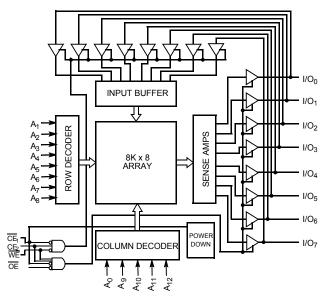


64-Kbit (8 K × 8) Static RAM

Features

- High speed
 □ 15 ns
- Fast t_{DOF}
- Low active power □ 715 mW
- Low standby power ☐ 85 mW
- CMOS for optimum speed/power
- Easy memory expansion with \overline{CE}_1 , CE_2 and \overline{OE} features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Available in non Pb-free 28-pin (300-Mil) Molded SOJ, 28-pin (300-Mil) Molded SOIC and Pb-free 28-pin (300-Mil) Molded DIP

Functional Description


The CY7C185^[1] is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\text{CE}}_1$), an active HIGH chip enable ($\overline{\text{CE}}_2$), and active LOW output enable ($\overline{\text{OE}}$) and tri-state drivers. This device has an automatic power-down feature ($\overline{\text{CE}}_1$ or $\overline{\text{CE}}_2$), reducing the power consumption by 70% when deselected. The CY7C185 is in a standard 300-mil-wide DIP, SOJ, or SOIC package.

An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE}_1 and \overline{WE} inputs are both LOW and \overline{CE}_2 is HIGH, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE}_1 and \overline{OE} active LOW, \overline{CE}_2 active HIGH, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input or output pins.

The input or output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to insure alpha immunity.

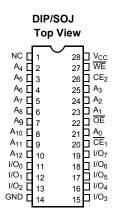
For a complete list of related documentation, click here.

Logic Block Diagram

Note

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Contents


Pin Configuration	3
Selection Guide	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	4
Capacitance	
AC Test Loads and Waveforms	
Switching Characteristics	6
Switching Waveforms	
Typical DC and AC Characteristics	
Truth Table	
Address Designators	11
Ordering Information	
Ordering Code Definitions	

Package Diagrams	13
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	18

Pin Configuration

Figure 1. 28-pin DIP / SOJ pinout (Top View)

Selection Guide

Description	-15	-20	-35
Maximum Access Time (ns)	15	20	35
Maximum Operating Current (mA)	130	110	100
Maximum CMOS Standby Current (mA)	15	15	15

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature -65 °C to +150 °C Ambient temperature with power applied -55 °C to +125 °C Supply voltage to ground potential-0.5 V to +7.0 V DC voltage applied to outputs in High Z State $^{[2]}$ -0.5 V to +7.0 V DC input voltage $^{[2]}$ -0.5 V to +7.0 V

Output current into outputs (LOW)20 mA
Static discharge voltage	
(per MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0 °C to +70 °C	5 V ± 10%
Industrial	–40 °C to +85 °C	5 V ± 10%

Electrical Characteristics

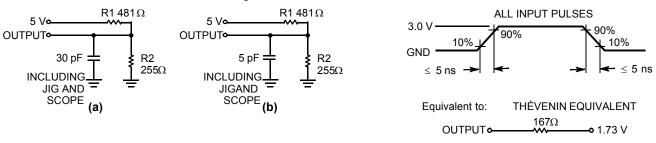
Over the Operating Range

Parameter	Description	Test Conditions	-15		-20		-35		Unit
Parameter Description		rest Conditions	Min	Max	Min	Max	Min	Max	Onit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4	-	2.4	-	2.4	_	V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA	_	0.4	_	0.4	_	0.4	V
V _{IH}	Input HIGH Voltage		2.2	$V_{CC} + 0.3$	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V_{IL}	Input LOW Voltage [2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-5	+5	-5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{I} \leq \text{V}_{CC}, \\ \text{Output Disabled} \end{array}$	– 5	+5	-5	+5	– 5	+5	μА
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA	_	130	-	110	_	100	mA
I _{SB1}	Automatic Power-down Current	$\label{eq:max_vcc} \begin{array}{l} \text{Max. V}_{CC}, \\ \hline \overline{CE}_1 \geq V_{IH} \text{ or } CE_2 \leq V_{IL}, \\ \\ \text{Min. Duty Cycle = 100\%} \end{array}$	_	40	_	20	-	20	mA
I _{SB2}	Automatic Power-down Current	$\begin{aligned} &\text{Max. V}_{CC},\\ &\overline{\text{CE}}_1 \geq \text{V}_{CC} - 0.3 \text{ V or}\\ &\text{CE}_2 \leq 0.3 \text{ V},\\ &\text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{ V or}\\ &\text{V}_{IN} \leq 0.3 \text{ V} \end{aligned}$	_	15	_	15	-	15	mA

Note

Document Number: 38-05043 Rev. *G

^{2.} Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns.



Capacitance

Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	7	pF
C _{OUT}	Output capacitance		7	pF

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Note

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics

Over the Operating Range

[41]	B	-	15	-:	20		35	
Parameter [4] Description		Min	Max	Min	Max	Min	Max	Unit
Read Cycle			1	•	•	•	•	
t _{RC}	Read Cycle Time	15	_	20	_	35	_	ns
t _{AA}	Address to Data Valid	_	15	-	20	_	35	ns
t _{OHA}	Data Hold from Address Change	3	-	5	-	5	_	ns
t _{ACE1}	CE ₁ LOW to Data Valid	_	15	-	20	_	35	ns
t _{ACE2}	CE ₂ HIGH to Data Valid	_	15	_	20	_	35	ns
t _{DOE}	OE LOW to Data Valid	_	8	_	9	_	15	ns
t _{LZOE}	OE LOW to Low Z	3	_	3	_	3	_	ns
t _{HZOE}	OE HIGH to High Z [5]	_	7	_	8	_	10	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[6]	3	_	5	_	5	_	ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3	_	3	_	3	_	ns
t _{HZCE}	CE ₁ HIGH to High Z ^[5, 6] CE ₂ LOW to High Z		7	_	8	_	10	ns
t _{PU}	CE ₁ LOW to Power-up CE ₂ to HIGH to Power-up	0	-	0	_	0	_	ns
t _{PD}	CE ₁ HIGH to Power-down CE ₂ LOW to Power-down	-	15	_	20	_	20	ns
Write Cycle [7	7, 8]		1	•	•	-	•	
t _{WC}	Write Cycle Time	15	_	20	_	35	_	ns
t _{SCE1}	CE ₁ LOW to Write End	12	_	15	_	20	_	ns
t _{SCE2}	CE ₂ HIGH to Write End	12	_	15	_	20	_	ns
t _{AW}	Address Setup to Write End	12	_	15	_	25	_	ns
t _{HA}	Address Hold from Write End	0	_	0	-	0	_	ns
t _{SA}	Address Setup to Write Start	0	_	0	_	0	_	ns
t _{PWE}	WE Pulse Width	12	_	15	_	20	_	ns
t _{SD}	Data Setup to Write End	8	_	10	_	12	_	ns
t _{HD}	Data Hold from Write End	0	_	0	_	0	_	ns
t _{HZWE}	WE LOW to High Z [5]	_	7	_	7	_	8	ns
t _{LZWE}	WE HIGH to Low Z	3	_	5	_	5	_	ns

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 5. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
- 6. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE1} and t_{LZCE2} for any given device.
- 7. The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}_1$ LOW, CE_2 HIGH, and $\overline{\text{WE}}$ LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.
- 8. The minimum write cycle pulse width of Write cycle No. 3 (WE Controlled, OE LOW) should be equal to sum t_{HZWE} and t_{SD}.

Document Number: 38-05043 Rev. *G Page 6 of 18

Switching Waveforms

Figure 3. Read Cycle No. 1 [9, 10]

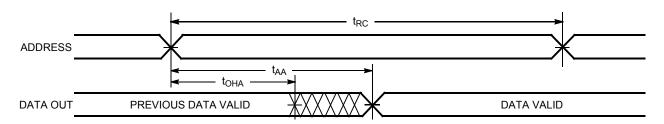
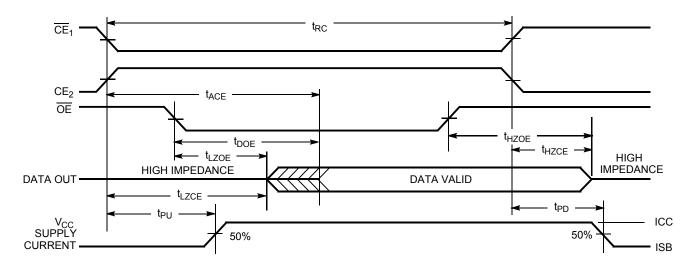



Figure 4. Read Cycle No. 2 [11, 12]

Notes

- 9. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$. $CE_2 = V_{IH}$.
- 10. $\overline{\text{WE}}$ is HIGH for read cycle.
- 11. Data I/O is High Z if \overline{OE} = V_{IH}, \overline{CE}_1 = V_{IH}, \overline{WE} = V_{IL}, or CE_2 =V_{IL}.

^{12.} The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, \overline{CE}_2 HIGH and \overline{WE} LOW. \overline{CE}_1 and \overline{WE} must be LOW and \overline{CE}_2 must be HIGH to initiate write. A write can be terminated by \overline{CE}_1 or \overline{WE} going HIGH or \overline{CE}_2 going LOW. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [13, 14]

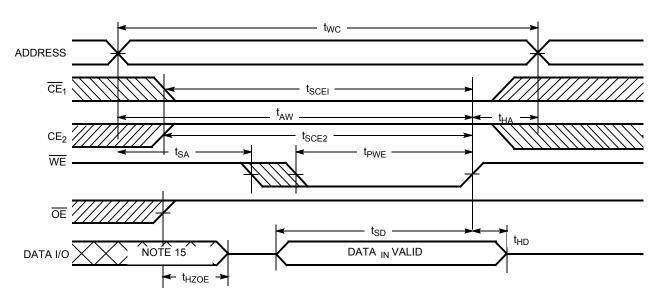
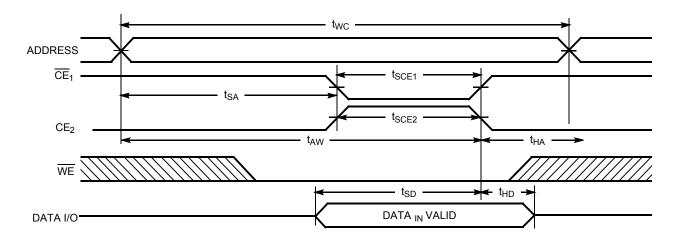
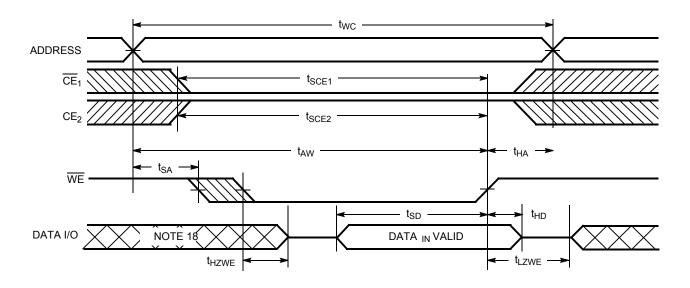



Figure 6. Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) [14, 15, 16]

Notes 13. WE is HIGH for read cycle.

^{14.} The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}_1$ LOW, CE_2 HIGH and $\overline{\text{WE}}$ LOW. $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ must be LOW and CE_2 must be HIGH to initiate write. A write can be terminated by $\overline{\text{CE}}_1$ or $\overline{\text{WE}}$ going HIGH or CE_2 going LOW. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.


^{15.} During this period, the I/Os are in the output state and input signals must not be applied.

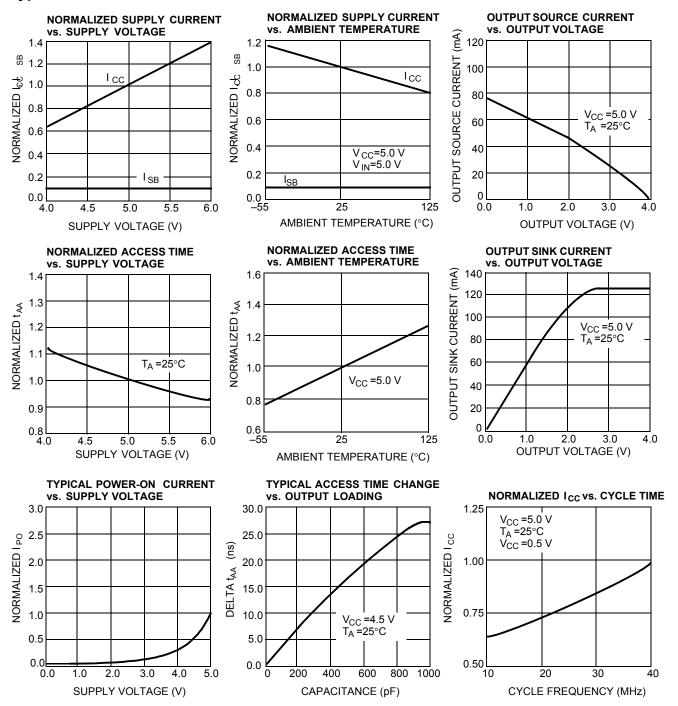
^{16.} The minimum write cycle time for Write Cycle #3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms (continued)

Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW) [17, 19, 20]

Notes

^{17.} The internal write time of the memor<u>v</u> is def<u>ined</u> by the overlap of $\overline{\text{CE}}_1$ LOW, CE_2 HIGH and $\overline{\text{WE}}$ LOW. $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ must be LOW and CE_2 must be HIGH to initiate write. A write can be terminated by $\overline{\text{CE}}_1$ or $\overline{\text{WE}}$ going HIGH or CE_2 going LOW. The data input setup and hold timing must be referenced to the rising edge of the signal that terminates the write.


^{18.} During this period, the I/Os are in the output state and input signals must not be applied.

^{19.} The minimum write cycle time for Write Cycle #3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

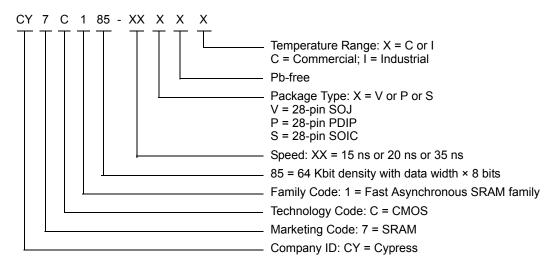
^{20.} If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Truth Table

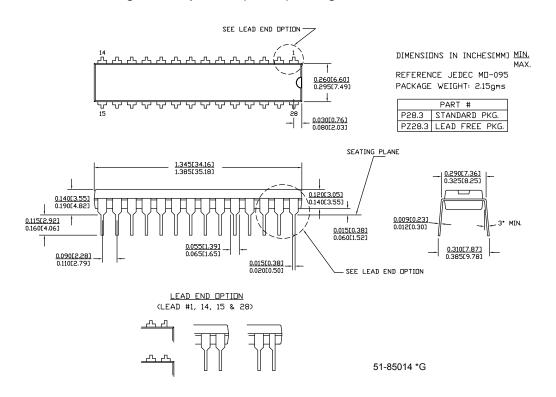
CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Х	Х	Χ	High Z	Deselect/ Power-down
Х	L	Х	Χ	High Z	Deselect/ Power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Address Designators

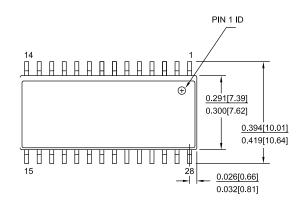

Address Name	Iress Name Address Function		
A4	X3	2	
A5	X4	3	
A6	X5	4	
A7	X6	5	
A8	X7	6	
A9	Y1	7	
A10	Y4	8	
A11	Y3	9	
A12	Y0	10	
A0	Y2	21	
A1	X0	23	
A2	X1	24	
A3	X2	25	

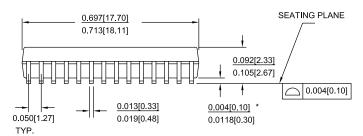
Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C185-15VI	51-85031	28-pin SOJ	Industrial
20	CY7C185-20PXC	51-85014	28-pin PDIP (Pb-free)	Commercial


Ordering Code Definitions

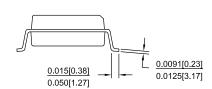
Package Diagrams


Figure 8. 28-pin PDIP (300 Mil) Package Outline, 51-85014



Package Diagrams (continued)

Figure 9. 28-pin SOIC (0.713 × 0.300 × 0.0932 Inches) Package Outline, 51-85026

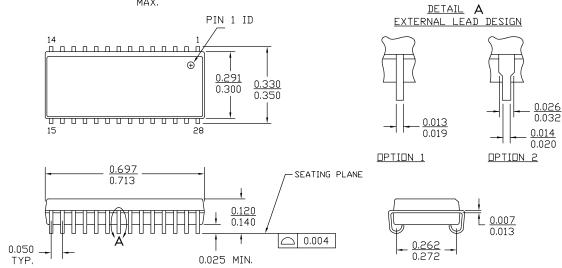


NOTE :

- 1. JEDEC STD REF MO-119
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH,BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN. MAX.

PART #				
S28.3	STANDARD PKG.			
SZ28.3 LEAD FREE PKG.				
SX28.3	LEAD FREE PKG.			

51-85026 *H



Package Diagrams (continued)

Figure 10. 28-pin SOJ (300 Mils) Package Outline, 51-85031

NOTE :

- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES $\frac{\text{MIN.}}{\text{MAX.}}$

51-85031 *E

Acronyms

Acronym	Description		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
SOJ	Small Outline J-Lead		
TSOP	Thin Small Outline Package		
VFBGA	Very Fine-Pitch Ball Grid Array		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
mA	milliampere			
mV	millivolt			
mW	milliwatt			
ns	nanosecond			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C185, 64-Kbit (8 K × 8) Static RAM Document Number: 38-05043					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
**	107145	09/10/01	SZV	Change from Spec number: 38-00037 to 38-05043	
*A	116470	09/16/02	CEA	Add applications foot note to data sheet	
*B	486744	See ECN	NXR	Changed Low standby power from 220 mW to 85 mW Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated the Ordering Information table	
*C	2263686	See ECN	VKN / AESA	Removed 25 ns speed bin Updated the Ordering Information table as per the current product offerings	
*D	3105329	12/09/2010	AJU	Added Ordering Code Definitions. Updated Package Diagrams.	
*E	3235800	04/20/2011	PRAS	Updated package diagram spec 51-85026 to *F. Added Acronyms and Units of Measure. Template changes.	
*F	4383597	05/19/2014	VINI	Updated Switching Characteristics: Added Note 8 and referred the same note in "Write Cycle". Updated Package Diagrams: spec 51-85014 – Changed revision from *E to *G. spec 51-85026 – Changed revision from *F to *H. spec 51-85031 – Changed revision from *D to *E. Updated in new template. Completing Sunset Review.	
*G	4579569	11/26/2014	VINI	Added related documentation hyperlink in page 1. Removed the prune part number CY7C185-35SC in Ordering Information.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2001-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.