

CY7C1061G/CY7C1061GE

16-Mbit (1 M words × 16 bit) Static RAM with Error-Correcting Code (ECC)

Features

- High speed
 - $t_{AA} = 10 ns/15 ns$
- Embedded error-correcting code (ECC) for single-bit error correction
- Low active and standby currents
 - □ I_{CC} = 90-mA typical at 100 MHz
 - \Box I_{SB2} = 20-mA typical
- Operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Available in Pb-free 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages

Functional Description

CY7C1061G and CY7C1061GE are high-performance CMOS fast static RAM devices with embedded ECC^[1]. Both devices are offered in single and dual chip enable options and in multiple pin configurations. The CY7C1061GE device includes an ERR pin that signals a single-bit error-detection and correction event during a read cycle.

To access devices with a single chip enable input, assert the chip enable (CE) input LOW. To access dual chip enable devices, assert both chip enable inputs – CE_1 as LOW and CE_2 as HIGH.

To perform data writes, assert the Write Enable (WE) input LOW, and provide the data and address on the device data pins (I/O₀ through I/O₁₅) and address pins (A₀ through A₁₉) respectively. The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O₈ through I/O_{15} and \overline{BLE} controls I/O_0 through I/O_7 .

To perform data reads, assert the Output Enable (\overline{OE}) input and provide the required address on the address lines. Read data is accessible on I/O lines (I/O₀ through I/O₁₅). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected (CE HIGH for a single chip enable device and \overline{CE}_1 HIGH / \overline{CE}_2 LOW for a dual chip enable device), or control signals are de-asserted (OE, BLE, BHE).

On the CY7C1061GE devices, the detection and correction of a single-bit error in the accessed location is indicated by the assertion of the ERR output (ERR = High). See the Truth Table on page 16 for a complete description of read and write modes.

The logic block diagrams are on page 2.

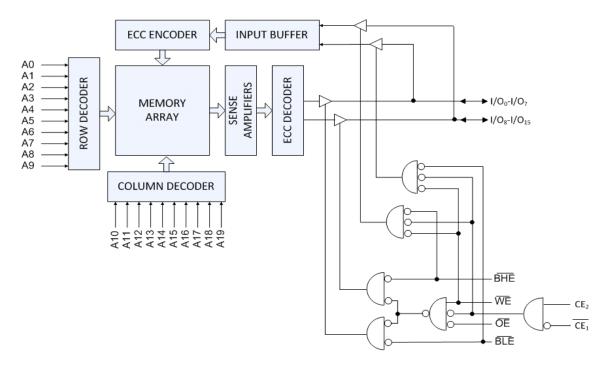
The CY7C1061G and CY7C1061GE devices are available in 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages.

For a complete list of related documentation, click here.

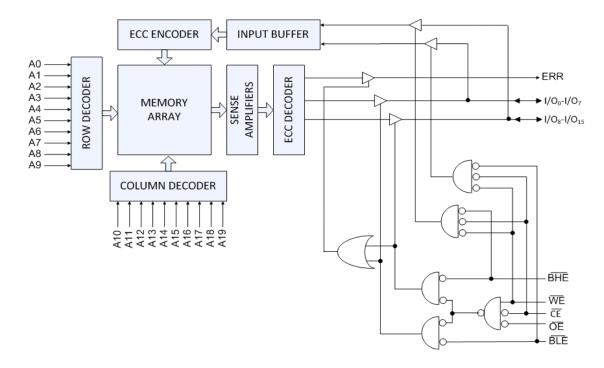
Product Portfolio

	Features and Options (see "Pin Configurations" on page 4)	Range			Current Consumption						
Product			V _{CC} Range (V)	Speed	Operating I _{CC} , (mA)		Ctondby I (mA)				
Product			Nalige	Kange	Kange	(V)	(ns) 10/15	f =	f _{max}	Standby, I _{SB2} (mA)	
					Typ ^[2]	Max	Typ ^[2]	Max			
CY7C1061G18	Single or dual chip	Industrial	1.65 V-2.2 V	15	70	80	20	30			
CY7C1061G(E)30	enables	enables		2.2 V-3.6 V	10	90	110				
CY7C1061G	Optional ERR pins		4.5 V–5.5 V	10	90	110					
	Address MSB A ₁₉ pin placement options compatible with Cypress and other vendors										

Notes


1. This device does not support automatic write-back on error detection.

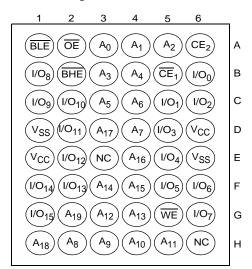
Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V-2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V-3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V-5.5 V), V_{CC} = 2 °C.


Cypress Semiconductor Corporation Document Number: 001-81540 Rev. *P

Logic Block Diagram - CY7C1061G

Logic Block Diagram - CY7C1061GE

Contents


Pin Configurations	4
Maximum Ratings	7
Operating Range	
DC Electrical Characteristics	7
Capacitance	8
Thermal Resistance	
AC Test Loads and Waveforms	ε
Data Retention Characteristics	9
Data Retention Waveform	
AC Switching Characteristics	
Switching Waveforms	
Truth Table	
FRR Output - CY7C1061GF	

Ordering information	17
Ordering Code Definitions	18
Package Diagrams	19
Acronyms	22
Document Conventions	22
Units of Measure	22
Document History Page	23
Sales, Solutions, and Legal Information	24
Worldwide Sales and Design Support	24
Products	24
PSoC® Solutions	24
Cypress Developer Community	24
Technical Support	24

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1.0 mm) Figure 2. 48-ball VFBGA (6 × 8 × 1.0 mm) Dual Chip Enable without ERR, Address MSB A19 at Ball G2, Dual Chip Enable without ERR, Address MSB A19 at Ball H6, CY7C1061 $\mathbf{G}^{[3]}$ Package/Grade ID: BVXI CY7C1061 $\mathbf{G}^{[3]}$ Package/Grade ID: BVXI

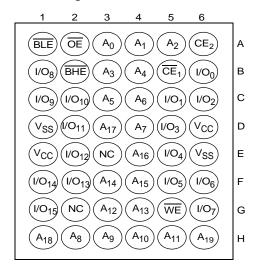
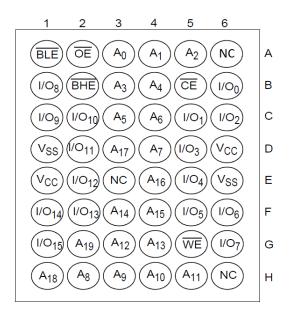



Figure 3. 48-ball VFBGA (6 × 8 × 1.0 mm) Single Chip Enable without ERR, Address MSB A19 at Ball G2, CY7C1061G^[3]
Package/Grade ID: BV1XI

Note

NC pins are not connected internally to the die.

Pin Configurations (continued)

Figure 4. 48-ball VFBGA (6 × 8 × 1.0 mm)
Single Chip Enable with ERR, Address MSB A19 at Ball G2
CY7C1061GE^[4, 5] Package/Grade ID: BV1XI

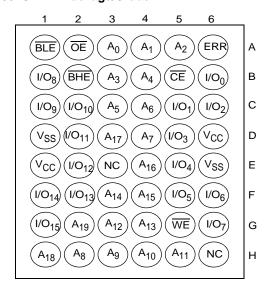


Figure 5. 48-ball VFBGA (6 × 8 × 1.0 mm)

Dual Chip Enable with ERR, Address MSB A19 at Ball G2

CY7C1061GE^[4, 5] Package/Grade ID: BVJXI

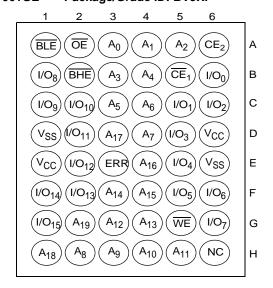
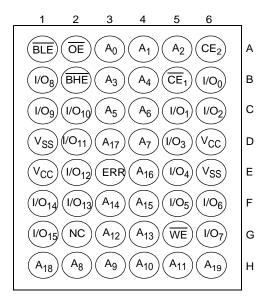



Figure 6. 48-ball VFBGA (6 × 8 × 1.0 mm) Dual Chip Enable with ERR, Address MSB A19 at Ball H6 CY7C1061GE^[4, 5] Package/Grade ID: BVXI

- 4. NC pins are not connected internally to the die.
- ERR is an Output pin. If not used, this pin should be left floating.

Pin Configurations (continued)

Figure 7. 48-pin TSOP I (12 \times 18.4 \times 1 mm) Single Chip Enable with ERR CY7C1061GE^[6, 7] Package/Grade ID: ZXI

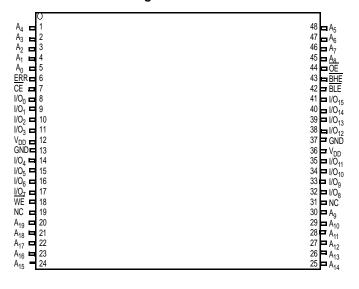


Figure 8. 48-pin TSOP I (12 \times 18.4 \times 1 mm) Single Chip Enable without ERR CY7C1061G^[6] Package/Grade ID: ZXI



Figure 9. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Dual Chip Enable without ERR CY7C1061G^[6] Package/Grade ID: ZSXI

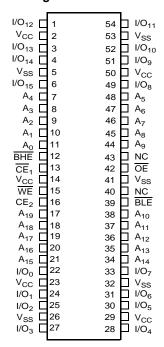


Figure 10. 54-pin TSOP II (22.4 \times 11.84 \times 1.0 mm) Dual Chip Enable with ERR CY7C1061GE $^{[6,~7]}$ Package/Grade ID: ZSXI

- 6. NC pins are not connected internally to the die.
- 7. ERR is an Output pin. If not used, this pin should be left floating.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature-65 °C to +150 °C Ambient temperature with power applied-55 °C to +125 °C Supply voltage on $\rm V_{CC}$ relative to GND-0.5 V to $\rm V_{CC}$ + 0.5 V

DC voltage applied to outputs in High Z State $^{[8]}$ –0.5 V to V $_{\rm CC}$ + 0.5 V

DC input voltage ^[8]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Grade	Ambient Temperature	V _{CC}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

DC Electrical Characteristics

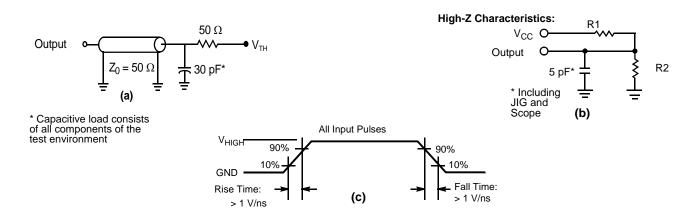
Over the operating range of -40 °C to 85 °C

Danamatan	D		Took Con distin		1	0 ns / 15 n	s	Hnit
Parameter	Desc	cription	Test Conditio	ns	Min	Typ [10]	Max	Unit
V _{OH}	OutputHIGH	1.65 V to 2.2 V	$V_{CC} = Min, I_{OH} = -0.1 \text{ mA}$		1.4	-	_	V
	voltage		$V_{CC} = Min, I_{OH} = -1.0 \text{ mA}$		2.0	-	_	
		2.7 V to 3.6 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.2	_	-	
		4.5 V to 5.5 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	_	-	
		4.5 V to 5.5 V	$V_{CC} = Min, I_{OH} = -0.1 \text{ mA}$		V _{CC} – 0.4 ^[11]	-	-	
V _{OL}	Output LOW	1.65 V to 2.2 V	$V_{CC} = Min, I_{OL} = 0.1 \text{ mA}$		-	_	0.2	V
	voltage	2.2 V to 2.7 V	2 V to 2.7 V V _{CC} = Min, I _{OL} = 2 mA		_	_	0.4	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		_	-	0.4	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OL} = 8 mA		_	_	0.4	
V _{IH} ^[8]	Input HIGH	1.65 V to 2.2 V			1.4	_	V _{CC} + 0.2	V
	voltage	2.2 V to 2.7 V			2.0	_	V _{CC} + 0.3	
		2.7 V to 3.6 V			2.0	_	V _{CC} + 0.3	
		4.5 V to 5.5 V			2.2	_	V _{CC} + 0.5	
V _{IL} ^[8]	Input LOW	1.65 V to 2.2 V			-0.2	_	0.4	V
	voltage	2.2 V to 2.7 V			-0.3	_	0.6	
		2.7 V to 3.6 V			-0.3	_	0.8	
		4.5 V to 5.5 V			-0.5	_	0.8	
I _{IX}	Input leakage	current	$GND \leq V_{IN} \leq V_{CC}$		-1.0	_	+1.0	μА
I _{OZ}	Output leakag	ge current	GND \leq V _{OUT} \leq V _{CC} , Output	disabled	-1.0	_	+1.0	μΑ
I _{CC}	Operating sup	pply current	$V_{CC} = Max$, $I_{OUT} = 0$ mA,	f = 100 MHz	-	90.0	110.0	mA
			CMOS levels	f = 66.7 MHz	-	70.0	80.0	
I _{SB1}	Automatic CE current – TTL	power down inputs	$\begin{array}{c} \text{Max V}_{CC}, \overline{CE} \geq V_{IH}^{[9]}, \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{MAX} \end{array}$		_	-	40.0	mA
I _{SB2}	Automatic CE current – CM	power down OS inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \leq 0.2 \text{ V} \end{array}$	/[9] _, 0.2 V, f = 0	-	20.0	30.0	mA

- 8. $V_{IL(min)} = -2.0 \text{ V}$ and $V_{IH(max)} = V_{C\underline{C}} + 2 \text{ V}$ for pulse durations of less than 2 ns.

 9. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 10. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V-3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V-5.5 V), T_A = 25 °C.
- 11. This parameter is guaranteed by design and is not tested

Capacitance


Parameter [12]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	48-pin TSOP I	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	10	10	рF
C _{OUT}	I/O capacitance		10	10	10	pF

Thermal Resistance

Parameter [12]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	48-pin TSOP I	Unit
J/A		Still air, soldered on a 3 x 4.5 inch, four layer printed circuit board	93.63	31.50	57.99	°C/W
30	Thermal resistance (junction to case)		21.58	15.75	13.42	°C/W

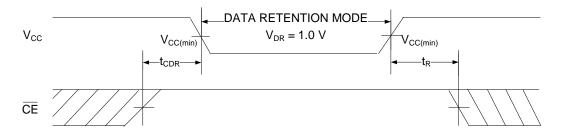
AC Test Loads and Waveforms

Figure 11. AC Test Loads and Waveforms^[13]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V_{TH}	0.9	1.5	1.5	V
V_{HIGH}	1.8	3	3	V

^{12.} Tested initially and after any design or process changes that may affect these parameters.

13. Full-device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 100-µs wait time after V_{CC} stabilizes to its operational value.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V _{CC} for data retention		1.0	_	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 V^{[14]}, \ V_{IN} \ge V_{CC} - 0.2 V \text{ or } V_{IN} \le 0.2 V$	-	30.0	mA
t _{CDR} ^[15]	Chip deselect to data retention time		0	_	ns
t _R ^[15, 16]	Operation recovery time	V _{CC} ≥ 2.2 V	10.0	ı	ns
		V _{CC} < 2.2 V	15.0	_	ns

Data Retention Waveform

Figure 12. Data Retention Waveform [14]

^{14.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.

^{15.} This parameter is guaranteed by design and is not tested

^{16.} Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC} (min) \geq 100 μs or stable at V_{CC} (min) \geq 100 μs .

AC Switching Characteristics

Over the operating range of -40 °C to 85 °C

Parameter [17]	Description	10	ns	15		
Parameter [17]	Description	Min	Max	Min	Max	Unit
Read Cycle		<u> </u>	•	•		
t _{POWER}	V _{CC} (stable) to the first access ^[18, 19]	100.0	_	100.0	_	μs
t _{RC}	Read cycle time	10.0	-	15.0	_	ns
t _{AA}	Address to data / ERR valid	-	10.0	-	15.0	ns
t _{OHA}	Data / ERR hold from address change	3.0	-	3.0	_	ns
t _{ACE}	CE LOW to data / ERR valid [20]	-	10.0	-	15.0	ns
t _{DOE}	OE LOW to data / ERR valid	-	5.0	-	8.0	ns
t _{LZOE}	OE LOW to low Z [21, 22, 23]	0	_	1.0	_	ns
t _{HZOE}	OE HIGH to high Z [21, 22, 23]	_	5.0	-	8.0	ns
t _{LZCE}	CE LOW to low Z [20, 21, 22, 23]	3.0	-	3.0	_	ns
t _{HZCE}	CE HIGH to high Z [20, 21, 22, 23]	_	5.0	_	8.0	ns
t _{PU}	CE LOW to power-up [19, 20]	0	-	0	_	ns
t _{PD}	CE HIGH to power-down [19, 20]	_	10.0	_	15.0	ns
t _{DBE}	Byte enable to data valid	-	5.0	-	8.0	ns
t _{LZBE}	Byte enable to low Z [21, 22]	0	-	1.0	_	ns
t _{HZBE}	Byte disable to high Z [21, 22]	_	6.0	-	8.0	ns
Write Cycle [24	, 25]	<u> </u>	•	•		
t _{WC}	Write cycle time	10.0	_	15.0	_	ns
t _{SCE}	CE LOW to write end [20]	7.0	-	12.0	_	ns
t _{AW}	Address setup to write end	7.0	_	12.0	_	ns
t _{HA}	Address hold from write end	0	-	0	_	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	WE pulse width	7.0	_	12.0	_	ns
t _{SD}	Data setup to write end	5.0	-	8.0	_	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE HIGH to low Z [21, 22, 23]	3.0	_	3.0	_	ns
t _{HZWE}	WE LOW to high Z [21, 22, 23]	-	5.0	-	8.0	ns
t _{BW}	Byte Enable to write end	7.0	_	12.0	_	ns

^{17.} Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading, shown in part (a) of Figure 11 on page 8, unless specified otherwise.

^{18.} t_{POWER} gives the minimum amount of time that the power supply is at stable V_{CC} until the first memory access is performed.

^{19.} These parameters are guaranteed by design and are not tested.

^{20.} For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

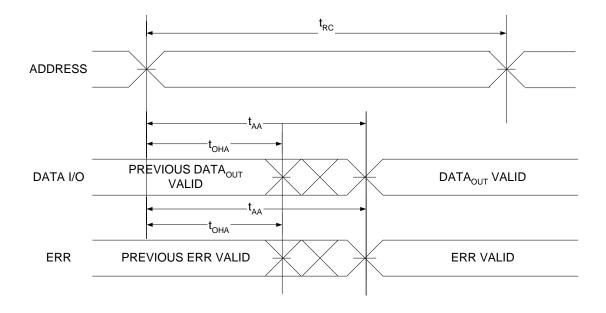
 $^{21.\} t_{HZOE},\ t_{HZCE},\ t_{HZWE},\ and\ t_{HZBE}\ are\ specified\ with\ a\ load\ capacitance\ of\ 5\ pF,\ as\ shown\ in\ part\ (b)\ of\ Figure\ 11\ on\ page\ 8.\ Hi-Z,\ Lo-Z\ transition\ is\ measured\ \pm200\ mV\ from\ steady\ state$

^{22.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZWE}, and t_{HZWE} is less than t_{LZWE} for any device.

^{23.} Tested initially and after any design or process changes that may affect these parameters.

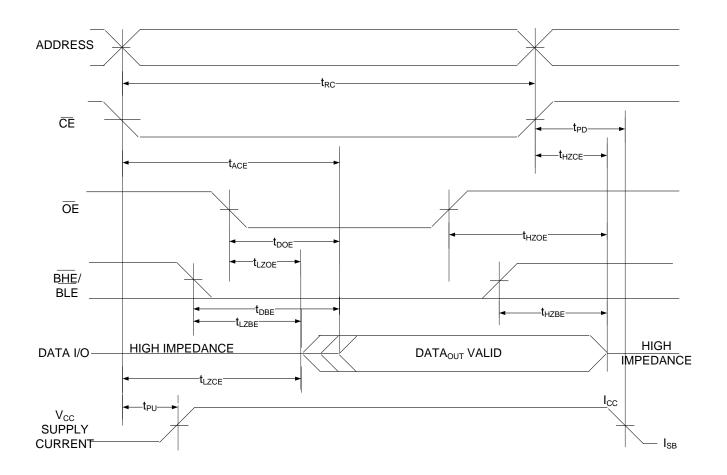
24. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{25.} The minimum write pulse width for Write Cycle No. 2 (WE controlled, OE LOW) should be sum of the sum of the controlled, OE LOW) should be sum of the sum of the controlled, OE LOW) should be sum of the controlled, OE LOW should be



Switching Waveforms

Figure 13. Read Cycle No. 1 of CY7C1061G (Address Transition Controlled) [26, 27]


Figure 14. Read Cycle No. 2 of CY7C1061GE (Address Transition Controlled) [26, 27]

Notes 26. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} . 27. WE is HIGH for read cycle.

Figure 15. Read Cycle No. 3 (OE Controlled) [28, 29, 30]

^{28.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.

^{29.} WE is HIGH for read cycle.

^{30.} Address valid prior to or coincident with $\overline{\text{CE}}$ LOW transition.

Figure 16. Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) [31, 32, 33]

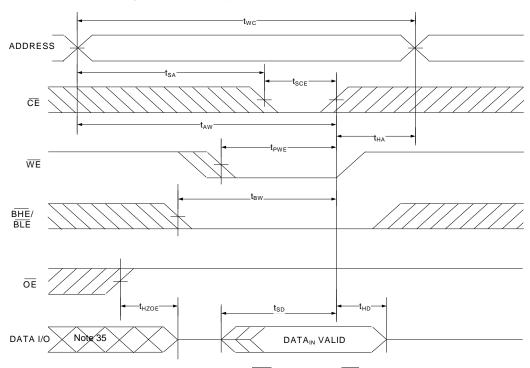
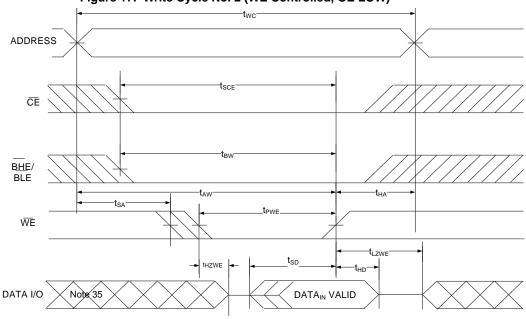



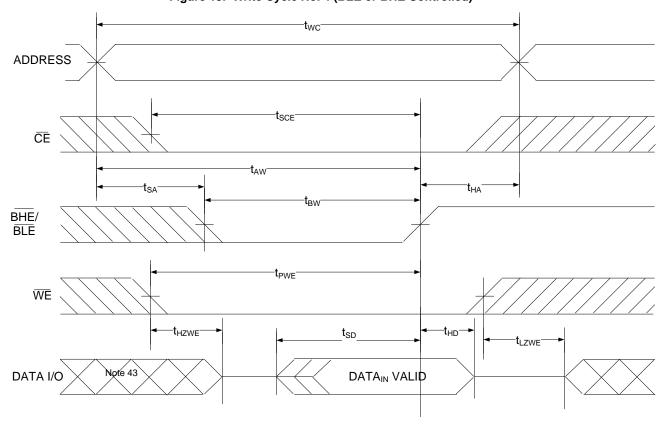
Figure 17. Write Cycle No. 2 (WE Controlled, $\overline{\text{OE}}$ LOW) [31, 32, 33, 34]

- 31. For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.
- 32. The internal write time of the memory is defined by the overlap of WE = V_{IL}, \overlap to V_{IL} and \overlap to \overlap
- 33. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

 34. The minimum write cycle pulse width should be equal to sum of t_{HZWE} and t_{SD} .
- 35. During this period the I/Os are in output state. Do not apply input signals.

ADDRESS BHE/BLE t_{HZOE} DATAIN VALID

Figure 18. Write Cycle No. 3 (WE controlled)^[36, 37, 38]


^{36.} For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

^{37.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates

^{38.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 39. During this period, the I/Os are in output state. Do not apply input signals.

Figure 19. Write Cycle No. 4 (BLE or BHE Controlled) [40, 41, 42]

^{40.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.

^{41.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write

^{42.} Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.

^{43.} During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

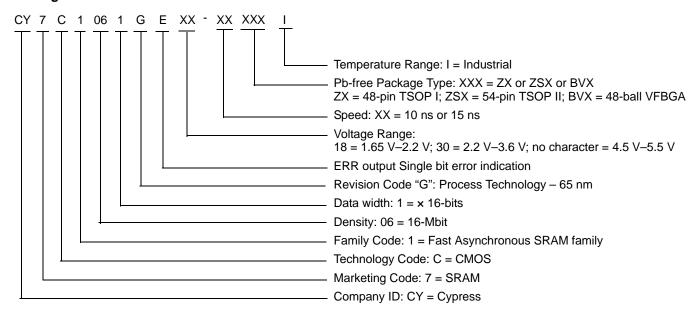
CE [44]	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	X ^[45]	X ^[45]	X ^[45]	X ^[45]	High-Z	High-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	High-Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	Г	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	High-Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Χ	Х	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Z Selected, outputs disabled Active (I _{CC})	

ERR Output - CY7C1061GE

Output [46]	Mode
0	Read operation, no single-bit error in the stored data.
1	Read operation, single-bit error detected and corrected.
High-Z	Device deselected or outputs disabled or Write operation

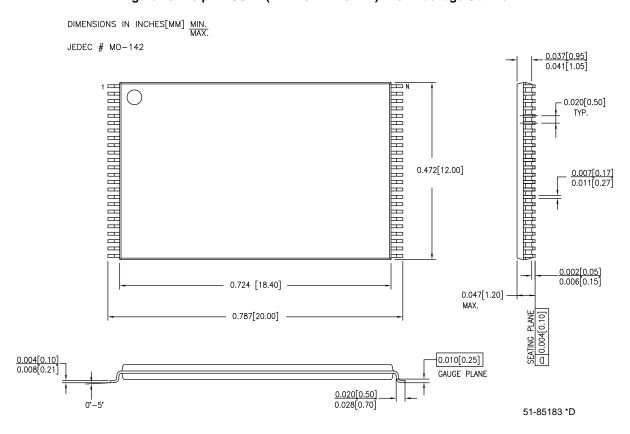
^{44.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

^{45.} The input voltage levels on these pins should be either at V_{IH} or V_{IL} . 46. ERR is an Output pin. If not used, this pin should be left floating.

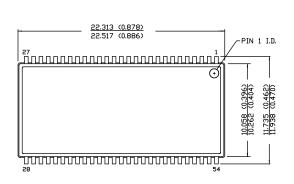


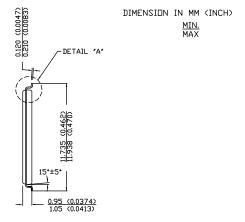
Ordering Information

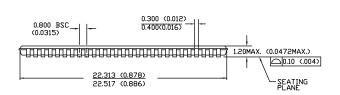
Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features/ Differentiators	ERR Pin/Ball	Operating Range
		CY7C1061G-10BV1XI		48-ball VFBGA	Single Chip Enable	No	
		CY7C1061GE-10BV1XI			Address MSB A19 at ball G2	Yes	
	4.5 V–5.5 V	CY7C1061G-10BVJXI	51-85150		Dual Chip Enable Address MSB A19 at ball G2	No	
		CY7C1061GE-10BVJXI	31-63130			Yes	
		CY7C1061G-10BVXI			Dual Chip Enable Address MSB A19 at ball H6	No	
	4.5 V-5.5 V	CY7C1061GE-10BVXI				Yes	
		CY7C1061G-10ZSXI	51-85160	54-pin TSOP II	Dual Chip Enable	No	
		CY7C1061GE-10ZSXI	31-03100			Yes	
		CY7C1061G-10ZXI	E4 0E400	48-pin TSOP I	Single Chip Enable	No	
10		CY7C1061GE-10ZXI	51-85183		Single Chip Enable	Yes	
10	2.2 V-3.6 V	CY7C1061G30-10BV1XI	- 51-85150	48-ball VFBGA	Single Chip Enable	No	
		CY7C1061GE30-10BV1XI			Address MSB A19 at ball G2	Yes	
		CY7C1061G30-10BVJXI			Dual Chip Enable Address MSB A19 at ball G2	No	
		CY7C1061GE30-10BVJXI				Yes	
		CY7C1061G30-10BVXI			Dual Chip Enable Address MSB A19 at ball H6	No	Industrial
		CY7C1061GE30-10BVXI				Yes	
		CY7C1061G30-10ZSXI	51-85160	54-pin TSOP II	Dual Chin Enable	No	
		CY7C1061GE30-10ZSXI	31-03100		Duai Onip Enable	Yes	
		CY7C1061G30-10ZXI	51-85183	48-pin TSOP I	Single Chip Enable	No	
		CY7C1061GE30-10ZXI	31-03103	- 4 0-μπ 1001 1	Olligie Olip Ellable	Yes	
	1.65 V-2.2 V	CY7C1061GE18-15BV1XI		48-ball VFBGA	Single Chip Enable	Yes	
15		CY7C1061G18-15BV1XI			Address MSB A19 at ball G2	No	
		CY7C1061GE18-15BVJXI	51-85150		Dual Chip Enable	Yes	
		CY7C1061G18-15BVJXI	31-03130		Address MSB A19 at ball G2	No	
		CY7C1061GE18-15BVXI			Dual Chip Enable Address MSB A19 at ball H6	Yes	
		CY7C1061G18-15BVXI				No	
		CY7C1061GE18-15ZSXI	51-85160	54-pin TSOP II	Dual Chip Enable	Yes	
		CY7C1061G18-15ZSXI	31-03100		Duai Onip Enable	No	
		CY7C1061GE18-15ZXI	51-85183	48-pin TSOP I	Single Chip Enable	Yes	
		CY7C1061G18-15ZXI	31 00100		onigio onip Enable	No	


Ordering Code Definitions

Package Diagrams


Figure 20. 48-pin TSOP I (12 \times 18.4 \times 1.0 mm) Z48A Package Outline





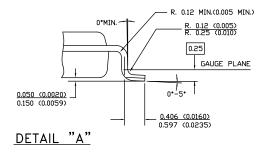
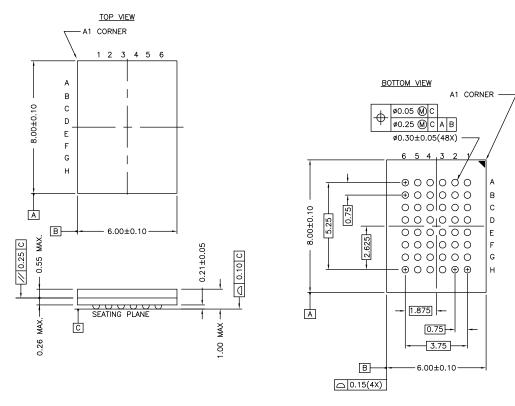

Package Diagrams (continued)

Figure 21. 54-pin TSOP II (22.4 x 11.84 x 1.0 mm) Z54-II Package Outline



51-85160 *E

Package Diagrams (continued)

Figure 22. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline

NOTE:
PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD)
posted on the Cypress web.

51-85150 *H

Acronyms

Acronym	Description				
BHE	Byte High Enable				
BLE	Byte Low Enable				
CE	Chip Enable				
CMOS	Complementary metal oxide semiconductor				
I/O	Input/output				
ŌĒ	Output Enable				
SRAM	Static random access memory				
TSOP	Thin small outline package				
TTL	Transistor-transistor logic				
VFBGA	Very fine-pitch ball grid array				
WE	Write Enable				

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μS	microsecond			
mA	milliampere			
mm	millimeter			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Document Title: CY7C1061G/CY7C1061GE, 16-Mbit (1 M words × 16 bit) Static RAM with Error-Correcting Code (ECC) Document Number: 001-81540					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*P	4791835	NILE	06/09/2015 Changed datasheet status to Final		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers

Lighting & Power Control

Memory PSoC

Interface

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.