

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM ${ }^{\text {TM }}$ and SRAM, Traveo ${ }^{\text {TM }}$ microcontrollers, the industry's only PSoC ${ }^{\circledR}$ programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense ${ }^{\circledR}$ capacitive touch-sensing controllers, and Wireless BLE Bluetooth ${ }^{\circledR}$ Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

ASSP for Power Management Applications 1 ch DC/DC Converter IC Built-in Switching FET, Synchronous Rectification, and Down Conversion Support

MB39C014

- DESCRIPTION

The MB39C014 is a current mode type 1-channel DC/DC converter IC built-in switching FET, synchronous rectification, and down conversion support. The device is integrated with a switching FET, oscillator, error amplifier, PWM control circuit, reference voltage source, and POWERGOOD circuit.
External inductor and decoupling capacitor are needed only for the external component.
As combining with external parts enables a DC/DC converter with a compact and high load response characteristic, this is suitable as the built-in power supply for such as mobile phone/PDA, DVDs, and HDDs.

■ FEATURES

- High efficiency
: 96\% (Max)
- Output current (DC/DC)
: $800 \mathrm{~mA}(\mathrm{Max})$
- Input voltage range $: 2.5 \mathrm{~V}$ to 5.5 V
- Operating frequency : 2.0/3.2 MHz (Typ)
- No flyback diode needed
- Low dropout operation
: For 100% on duty
- Built-in high-precision reference voltage generator : $1.20 \mathrm{~V} \pm 2 \%$
- Consumption current in shutdown mode
: $1 \mu \mathrm{~A}$ or less
- Built-in switching FET : P-ch MOS 0.3Ω (Typ) N-ch MOS 0.2Ω (Typ)
- High speed for input and load transient response in the current mode
- Over temperature protection
- Packaged in a compact package : SON10

APPLICATIONS

- Flash ROMs
- MP3 players
- Electronic dictionary devices
- Surveillance cameras
- Portable GPS navigators
- Mobile phones
etc.

MB39C014

PIN ASSIGNMENT

■ PIN DESCRIPTIONS

Pin No	Pin name	I/O	Description
1	LX	O	Inductor connection output pin. High impedance during shut down.
2	GND	-	Ground pin.
3	CTL	I	Control input pin. (L : Shut down / H : Normal operation)
4	VREF	O	Reference voltage output pin.
5	POWERGOOD	O	POWERGOOD circuit output pin. Internally connected to an N-ch MOS open drain circuit.
6	FSEL	I	Frequency switch pin. (L (open) : 2.0 MHz, H : 3.2 MHz)
7	VREFIN	I	Error amplifier (Error Amp) non-inverted input pin.
8	MODE	I	Use pin at L level or leave open.
9	OUT	I	Output voltage feedback pin.
10	VDD	-	Power supply pin.

I/O PIN EQUIVALENT CIRCUIT DIAGRAM

*: ESD Protection device

MB39C014

BLOCK DIAGRAM

MB39C014

- Current mode

- Original voltage mode type:

Stabilize the output voltage by comparing two items below and on-duty control.

- Voltage (Vc) obtained through negative feedback of the output voltage by Error Amp
- Reference triangular wave ($\mathrm{V}_{\text {TRI }}$)
- Current mode type:

Instead of the triangular wave ($\mathrm{V}_{\text {TRII }}$), the voltage ($\mathrm{V}_{\text {IDET }}$) obtained through I-V conversion of the sum of currents that flow in the oscillator (rectangular wave generation circuit) and SW FET is used.
Stabilize the output voltage by comparing two items below and on-duty control.

- Voltage (Vc) obtained through negative feedback of the output voltage by Error Amp
- Voltage (VIDET) obtained through I-V conversion of the sum of current that flow in the oscillator (rectangular wave generation circuit) and SW FET

MB39C014

FUNCTION OF EACH BLOCK

- PWM Logic control circuit

The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the frequency ($2.0 \mathrm{MHz} / 3.2 \mathrm{MHz}$) oscillated from the built-in oscillator (square wave oscillation circuit).

- lout comparator circuit

This circuit detects the current (LLx) which flows to the external inductor from the built-in P-ch MOS FET.
By comparing VIDEt obtained through I-V conversion of peak current Ipk of Ilx with the Error Amp output, the builtin P-ch MOS FET is turned off via the PWM Logic Control circuit.

- Error Amp phase compensation circuit

This circuit compares the output voltage to reference voltages such as VREF. This IC has a built-in phase compensation circuit that is designed to optimize the operation of this IC. This needs neither to be considered nor addition of a phase compensation circuit and an external phase compensation device.

- VREF circuit

A high accuracy reference voltage is generated with BGR (bandgap reference) circuit. The output voltage is 1.20 V (Typ).

- POWERGOOD circuit

The POWERGOOD circuit monitors the voltage at the OUT pin. The POWERGOOD pin is open drain output. Use the pin with pull-up using the external resistor in the normal operation. When the CTL is at the H level, the POWERGOOD pin becomes the H level. However, if the output voltage drops because of over current and etc, the POWERGOOD pin becomes the L level.

Timing chart example : (POWERGOOD pin pulled up to VIN)

MB39C014

- Protection circuit

This IC has a built-in over-temperature protection circuit.
The over-temperature protection circuit turns off both N -ch and P -ch switching FETs when the junction temperature reaches $+135^{\circ} \mathrm{C}$. When the junction temperature comes down to $+110^{\circ} \mathrm{C}$, the switching FET is returned to the normal operation.
Since the PWM control circuit of this IC is in the control method in current mode, the current peak value is also monitored and controlled as required.

- FUNCTION TABLE

MODE	Input		Output			
	Switching frequency	CTL	FSEL	OUTPUT pin voltage	VREF	POWERGOOD
Shutdown mode	-	L	$*$	Output stop	Output stop	Function stop
Operation mode	2.0 MHz	H	L	VOUT voltage output	1.2 V	Operation
	3.2 MHz	H	H			

[^0]ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power supply voltage	Vdo	VDD pin	-0.3	+6.0	V
Signal input voltage	Visig	OUT pin	-0.3	$\mathrm{V}_{\text {do }}+0.3$	V
		CTL, MODE, FSEL pins	-0.3	$\mathrm{V}_{\text {do }}+0.3$	
		VREFIN pin	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$	
POWERGOOD pull-up voltage	VIPG	POWERGOOD pin	-0.3	+6.0	V
LX voltage	Vıx	LX pin	-0.3	VDD +0.3	V
LX peak current	IPK	ILx	-	1.8	A
Power dissipation	Po	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$	-	$2632^{* 1, *_{2}, *_{3}}$	mW
			-	980*1, *2, *4	
		$\mathrm{Ta}=+85{ }^{\circ} \mathrm{C}$	-	$1053{ }^{* 1, *_{2}, *_{3}}$	mW
			-	$392^{* 1, *_{2, ~ * 4}}$	
Operating ambient temperature	Ta	-	-40	+ 85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tsta	-	-55	+ 125	${ }^{\circ} \mathrm{C}$

*1 : Power dissipation value between $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ is obtained by connecting these two points with a straight line
*2 : When mounted on a four- layer epoxy board of $11.7 \mathrm{~cm} \times 8.4 \mathrm{~cm}$
*3 : Connection at exposure pad with thermal via. (Thermal via 4 holes)
*4 : Connection at exposure pad, without a thermal via.

Notes - The use of negative voltages below -0.3 V to the GND pin may create parasitic transistors on LSI lines, which can cause abnormal operation.

- This device can be damaged if the LX pin is short-circuited to VDD or GND.
- Take measures not to keep the FSEL pin falling below the GND potential of this IC as much as possible. In addition to erroneous operation, the IC may latch up and destroy itself if 110 mA or more current flows from this pin.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power supply voltage	Vdo	-	2.5	3.7	5.5	V
VREFIN voltage	Vrefin	-	0.15	-	1.20	V
CTL voltage	Vсть	-	0	-	5.0	V
LX current	Itx	-	-	-	800	mA
POWERGOOD current	IPG	-	-	-	1	mA
VREF output current	Irout	$2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.0 \mathrm{~V}$	-	-	0.5	mA
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-	-	1	
Inductor value	L	$2.0 \mathrm{MHz}(\mathrm{FSEL}=\mathrm{L})$	-	2.2	-	$\mu \mathrm{H}$
		3.2 MHz (FSEL = H)	-	1.5	-	

Note : The output current from this device has a situation to decrease if the power supply voltage (ViN) and the DC/DC converter output voltage (Vout) differ only by a small amount. This is a result of slope compensation and will not damage this device.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB39C014

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=3.7 \mathrm{~V}\right.$, VOUT setting value $\left.=2.5 \mathrm{~V}, \mathrm{MODE}=0 \mathrm{~V}\right)$

Parameter		Symbol	Pin No.	Condition	Value			Unit	
		Min			Typ	Max			
DC/DC converter block	Input current		IrefinM	7	Vrefin $=0.833 \mathrm{~V}$	-100	0	+ 100	nA
		ImefinL	$\mathrm{V}_{\text {REFIN }}=0.15 \mathrm{~V}$		-100	0	+ 100	nA	
		Inefinh	$\mathrm{V}_{\text {REFIN }}=1.20 \mathrm{~V}$		-100	0	+ 100	nA	
	Output voltage	Vout	9	$\begin{aligned} & \text { VREFIN }=0.833 \mathrm{~V}, \\ & \text { OUT }=-100 \mathrm{~mA} \end{aligned}$	2.45	2.50	2.55	V	
	Input stability	LINE		$2.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ *1	-	10	-	mV	
	Load stability	LOAD		$\begin{aligned} & -100 \mathrm{~mA} \geq \text { OUT } \geq \\ & -800 \mathrm{~mA} \end{aligned}$	-	10	-	mV	
	Out pin input impedance	Rout		$\mathrm{OUT}=2.0 \mathrm{~V}$	0.6	1.0	1.5	$\mathrm{M} \Omega$	
	LX peak current	lpk	1	Output shorted to GND	0.9	1.2	1.7	A	
	Oscillation frequency	fosc1		FSEL $=0 \mathrm{~V}$	1.6	2.0	2.4	MHz	
		fosc2		FSEL $=3.7 \mathrm{~V}$	2.56	3.20	3.84	MHz	
	Rise delay time	tpg	3, 9	$\begin{aligned} & \text { C1 = } 4.7 \mu \mathrm{~F}, \text { OUT }=0 \mathrm{~A}, \\ & \text { VOUT }=90 \% \end{aligned}$	-	45	80	$\mu \mathrm{s}$	
	SW NMOS FET OFF voltage	$\mathrm{V}_{\text {noff }}$	1	-	-40*	-20*	0*	mV	
	SW PMOS FET ON resistance	Ronp		$L X=-100 \mathrm{~mA}$	-	0.30	0.47	Ω	
	SW NMOS FET ON resistance	Ronn		$L X=-100 \mathrm{~mA}$	-	0.20	0.36	Ω	
	LX leak current	ILeakM		$0 \leq \mathrm{LX} \leq \mathrm{VDD}^{* 2}$	-1.0	-	+ 8.0	$\mu \mathrm{A}$	
		ILeakH		$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, 0 \leq \mathrm{LX} \leq \mathrm{V}_{\mathrm{DD}}{ }^{*}$	-2.0	-	+ 16.0	$\mu \mathrm{A}$	
Protection circuit block	Over temperature protection (Junction Temp.)	Тотрн	-	-	+ 120*	+ 135*	+ 155*	${ }^{\circ} \mathrm{C}$	
		Totpl			+95*	+ 110*	+ 130*	${ }^{\circ} \mathrm{C}$	
	UVLO threshold voltage	V тнн	10	-	2.07	2.20	2.33	V	
		$\mathrm{V}_{\text {thL }}$			1.92	2.05	2.18	V	
	UVLO hysteresis width	Vhrs		-	0.08	0.15	0.25	V	

*: Standard design value
(Continued)
(Continued)
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=3.7 \mathrm{~V}\right.$, VOUT setting value $\left.=2.5 \mathrm{~V}, \mathrm{MODE}=0 \mathrm{~V}\right)$

Parameter		Symbol	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Condition	Value			Unit	
		Min			Typ	Max			
POWER- GOOD block	POWERGOOD threshold voltage		Vthpg	5	*3	$\begin{gathered} \hline \text { VREFIN } \times \\ 3 \\ \times 0.93 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\text {REFIN }} \times \\ 3 \\ \times 0.97 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\text {REFIN }} \times \\ 3 \\ \times 0.99 \end{gathered}$	V
	POWERGOOD delay time	tolypg 1	FSEL $=0 \mathrm{~V}$		-	250	-	us	
		tolyPG2	FSEL $=3.7 \mathrm{~V}$		-	170	-	$\mu \mathrm{s}$	
	POWERGOOD output voltage	VoL	POWERGOOD $=250 \mu \mathrm{~A}$		-	-	0.1	V	
	POWERGOOD output current	Іон	POWERGOOD $=5.5 \mathrm{~V}$		-	-	1.0	$\mu \mathrm{A}$	
Control block	CTL threshold voltage	V тннст	3	-	0.55	0.95	1.45	V	
		V тнцст $^{\text {d }}$		-	0.40	0.80	1.30		
	CTL pin input current	IIctı		$\mathrm{CTL}=3.7 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$	
	FSEL threshold voltage	$\mathrm{V}_{\text {thHFS }}$	6	-	2.96	-	-	V	
		$\mathrm{V}_{\text {thlfs }}$		-	-	-	0.74		
Reference voltage block	VREF voltage	Vref	4	$\begin{aligned} & \text { VREF }=-2.7 \mu \mathrm{~A}, \\ & \text { OUT }=-100 \mathrm{~mA} \end{aligned}$	1.176	1.200	1.224	V	
	VREF load stability	Loadref		VREF $=-1.0 \mathrm{~mA}$	-	-	20	mV	
General	Shut down power supply current	Ivod 1	10	$\mathrm{CTL}=0 \mathrm{~V}$, All circuits in OFF state	-	-	1.0	$\mu \mathrm{A}$	
		Ivdoth		$\mathrm{CTL}=0 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{A}$	
	Standby power supply current (DC/DC)	Ivodz		$\begin{aligned} & \mathrm{CTL}=3.7 \mathrm{~V}, \mathrm{OUT}=0 \mathrm{~A}, \\ & \mathrm{FSEL}=0 \mathrm{~V} \end{aligned}$	-	4.0	8.0	mA	
	Power-on invalid current	Ivod		$\begin{aligned} & \text { CTL }=3.7 \mathrm{~V}, \\ & \text { VOUT }=90 \% * 4 \end{aligned}$	-	800	1500	$\mu \mathrm{A}$	

*1 : The minimum value of V_{d} is the 2.5 V or Vout setting value +0.6 V , whichever is higher.
*2 : The + leak at the LX pin includes the current of the internal circuit.
*3 : Detected with respect to the output voltage setting value of Vrefin
*4 : Current consumption based on 100% ON-duty (High side FET in full ON state). The SW FET gate drive current is not included because the device is in full ON state (no switching operation). Also the load current is not included.

MB39C014

TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS

Component	Specification	Vendor	Part Number	Remark
R1	$1 \mathrm{M} \Omega$	KOA	RK73G1JTTD D $1 \mathrm{M} \Omega$	
R3-1 R3-2	$7.5 \mathrm{k} \Omega$ $120 \mathrm{k} \Omega$	SSM SSM	RR0816-752-D RR0816-124-D	At VOUT = 2.5 V setting
R4	$300 \mathrm{k} \Omega$	SSM	RR0816-304-D	
R5	$1 \mathrm{M} \Omega$	KOA	RK73G1JTTD D $1 \mathrm{M} \Omega$	
C1	$4.7 \mu \mathrm{~F}$	TDK	C2012JB1A475K	
C2	$4.7 \mu \mathrm{~F}$	TDK	C2012JB1A475K	
C6	$0.1 \mu \mathrm{~F}$	TDK	C1608JB1H104K	For adjusting slow start time
	$2.2 \mu \mathrm{H}$	TDK	VLF4012AT-2R2M	2.0 MHz operation

Note : These components are recommended based on the operating tests authorized.

TDK : TDK Corporation
SSM : SUSUMU Co., Ltd
KOA : KOA Corporation

MB39C014

APPLICATION NOTES

[1] Selection of components

- Selection of an external inductor

Basically it dose not need to design inductor. This IC is designed to operate efficiently with a $2.2 \mu \mathrm{H}(2.0 \mathrm{MHz}$ operation) or $1.5 \mu \mathrm{H}$ (3.2 MHz operation) inductor.
The inductor should be rated for a saturation current higher than the LX peak current value during normal operating conditions, and should have a minimal DC resistance. ($100 \mathrm{~m} \Omega$ or less is recommended.)
LX peak current value IPK is obtained by the following formula.

L : External inductor value
lout : Load current
Vin : Power supply voltage
Vout : Output setting voltage
D : ON- duty to be switched(= Vout/Viv)
fosc : Switching frequency (2.0 MHz or 3.2 MHz)
ex) At $\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}$, lout $=0.8 \mathrm{~A}, \mathrm{~L}=2.2 \mu \mathrm{H}$, fosc $=2.0 \mathrm{MHz}$
The maximum peak current value lァк;

$$
\mathrm{I}_{\text {PK }}=\text { lout }+\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \text { fosc } \times \mathrm{V}_{\text {IN }}}=0.8 \mathrm{~A}+\frac{(3.7 \mathrm{~V}-2.5 \mathrm{~V}) \times 2.5 \mathrm{~V}}{2 \times 2.2 \mu \mathrm{H} \times 2 \mathrm{MHz} \times 3.7 \mathrm{~V}} \div 0.89 \mathrm{~A}
$$

- I/O capacitor selection

- Select a low equivalent series resistance (ESR) for the VDD input capacitor to suppress dissipation from ripple currents.
- Also select a low equivalent series resistance (ESR) for the output capacitor. The variation in the inductor current causes ripple currents on the output capacitor which, in turn, causes ripple voltages an output equal to the amount of variation multiplied by the ESR value. The output capacitor value has a significant impact on the operating stability of the device when used as a DC/DC converter. Therefore, FUJITSU MICROELECTRONICS generally recommends a $4.7 \mu \mathrm{~F}$ capacitor, or a larger capacitor value can be used if ripple voltages are not suitable. If the $\mathrm{V}_{\mathrm{In}} / \mathrm{Vout}_{\text {out }}$ voltage difference is within 0.6 V , the use of a $10 \mu \mathrm{~F}$ output capacitor value is recommended.
- Types of capacitors

Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However, power supply functions as a heat generator, therefore avoid to use capacitor with the F-temperature rating (-80% to $+20 \%$) . FUJITSU MICROELECTRONICS recommends capacitors with the B-temperature rating ($\pm 10 \%$ to $\pm 20 \%$).
Normal electrolytic capacitors are not recommended due to their high ESR.
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when damaged. If you insist on using a tantalum capacitor, FUJITSU MICROELECTRONICS recommends the type with an internal fuse.

MB39C014

[2] Output voltage setting

The output voltage Vout of this IC is defined by the voltage input to VREFIN. Supply the voltage for inputting to VREFIN from an external power supply, or set the VREF output by dividing it with resistors.
The output voltage when the VREFIN voltage is set by dividing the VREF voltage with resistors is shown in the following formula.

$$
\begin{aligned}
& \text { Vout }=2.97 \times \mathrm{V}_{\text {ReFin, }} \quad \mathrm{V}_{\text {ReFin }}=\frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4} \times \mathrm{V}_{\text {ReF }} \\
& \quad\left(\mathrm{V}_{\text {REF }}=1.20 \mathrm{~V}\right)
\end{aligned}
$$

Note : Refer to "■ APPLICATIN CIRCUIT EXAMPLES" for an example of this circuit.

Although the output voltage is defined according to the dividing ratio of resistance, select the resistance value so that the current flowing through the resistance does not exceed the VREF current rating (1 mA).

[3] About conversion efficiency

The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit. The total loss (PLoss) of the DC/DC converter is roughly divided as follows :
$P_{\text {loss }}=P_{\text {cont }}+\mathrm{Pssw}_{\text {sw }}+\mathrm{P}_{\mathrm{c}}$

Pcont : Control system circuit loss (The power used for this IC to operate, including the the gate driving power for internal SW FETs)
Psw : Switching loss (The loss caused during switching of the IC's internal SW FETs)
Pc : Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and external circuits)

The IC's control circuit loss (Pcont) is extremely small, less than 100 mW with no load.
As the IC contains FETs which can switch faster with less power, the continuity loss (Pc) is more predominant as the loss during heavy-load operation than the control circuit loss (Pcont) and switching loss (Psw).

Furthermore, the continuity loss (Pc) is divided roughly into the loss by internal SW FET ON-resistance and by external inductor series resistance.
$\mathrm{Pc}_{\mathrm{c}}=\mathrm{Iout}^{2} \times(\mathrm{RDC}+\mathrm{D} \times$ Ronp $+(1-\mathrm{D}) \times$ Ronn $)$
D : Switching ON-duty cycle (= Vout / Vin)
Ronp : Internal P-ch SW FET ON resistance
Ronn : Internal N-ch SW FET ON resistance
RDC : External inductor series resistance
lout : Load current

The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency by selecting components.

[4] Power dissipation and heat considerations

The IC is so efficient that no consideration is required in most of the cases. However, if the IC is used at a low power supply voltage, heavy load, high output voltage, or high temperature, it requires further consideration for higher efficiency.
The internal loss (P) is roughly obtained from the following formula :

$$
\mathrm{P}=\text { lout }^{2} \times(\mathrm{D} \times \text { Ronp }+(1-\mathrm{D}) \times \text { Ronn })
$$

D : Switching ON-duty cycle (= Vout / Viv)
Ronp : Internal P-ch SW FET ON resistance
Ronn : Internal N-ch SW FET ON resistance
lout : Output current

The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching loss and the control circuit loss as well but they are so small compared to the continuity loss they can be ignored.
In this IC with Ronp greater than Ronn, the larger the on-duty cycle, the greater the loss.
When assuming $\mathrm{V}_{\mathbb{N}}=3.7 \mathrm{~V}, \mathrm{Ta}=+70^{\circ} \mathrm{C}$ for example, Ronp $=0.42 \Omega$ and Rons $=0.36 \Omega$ according to the graph "MOS FET ON resistance vs. Operating ambient temperature". The IC's internal loss P is 144 mW at Vout $=2.5$ V and lout = 0.6 A. According to the graph "Power dissipation vs. Operating ambient temperature", the power dissipation at an operating ambient temperature Ta of $+70^{\circ} \mathrm{C}$ is 539 mW and the internal loss is smaller than the power dissipation.

MB39C014

[5] Transient response

Normally, lout is suddenly changed while $\mathrm{VIN}_{\mathrm{IN}}$ and Vout are maintained constant, responsiveness including the response time and overshoot/undershoot voltage is checked. As this IC has built-in Error Amp with an optimized design, it shows good transient response characteristics. However, if ringing upon sudden change of the load is high due to the operating conditions, add capacitor C 6 (e.g. $0.1 \mu \mathrm{~F}$). (Since this capacitor C 6 changes the start time, check the start waveform as well.) This action is not required for DAC input.

[6] Board layout, design example

The board layout needs to be designed to ensure the stable operation of this IC.
Follow the procedure below for designing the layout.

- Arrange the input capacitor (Cin) as close as possible to both the VDD and GND pins. Make a thru-hole (TH) near the pins of this capacitor if the board has planes for power and GND.
- Large AC currents flow between this IC and the input capacitor (Cin), output capacitor (Co), and external inductor (L). Group these components as close as possible to this IC to reduce the overall loop area occupied by this group. Also try to mount these components on the same surface and arrange wiring without thru-hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes is recommended.).
- The feedback wiring to the OUT should be wired from the voltage output pin closest to the output capacitor (Co). The OUT pin is extremely sensitive and should thus be kept wired away from the LX pin of this IC as far as possible.
- If applying voltage to the VREFIN pin through dividing resistors, arrange the resistors so that the wiring can be kept as short as possible. Also arrange them so that the GND pin of the VREFIN resistor is close to the IC's GND pin. Further, provide a GND exclusively for the control line so that the resistor can be connected via a path that does not carry current. If installing a bypass capacitor for the VREFIN, put it close to the VREFIN pin.
- Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when using the SON-10 package, FUJITSU MICROELECTRONICS recommends providing a thermal via in the footprint of the thermal pad.

Layout Example of IC SW components

MB39C014

- Notes for Circuit Design

- The switching operation of this IC works by monitoring and controlling the peak current which, incidentally, serves as form of short-circuit protection. However, do not leave the output short-circuited for long periods of time. If the output is short-circuited where VIN < 2.9 V , the current limit value (peak current to the inductor) tends to rise. Leaving in the short-circuit state, the temperature of this IC will continue rising and activate the thermal protection.
Once the thermal protection stops the output, the temperature of the IC will go down and operation will resume, after which the output will repeat the starting and stopping.
Although this effect will not destroy the IC, the thermal exposure to the IC over prolonged hours may affect the peripherals surrounding it.

MB39C014

EXAMPLE OF STANDARD OPERATION CHARACTERISTICS

(Shown below is an example of characteristics for connection according to"四TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS".)

Conversion efficiency vs. Load current (2.0 MHz)

Conversion efficiency vs. Load current (2.0 MHz)

Conversion efficiency $\eta(\%)$

Conversion efficiency vs. Load current (2.0 MHz)

Conversion efficiency vs. Load current (2.0 MHz)

(Continued)

MB39C014

(Continued)

MB39C014

(Continued)

(Continued)

MB39C014

(Continued)

(Continued)

MB39C014

(Continued)

- Switching waveforms

MB39C014

- Startup waveform

$\mathrm{Ta}=+25^{\circ} \mathrm{C}$
$\mathrm{Vin}=3.7 \mathrm{~V}$
Vout $=2.5 \mathrm{~V}$
Iout $=0 \mathrm{~A}$
VREFIN Capacitor value $=$
$0.1 \mu \mathrm{~F}$

$\mathrm{Ta}=+25^{\circ} \mathrm{C}$
$\mathrm{Vin}=3.7 \mathrm{~V}$
VOUT $=2.5 \mathrm{~V}$
Iout $=0$ A
No VREFIN Capacitor
- Output waveforms at sudden load changes $(0 \mathrm{~mA} \leftrightarrow 800 \mathrm{~mA})$

- Output waveforms at sudden load changes ($100 \mathrm{~mA} \leftrightarrow 800 \mathrm{~mA}$)

$\mathrm{Ta}=+25^{\circ} \mathrm{C}$
VIN $=3.7 \mathrm{~V}$
Vout $=2.5 \mathrm{~V}$
VREFIN Capacitor value $=$ $0.1 \mu \mathrm{~F}$

MB39C014

APPLICATION CIRCUIT EXAMPLES

- APPLICATION CIRCUIT EXAMPLE 1
- An external voltage is input to the reference voltage external input (VREFIN), and the Vout voltage is set to 2.97 times the Vout setting gain.

- APPLICATION CIRCUIT EXAMPLE 2

- The voltage of VREF pin is input to the reference voltage external input (VREFIN) by the dividing resistors. The Vout voltage is set to 2.5 V .

- Application Circuit Example Components List

Component	Item	Part Number	Specification	Package	Vendor
L1	Inductor	VLF4012AT-2R2M	$2.2 \mu \mathrm{H}, \mathrm{RDC}=76 \mathrm{~m} \Omega$	SMD	TDK
		$2.2 \mu \mathrm{H}, \mathrm{RDC}=100 \mathrm{~m} \Omega$	SMD	FDK	
C1	Ceramic capacitor	C2012JB1A475K	$4.7 \mu \mathrm{~F}(10 \mathrm{~V})$	2012	TDK
C2	Ceramic capacitor	C2012JB1A475K	$4.7 \mu \mathrm{~F}(10 \mathrm{~V})$	2012	TDK
R3	Resistor	RK73G1JTTD D $7.5 \mathrm{k} \Omega$ RK73G1JTTD D $120 \mathrm{k} \Omega$	$7.5 \mathrm{k} \Omega$		
$120 \mathrm{k} \Omega$	1608	KOA			
R4	Resistor	RK73G1JTTD D $300 \mathrm{k} \Omega$	$300 \mathrm{k} \Omega$	1608	1608
R5	Resistor	RK73G1JTTD D	$1 \mathrm{M} \Omega \pm 0.5 \%$	1608	KOA

TDK : TDK Corporation
FDK : FDK Corporation
KOA : KOA Corporation

MB39C014

USAGE PRECAUTIONS

1. Do not configure the IC over the maximum ratings

If the IC is used over the maximum ratings, the LSI may be permanently damaged.
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can adversely affect reliability of the LSI.
2. Use the devices within recommended operating conditions

The recommended operating conditions are the conditions under which the LSI is guaranteed to operate. The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.
3. Printed circuit board ground lines should be set up with consideration for common impedance
4. Take appropriate static electricity measures.

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ between body and ground.

5. Do not apply negative voltages.

The use of negative voltages below - 0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.

ORDERING INFORMATION

Part number	Package	Remarks
MB39C014PN-DODE1	10-pin plastic SON (LCC-10P-M04)	Lead-free version

- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION

The LSI products of FUJITSU MICROELECTRONICS with "E1" are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenylethers (PBDE).
A product whose part number has trailing characters "E1" is RoHS compliant.

MARKING FORMAT (LEAD FREE VERSION)

\square

- LABELING SAMPLE (LEAD FREE VERSION)

MB39C014

- EVALUATION BOARD SPECIFICATION

The MB39C014 Evaluation Board provides the proper environment for evaluating the efficiency and other characteristics of the MB39C014.

- Terminal information

Symbol	Functions
VIN	Power supply terminal. In standard condition 3.1 V to $5.5 \mathrm{~V}^{*}$. * When the VIN/VOUT difference is to be held within 0.6 V or less, such as for devices with a standard output voltage (VOUT $=2.5 \mathrm{~V}$) when VIN < 3.1 V , FUJITSU MICROELECTRONICS recommends changing the output capacity (C1) to $10 \mu \mathrm{~F}$.
VOUT	Output terminal.
VCTL	Power supply terminal for setting the CTL terminal. Use this terminal by connecting with CTL.
CTL	Direct supply terminal of CTL. CTL $=0 \mathrm{~V}$ to 0.80 V (Typ.) : Shutdown CTL $=0.95 \mathrm{~V}$ (Typ.) to VIN : Normal operation
MODE	TEST terminal OPEN or GND
VREF	Reference voltage output terminal. $V_{\text {REF }}=1.20 \mathrm{~V}$ (Typ.)
VREFIN	External reference voltage input terminal. When an external reference voltage is supplied, connect to this terminal.
FSEL	Operating frequency range setting terminal. FSEL = $0 \mathrm{~V}: 2.0 \mathrm{MHz}$ operation FSEL = VIN : 3.2 MHz operation* * FUJITSU MICROELECTRONICS recommends changing the inductor to $1.5 \mu \mathrm{H}$.
POWERGOOD	POWERGOOD output terminal. "High" level output when if OUT voltage reaches 97% or more of output setting voltage.
PGND	Ground terminal. Connect power supply GND to the PGND terminal next to the VOUT terminal.
AGND	Ground terminal.

- Startup terminal information

Terminal name	Condition	Functions
CTL	L: Open H: Connect to VCTL	ON/OFF switch for the IC. L: Shutdown H: Normal operation
FSEL	L: Open H: Connect to VCTL	Setting switch of FSEL terminal. $\mathrm{L}: 2.0 \mathrm{MHz}$ operation $\mathrm{H}: 3.2 \mathrm{MHz}$ operation.

- Jumper information

JP	Functions
JP1	Short-circuited in the layout pattern of the board (normally used shorted).
JP2	Normally used shorted (0Ω)

- Setup and checkup
(1) Setup
(1) -1 . Connect the CTL terminal to the VCTL terminal.
(1) -2 . Connect the power supply terminal to the VIN terminal, and the power supply GND terminal to the PGND terminal. (Example of setting power supply voltage : 3.7 V)
(2) Checkup

Supply power to VIN. The IC is operating normally if VOUT $=2.5 \mathrm{~V}$ (Typ).

MB39C014

- Component layout on the evaluation board (Top View)

Top Side (Component side)

Bottom Side (Soldering side)

MB39C014

- Evaluation board layout (Top View)

MB39C014

- Connection diagram

* Not mounted
- Component list

Component	Part Name	Model Number	Specification	Package	Vendor	Remark
M1	IC	MB39C014PN	-	SON10	FML	
L1	Inductor	VLF4012AT-2R2M	$\begin{gathered} 2.2 \mu \mathrm{H} \\ \mathrm{RDC}=76 \mathrm{~m} \Omega \end{gathered}$	SMD	TDK	
C1	Ceramic capacitor	C2012JB1A475K	$4.7 \mu \mathrm{~F}(10 \mathrm{~V})$	2012	TDK	
C2	Ceramic capacitor	C2012JB1A475K	$4.7 \mu \mathrm{~F}(10 \mathrm{~V})$	2012	TDK	
C6	Ceramic capacitor	C1608JB1H104K	$0.1 \mu \mathrm{~F}(50 \mathrm{~V})$	1608	TDK	
R1	Resister	RK73G1JTTD D $1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega \pm 0.5 \%$	1608	KOA	
R3-1	Resister	RR0816P-752-D	$7.5 \mathrm{k} \Omega \pm 0.5 \%$	1608	SSM	
R3-2	Resister	RR0816P-124-D	$120 \mathrm{k} \Omega \pm 0.5 \%$	1608	SSM	
R4	Resister	RR0816P-304-D	$300 \mathrm{k} \Omega \pm 0.5 \%$	1608	SSM	
R5	Resister	RK73G1JTTD D $1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega \pm 0.5 \%$	1608	KOA	
SW1	Switch	-	-	-	-	Not mounted
JP1	Jumper	-	-	-	-	Patternshorted
JP2	Jumper	RK73Z1J	(50 m	1608	KOA	

Note : These components are recommended based on the operating tests authorized.
FML : FUJITSU MICROELECTRONICS LIMITED
TDK : TDK Corporation
KOA : KOA Corporation
SSM : SUSUMU Co., Ltd
■ EV BOARD ORDERING INFORMATION

EV Board Part No.	EV Board Version No.	Remarks
MB39C014EVB-06	MB39C014EVB-06 Rev.1.0	SON10

MB39C014

PACKAGE DIMENSION

10-pin plastic SON	Lead pitch	0.50 mm
Package width \times package length	$3.00 \mathrm{~mm} \times 3.00 \mathrm{~mm}$	
Sealing method	Plastic mold	
Mounting height	0.75 mm MAX	
(LCC-10P-M04)	Weight	0.018 g

```
10-pin plastic SON
```

 (LCC-10P-M04)

Dimensions in mm (inches).
© 2008 FUUITSU MICROELECTRONICS LIIITED C10004S---1-2

MB39C014

- CONTENTS

page
DESCRIPTION 1
FEATURES 1

- APPLICATIONS 1
- PIN ASSIGNMENT 2
- PIN DESCRIPTIONS 2
- I/O PIN EQUIVALENT CIRCUIT DIAGRAM 3
- BLOCK DIAGRAM 4
- FUNCTION OF EACH BLOCK 6
- ABSOLUTE MAXIMUM RATINGS 8
- RECOMMENDED OPERATING CONDITIONS 9
- ELECTRICAL CHARACTERISTICS 10
- TEST CIRCUIT FOR MEASURING TYPICAL OPERATING CHARACTERISTICS 12
- APPLICATION NOTES 13
- EXAMPLE OF STANDARD OPERATION CHARACTERISTICS 18
- APPLICATION CIRCUIT EXAMPLES 28
- USAGE PRECAUTIONS 30
- ORDERING INFORMATION 30
- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION 30
- MARKING FORMAT (LEAD FREE VERSION) 31
- LABELING SAMPLE (LEAD FREE VERSION) 31
- EVALUATION BOARD SPECIFICATION 32
- EV BOARD ORDERING INFORMATION 37
- PACKAGE DIMENSION 38

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,
Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E),
Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: *: Don't care

