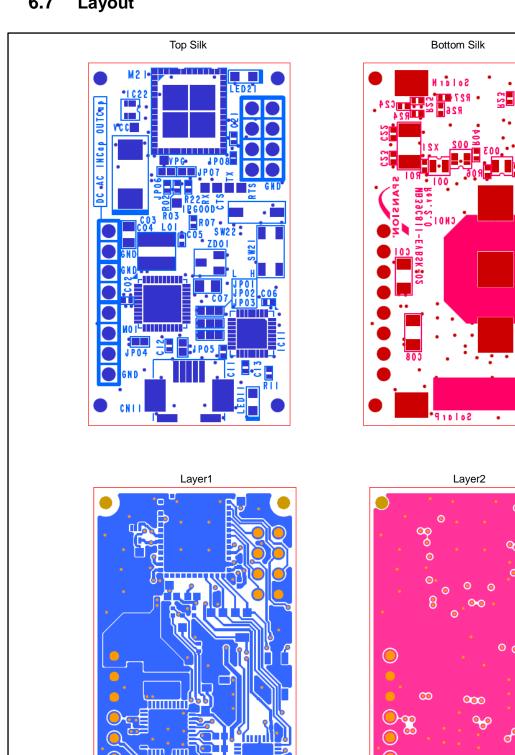
Table 6-4 Output Voltage Setting


JP03 (S2 pin)	JP02 (S1 pin)	JP01 (S0 pin)	Preset Output Voltage [V]	Note
L	L	L	1.5	Do not use (*1)
L	L	Н	1.8	
L	Н	L	2.5	Default
L	Н	Н	3.3	
Н	L	L	3.6	
Н	L	Н	4.1	Do not use (*1)
Н	Ĺ	L	4.5	Do not use (*1)
Н	Н	Н	5.0	Do not use (*1)

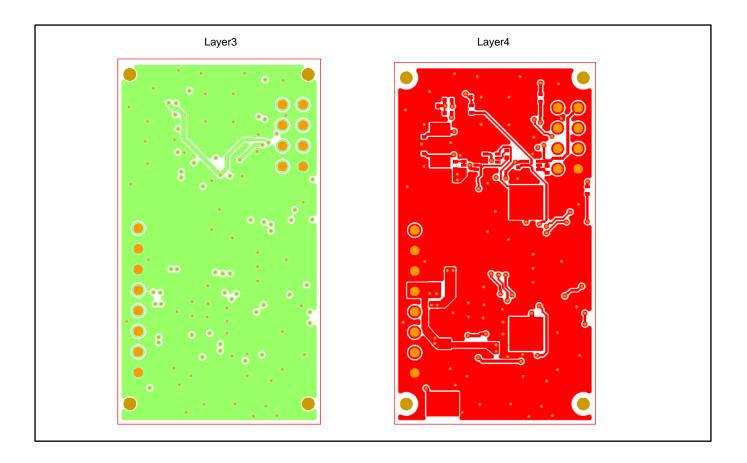
^{*1:} Do not use these voltages setting, because BLE module voltage is from 1.8V to 3.6V.

^{*2:} Set the output voltage from the "Table 6-4 Output Voltage Setting". The default value is 2.5V.

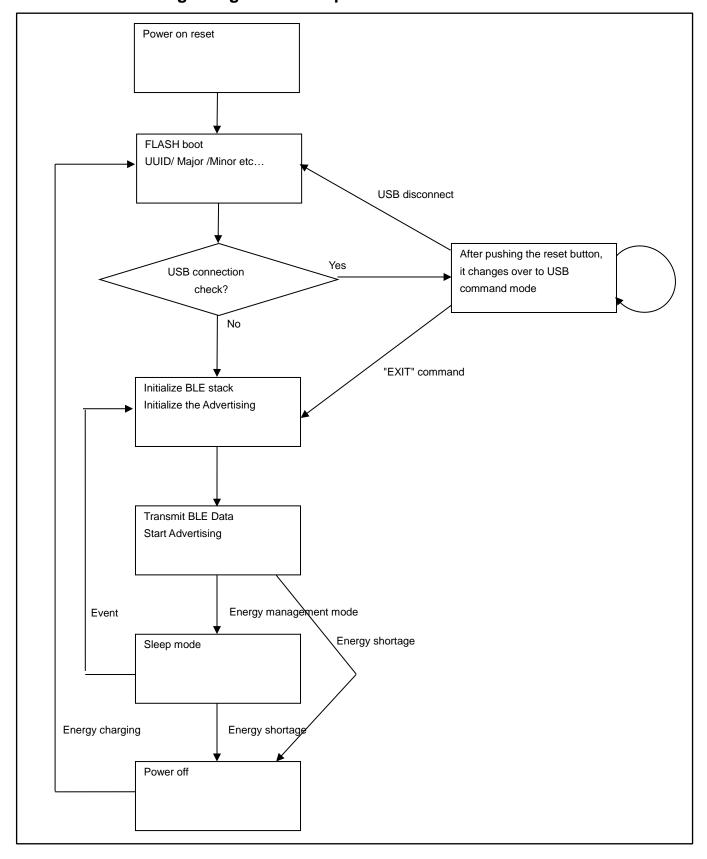
6.5 Circuit



6.6 BOM List


No	Qty	Reference	Parts Number	Description	Manufacture	Note
1	1	C01	C3216X5R1E226MT	22μF/25V	TDK	
2	4	C06 C11 C21 C24	C1005JB1H104K	0.1µF/50V	TDK	
3	1	C04	C2012X5R1A226M	22μF/10V	TDK	
4	1	C07	C2012JB1C475K	4.7μF/16V	TDK	
5	1	C08	C3216X5R1E476M160AC	47μF/25V	TDK	
6	-	C02 C03 C05	Non mount	-	-	Non mount
7	2	C12 C13	C1005JB1C105K	1μF/16V	TDK	
8	2	C22 C23	C1005CH1H100J	10pF/50V	TDK	
9	-	CN01	Non mount	-	-	Non mount
10	1	CN11	UX60SC-MB-5ST	USB mini connector	Hirose	
11	1	IC11	FT232RQ	USB serial converter	FTDI	
12	1	IC22	TMP102	Temperature sensor	TI	
13	1	L01	LPS4018-223MLB	22µH	Coilcraft	
14	1	LED11	HSMG-C170	LED Green	Avago	
15	-	LED21	Non mount	-	-	Non mount
16	1	M01	MB39C811	Energy Harvesting PMIC	Spansion	
17	1	M21	MBH7BLZ02-109004	Bluetooth LE module	Fujitsu Component	
18	3	Q01 Q02 Q03	EM6M2	Nch+Pch MOSFET	ROHM	
19	5	R01 R03 R04 R05 R06	RK73H1ETTD1004F	1ΜΩ	KOA	
20	-	R02 R22 R23	Non mount	-	-	Non mount
21	1	R07	RK73H1ETTD000	Ω0	KOA	
22	1	R27	RK73H1ETTD1003F	100kΩ	KOA	
23	2	R24 R25	RK73H1ETTD2201F	2.2kΩ	KOA	
24	1	R11	RK73H1ETTD1001F	1kΩ	KOA	
25	1	R21	RK73H1ETTD1000F	100Ω	KOA	
26	1	R26	RK73H1ETTD3302F	33kΩ	KOA	
27	1	SW21	SKRPACE010	Push Switch	ALPS	
28	-	SW22	Non mount -		-	Non mount
29	1	X21	ABS10-32.768kHz	32.768k X'tal	ABRACON	
30	1	ZD01	PLVA662A	Voltage regulator diode	NXP	

6.7 Layout



7. Sample Software for BLE Beacon

7.1 State Change Diagram of Sample Software

Table 7-1 Flow of sample software

No.	Items	Contents	Data branch
1	Initial	Power on reset	-
2	Boot	Initialize the ports of FLASH Read the data of BLE beacon from FLASH	-
3	Mode select	Checking the USB cable PIO19 of BLE module (H: connect, L: disconnect)	L: disconnect -> No.4 H: connect -> No.8
4	BLE setting	Initialize the BLE stack Initialize the Advertising Start the Advertising	-
5	Energy management	After transmitting the BLE beacon packets, it changes over to sleep mode. It will turn off the power by the power gating when it is in energy shortage in capacitance	Energy shortage -> No.6 Enough energy -> No.7
6	Energy charging	After turning off the power, it changes over to the charging process After finishing the charging process, it is turned on by the power gating again	After this, repeat No.1~No.6
7	Sleep <-> Transmit	Transmit the BLE beacon data by the value of Advertising interval setting Repeat this process during enough energy.	-
8	USB command mode	After resetting MCU, wait the USB command It changes over to BLE setting when inputted the "EXIT" command	Change over to No.4 by "EXIT" command

8. Programing and Debug

8.1 Structure of Files

This program is made based on the "Software Development Kit (SDK)" of Nordic Semiconductor. It is including only difference information of SDK. To get SDK on WEB site of Nordic semiconductor, use "Product Key" including in this starter kit.

The following is structure of files for this project. Overwrite all files on SDK's folder of Nordic semiconductor. It is based on nRF51 SDK v.6.0.0.

Note:

Don't rewrite the "Soft Device (S110)" provided from WEB of Nordic Semiconductor.
 If rewrote it, must re-get the radio law of each country.

```
nrf51822
   -Board
      -mb39c811_evbsk_02
          -ble_app_ibeacon
                main.c
                pstorage_platform.h
             ∟—arm
                    ble_app_ibeacon.uvopt
                    ble_app_ibeacon.uvproj // Keil uVision project
            -Include
                eh_common.h
                twi_master_config.h
              -boards
                    mb39c811_evbsk_02.h
                -ext_sensors
                    tmp102.h
           -Source
                flash_custom.c
                twi_temp.c
                uart_cmd.c
                ext_sensors
                 └─_tmp102
                        tmp102.c
   -Include
        boards.h
```

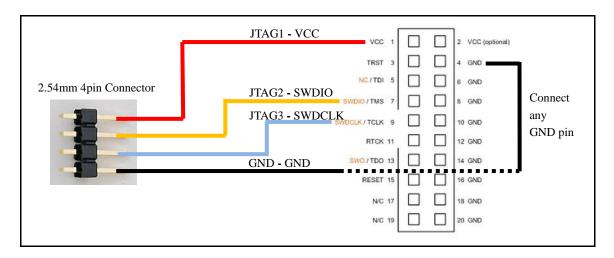

└─Source

└─simple_uart

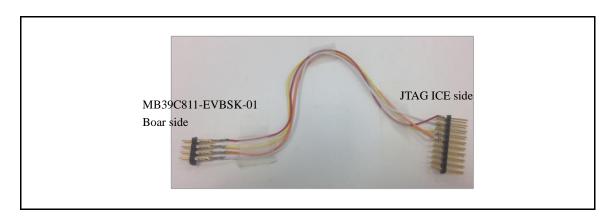
simple_uart.c

8.2 Programing and executing using JTAG Debugger

Requirement for preparation

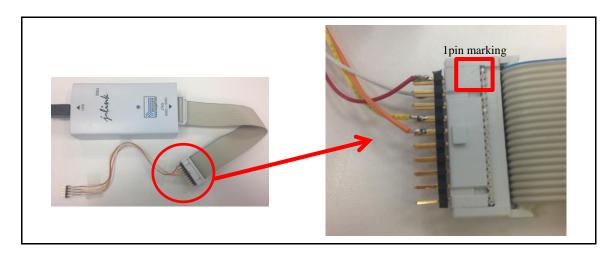

■ MB39C811-EVBSK-02 Board (accessory)	1pcs
■ USB Mini Converter Cable (accessory)	1pcs
■ PC which is installed the KEIL integrated development tool (MDK-ARM)	1pcs
https://www.keil.com/	
■ ICE for ARM programming (Recommend SEGGER J-Link series)	1pcs
http://www.segger.com/jlink-debug-probes.html	
■ JTAG Converter Cable (Need making yourself)	1pcs

Note:


 The following is example for JTAG Converter Cable. Regarding to making cable, please make sure self-responsibility.

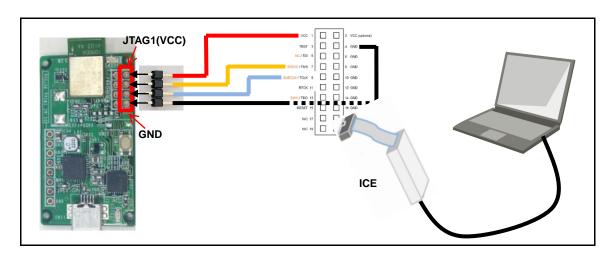
8.2.1 Example for JTAG Converter Cable

1. Make the JTAG Converter Cable as shown in below. It is example of ARM Standard 20pin JTAG.

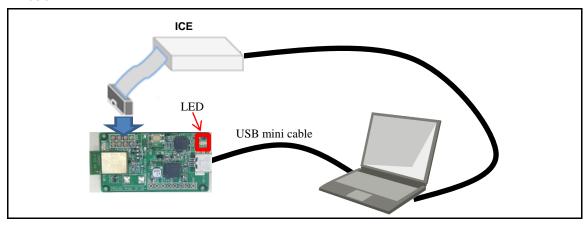


2. Example of completed cable as shown in below.

3. Connect to the ICE for ARM programing. Please be careful of 1pin position.

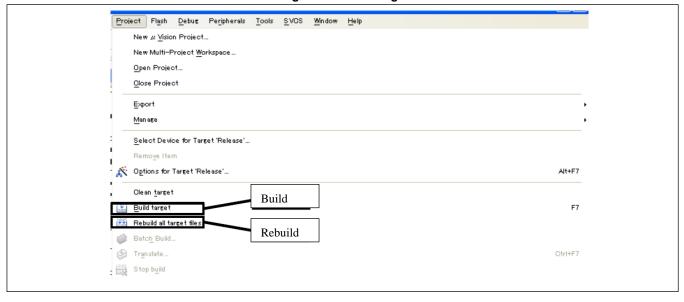


That's the end of making JTAG Converter Cable.



8.2.2 KEIL integrated development tool (MDK-ARM)

- 1. Install MDK-ARM on your PC at first,.
- 2. Install SDK of Nordic semiconductor, as shown in "8.1 Structure of Files".
- 3. Connect JTAG Cable which made by "8.2.1 Example for JTAG Converter Cable". To touch JTAG Cable to the land of board, connect it little slanted.


4. Connect the USB Mini Converter Cable to PC. At this time, the LED on board will be bright as shown in below.

5. KEIL integrated development tool is opened when you execute the "xxxxxxxx.uvproj" file in ARM folder, nrf51822¥Board¥mb39c811_evbsk_02¥ble_app_ibeacon¥arm¥ble_app_ibeacon.uvproj and then the program is builded when click the "Build target" or "Rebuild all target files" on "Project".

Figure 8-1 Build target

6. Write to FLASH and execute the program. To write the program to FLASH, push "LOAD" button, as shown in Figure 8-2.

Figure 8-2 Write to FLASH


The debugger starts by clicking "d" button as shown in below.

Figure 8-3 Start Debugger

To execute the program, push "execute" button after start debugger, as shown in Figure 8-4.

Figure 8-4 Execute the program

That's the end of programing by KEIL integrated development tool.

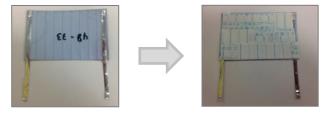
9. APPENDIX

9.1 Assemble Case

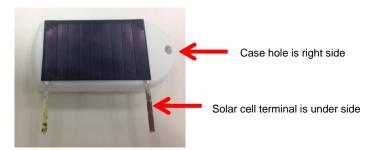
Notes:

- The following step is already finished by initial packing. Please use it as reference information.
- Show the method of assemble case about TDK:BCS4630B9 only.

Picture of completion case

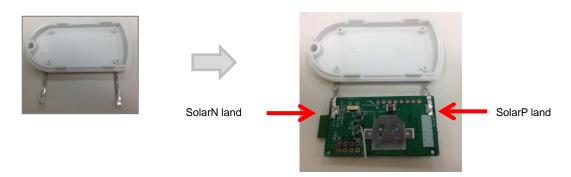


Requirement for preparation


- MB39C811-EVBSK-02 Starter Kit 1set
- Soldering iron, Solder (For connecting solar cell to board) 1set
- Double sided tape (For putting solar cell on case) 1device
 - 1. Prepare a case (TAKACHI: PS-65) and Solar Cell (TDK: BCS4630B9).
 - 2. Bring the flat surface of case to top.

3. Put a double sided tape on solar cell of other side.

4. Put a solar cell to the flat surface of case. Please be careful about direction.



5. Remove a lid of case.

6. Bring putted solar cell to other side, and then connect it to SolarP/SolarN land on MB39C811-EVBSK-02 board using soldering iron.

7. Put the board into case, and then revert a lid of case.

If need to fix the board to case, please use "TAKACHI: EM-1.6 (sold separately)" and so on. However it is 2 fixing holes only.

That's the end of the Assemble case.

10. Ordering Information

Table 10-1 Ordering Information

Part number	Version	Note
MB39C811-EVBSK-02	Rev 1.0	

11. Major Changes

Page	Section	Change Results
Revision 1.0	·	
-	-	Initial release
Revision 2.0	·	
		Changed from "Bluetooth Low Energy" to "Bluetooth®
-	-	Smart (Low Energy)".
P.6	1. DESCRIPTION	Modified the description of BLE module.
P.7	2. FEATURES	Modified the description of BLE module, and Note.
P.8	4.1 Contents in a package	Added the solar cell of Panasonic:AM-1801.
D.O.	4.2.2 Setup of Receiving	Modified some recommended Application.
P.9		Added the method of rechecking.
P.12	4.3.1 Method of Rewriting Beacon IDs	Added "Table4-1 Commands List".
P.14	4.3.1 Method of Rewriting Beacon IDs	Added "[7] Read/Write of Bluetooth company".
		Modified the description.
P.28	8.1 Structure of Files	Added the Note.
		Added "pstorage_platform.h" file.
P.35	9.1 Assemble Case	Added the Note.

SS901-00028-2v0-E

Spansion • Support Tool Manual

MB39C811-EVBSK-02 Energy Harvesting Starter Kit for Buck Power Management IC with Bluetooth® Smart (Low Energy) Beacon Operation Manual

November 2014 Rev. 2.0

Published: Spansion Inc. Edited: Communications

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document. Copyright © 2014 Spansion All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.