

Aluminum electrolytic capacitors

Axial-lead and soldering star capacitors

Series/Type: B41696, B41796
Date: November 2012

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Axial-lead and soldering star capacitors

B41696, B41796

Very low ESR - 125 °C

Applications

Automotive electronics

Features

- Very low ESR at temperature down to -55 °C
- Compact design
- High ripple current capability
- High vibration stability
- Shelf life up to 15 years at storage temperatures up to 40 °C. To ensure solderability, the capacitors should be built into the application within one year of delivery. After a total of two years' storage, the operating voltage must be applied for one hour to ensure the specified leakage current.
- RoHS-compatible

- Charge/discharge-proof, polar
- Aluminum case with insulating sleeve
- Negative pole connected to case

Terminals

- Axial leads, welded to ensure perfect electrical contact
- Soldering star for upright mounting on PCB available
- Alternative axial-lead design with double-sided plates for horizontal mounting available upon request

Taping and packing

- Axial-lead capacitors will be delivered in pallet package Capacitors with d × I ≤ 16 × 30 mm are also available taped on reel
- Soldering star capacitors are packed in cardboard

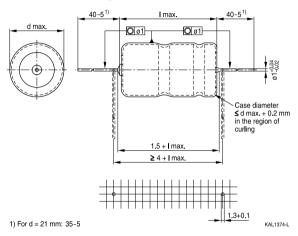
Specifications and characteristics in brief

Surge voltage V_s 1.15 · V_R Rated capacitance C_R 470 6800 µF $-10/+30\% \triangleq \Omega$ Leakage current I_{leak} (5 min, 20 °C) Self-inductance ESL¹) Diameter d (mm)	Rated voltage V _B	25 and 40 V DC						
Rated capacitance C _R Capacitance tolerance Leakage current I _{leak} (5 min, 20 °C) Self-inductance ESL¹) Diameter d (mm)	•							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{ c c c c }\hline \text{Terminals} & \text{Length I (mm)} & \text{Approx. ESL (nH)}\\ \hline \text{axial} & 25 & - & 22 & - & 30 & - \\ \hline 29 & - & - & - & - & 38\\ \hline 30 & 21 & 24 & 29 & 34 & - \\ \hline 35 & - & - & 31 & - & - \\ \hline 39 & - & - & 33 & 38 & 45\\ \hline 49 & - & - & - & - & 50\\ \hline \text{soldering star} & 25 & - & 6 & - & 8 & - \\ \hline 30 & 6 & 7 & 8 & 10 & - \\ \hline 35 & - & - & 9 & - & - \\ \hline 39 & - & - & 9 & 11 & 13\\ \hline 49 & - & - & - & - & 14\\ \hline \hline \text{Useful life}^2) \\ \hline \text{Useful life}^2) \\ \hline \text{125 °C; V}_{R; I_{AC,Rax}} \\ \hline \text{40 °C; V}_{R; I_{AC,Rax}} \\ \hline \text{40 °C; V}_{R; I_{AC,Rax}} \\ \hline \text{40 °C; V}_{R} \\ \hline \text{200000 h} \\ \hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Leakage current I _{leak}		$_{1}A \cdot \left(\frac{C_{R}}{\mu F} \cdot \frac{V_{R}}{V}\right) + 2$	4 μΑ				
	Self-inductance ESL ¹⁾	Diameter d (mm	1)	12	14	16	18	20/21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Terminals	Length I (mm)	Approx	c. ESL (r	nH)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		axial	25	_	22	_	30	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			29	_	_	_	-	38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			30	21	24	29	34	_
$ \begin{array}{ c c c c }\hline & 49 & - & - & - & 50\\\hline & soldering star & 25 & - & 6 & - & 8 & -\\\hline & 30 & 6 & 7 & 8 & 10 & -\\\hline & 35 & - & - & 9 & - & -\\\hline & 39 & - & - & 9 & 11 & 13\\\hline & 49 & - & - & - & - & 14\\\hline \\ Useful life^2) & & & & & \\\hline & 125\ ^\circ\text{C};\ V_{\text{R}};\ I_{\text{AC,RB}} & > 3000\ \text{h} & & & & \\\hline & 85\ ^\circ\text{C};\ V_{\text{R}};\ I_{\text{AC,max}} & > 15000\ \text{h} & & & \\\hline & 40\ ^\circ\text{C};\ V_{\text{R}};\ 2.9\ ^\circ\text{L}_{\text{AC,RB}} & > 200000\ \text{h} & & & \\\hline & & & & & \\\hline & & & & & \\\hline & & & &$			35	_	_	31	-	_
$ \begin{array}{ c c c c } \hline \text{soldering star} & 25 & - & 6 & - & 8 & - \\ \hline 30 & 6 & 7 & 8 & 10 & - \\ \hline 35 & - & - & 9 & - & - \\ \hline 39 & - & - & 9 & 11 & 13 \\ \hline 49 & - & - & - & - & 14 \\ \hline \hline \\ \text{Useful life}^2) \\ \hline 125 \ ^{\circ}\text{C}; \ V_{\text{R}}; \ I_{\text{AC,R}} \\ \hline 85 \ ^{\circ}\text{C}; \ V_{\text{R}}; \ I_{\text{AC,max}} \\ \hline 40 \ ^{\circ}\text{C}; \ V_{\text{R}}; \ 2.9 \ ^{\circ}\text{I}_{\text{AC,R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ 125 \ ^{\circ}\text{C}; \ V_{\text{R}} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ \text{Initial specified limit} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ \text{Voltage endurance test} \\ \hline \\ \text{Capacitor mounted by its wire leads at a distance of (6 \pm 1) mm from the case and additionally clamped by the case.} \\ \hline \\ \text{IEC climatic category} \\ \hline \\ \text{To IEC 60068-1:} \\ \hline \\ \hline \\ \text{To IEC 60068-1:} \\ \hline \\ \hline \\ \hline \\ \text{To IEC 60068-1:} \\ \hline \\ \text{To IEC 60068-1:} \\ \hline $			39	_	_	33	38	45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			49	_	_	_	_	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		soldering star	25	_	6	_	8	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			30	6	7	8	10	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			35	_	_	9	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			39	_	_	9	11	13
$\begin{array}{llllllllllllllllllllllllllllllllllll$			49	_	_	_	-	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Useful life ²⁾			Requirements:				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125 °C; V _R ; I _{AC,R}	> 3000 h		ΔC/C	$\leq \pm 30\%$ of initial value			
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	85 °C; V _R ; I _{AC,max}	> 15000 h		ESR	\leq 3 times initial specified limit ³⁾			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 °C; V_R ; 2.9 · $I_{AC,R}$	> 200000 h		I _{leak}	≤ initia	l specifie	ed limit	
	Voltage endurance test			Post te	st requi	rements	:	
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	125 °C; V _R	2000 h		ΔC/C				
$\begin{tabular}{lll} \begin{tabular}{lll} \hline Vibration resistance \\ test \\ \hline \hline \\ \hline $				ESR	≤ 1.3%	initial s	pecified	limit ³⁾
test Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g , duration 3×2 h. Capacitor mounted by its wire leads at a distance of (6 ± 1) mm from the case and additionally clamped by the case. IEC climatic category To IEC 60068-1:								
acceleration max. 20 g , duration 3×2 h. Capacitor mounted by its wire leads at a distance of (6 ± 1) mm from the case and additionally clamped by the case. IEC climatic category To IEC 60068-1:	Vibration resistance	To IEC 60068-2-6, test Fc:						
	test							
case and additionally clamped by the case. IEC climatic category To IEC 60068-1:		9.						
IEC climatic category To IEC 60068-1:								
9 ,	IFC climatic category							
	in a calcyony							
Detail specification Similar to CECC 30301-802	Detail specification							
Sectional specification IEC 60384-4		IEC 60384-4						

¹⁾ If optimum circuit design is used, the values are lower by 30%.

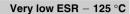
²⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

³⁾ ESR_{max} at 100 Hz, 20 °C



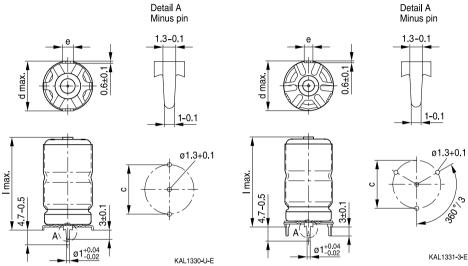
Very low ESR - 125 $^{\circ}$ C

B41696, Axial-lead capacitors


Dimensional drawing

Dimensions, weights and packing units

$d \times I$	$d_{max} \times I_{max}$	Approx. weight	Packing units (p	ocs.)
mm	mm	g	Pallet	Reel
12 × 30	12.5 × 30.5	5.1	288	450
14 × 25	14.5 × 25.5	5.7	200	350
14×30	14.5×30.5	6.8	200	350
16 × 30	16.5×30.5	8.9	180	250
16 × 35	16.5×35.5	10.4	180	_
16 × 39	16.5 × 40	11.7	180	_
18 × 25	18.5 × 25.5	9.3	160	_
18 × 30	18.5×30.5	11.1	160	_
18 × 39	18.5 × 40	14.7	160	_
20 × 29	20.5×29.5	13.5	140	_
21 × 39	21.5 × 40	20.0	140	_
21 × 49	21.5 × 50	25.0	110	_



B41796, Soldering star capacitors Dimensional drawings

Mounting holes d = 12 mm ... 14 mm

Mounting holes d = 16 mm ... 21 mm

Dimensions, weights and packing units

$d \times I$	$d_{\text{max}} \times I_{\text{max}}$	c ±0.1	e ±0.1	Approx. weight	Packing units
mm	mm	mm	mm	g	pcs.
12 × 30	13.5 × 32	12.5	3.0	5.4	480
14×25	15.5 × 27	14.5	3.0	6.1	480
14×30	15.5 × 32	14.5	3.0	7.2	480
16×30	17.5 × 32	16.5	3.0	9.4	300
16×35	17.5 × 37	16.5	3.0	10.9	200
16 × 39	17.5 × 41.5	16.5	3.0	12.2	200
18×25	19.5 × 27	18.5	3.0	9.9	300
18×30	19.5 × 32	18.5	3.0	11.8	300
18×39	19.5 × 41.5	18.5	3.0	15.4	200
21 × 39	22.5×41.5	21.5	3.5	21.0	324
21 × 49	22.5×51.5	21.5	3.5	26.0	264

Very low ESR - 125 °C

Overview of available types

V _R (V DC)	25	40			
	Case dimensions d × I (mm)				
C _R (μF)					
470		12 × 30			
680	12 × 30	14 × 30			
1000	14 × 25	16 × 30			
1200		16 × 35			
1500	16 × 30	16 × 39			
		18 × 30			
1800	18 × 25				
2200	18 × 30	18 × 39			
		20 × 29			
3300	18 × 39	21 × 39			
	20 × 29				
4400		21 × 49			
5000	21 × 39				
6800	21 × 49				

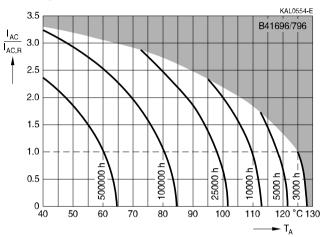
Case dimensions and ordering codes

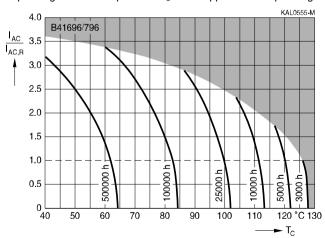
V_R	C _R	Case	Ordering code	Ordering code	Ordering code
	100 Hz	dimensions	Axial pallet	Axial reel	Soldering star
	20 °C	$d \times I$			
V DC	μF	mm			
25	680	12 × 30	B41696A5687Q001	B41696A5687Q003	B41796A5687Q001
	1000	14 × 25	B41696A5108Q001	B41696A5108Q003	B41796A5108Q001
	1500	16 × 30	B41696A5158Q001	B41696A5158Q003	B41796A5158Q001
	1800	18 × 25	B41696A5188Q001		B41796A5188Q001
	2200	18 × 30	B41696B5228Q001		B41796B5228Q001
	3300	18 × 39	B41696B5338Q001		B41796B5338Q001
	3300	20 × 29	B41696C5338Q001		
	5000	21 × 39	B41696A5508Q001		B41796A5508Q001
	6800	21 × 49	B41696A5688Q001		B41796A5688Q001
40	470	12 × 30	B41696A7477Q001	B41696A7477Q003	B41796A7477Q001
	680	14 × 30	B41696A7687Q001	B41696A7687Q003	B41796A7687Q001
	1000	16 × 30	B41696A7108Q001	B41696A7108Q003	B41796A7108Q001
	1200	16 × 35	B41696A7128Q001		B41796A7128Q001
	1500	16 × 39	B41696A7158Q001		B41796A7158Q001
	1500	18 × 30	B41696B7158Q001		B41796B7158Q001
	2200	18 × 39	B41696B7228Q001		B41796B7228Q001
	2200	20 × 29	B41696C7228Q001		
	3300	21 × 39	B41696A7338Q001		B41796A7338Q001
	4400	21 × 49	B41696A7448Q001		B41796A7448Q001

Very low ESR - 125 °C

Technical data

C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,max}	I _{AC,max}	I _{AC,R}	I _{AC,max}
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 kHz	10 kHz	10 kHz	10 kHz	10 kHz
20 °C	$d \times I$	20 °C	-40 °C	20 °C	20 °C	40 °C	105 °C	125 °C	125 °C
μF	mm	mΩ	mΩ	mΩ	mΩ	Α	Α	Α	Α
$V_{R} = 25 V_{R}$	/ DC								
680	12 × 30	160	1000	85	80	5.6	3.4	1.7	1.7
1000	14 × 25	115	650	65	62	5.8	3.5	1.75	1.75
1500	16 × 30	80	450	45	43	7.4	4.5	2.25	2.25
1800	18 × 25	65	380	36	34	9.0	5.5	2.7	2.7
2200	18 × 30	55	300	28	27	11.0	6.7	3.4	3.4
3300	18 × 39	36	200	19	18	15.2	9.3	4.6	4.6
3300	20 × 29	38	200	22	21	12.3	7.5	3.7	3.7
5000	21 × 39	25	150	15	15	17.2	10.5	5.3	5.3
6800	21 × 49	19	110	11	11	22.0	13.5	6.7	6.7
$V_{R} = 40 \ V_{R}$	/ DC								
470	12 × 30	170	1000	70	68	6.0	3.6	1.8	1.8
680	14 × 30	135	600	53	51	7.1	4.3	2.2	2.2
1000	16 × 30	85	450	42	40	8.0	4.8	2.45	2.45
1200	16 × 35	70	370	35	33	9.5	5.8	2.9	2.9
1500	16 × 39	58	300	29	28	11.0	6.7	3.35	3.35
1500	18 × 30	54	300	25	24	11.5	7.0	3.5	3.5
2200	18 × 39	38	200	17	16	15.7	9.6	4.8	4.8
2200	20 × 29	40	200	20	20	12.4	7.6	3.8	3.8
3300	21 × 39	27	140	14	14	17.3	10.5	5.3	5.3
4400	21 × 49	21	110	11	11	21.5	13.2	6.6	6.6

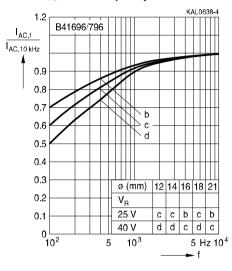


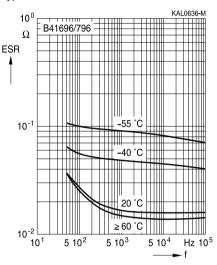

Useful life1)

depending on ambient temperature T_{A} under ripple current operating conditions at V_{R}

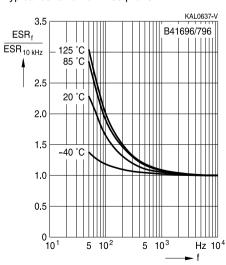
Useful life1)

depending on case temperature T_{C} under ripple current operating conditions at V_{R}

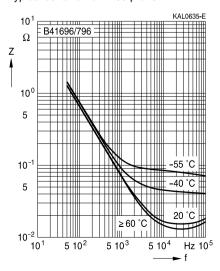

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.


Very low ESR - 125 °C

Frequency factor of permissible ripple current I_{AC} versus frequency f


Frequency characteristics of ESR

Typical behavior


Equivalent series resistance ESR versus frequency f

Typical behavior for 2200 µF/40 V

Impedance Z versus frequency f

Typical behavior for 2200 $\mu F/40 V$

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request.

MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Very low ESR - 125 °C

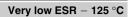
Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw-terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"

Very low ESR − 125 °C

Topic Active	Safety information Avoid overload of the capacitors.	Reference chapter "General technical information" 8.2
flammability		"Active flammability"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Storage	Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at +5 to +35 °C and a relative humidity of ≤ 75%.	7.3 Storage conditions
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals – accessories"



Very low ESR − 125 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C_{f}	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d_{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR _T	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I_{AC}	Alternating current (ripple current)	Wechselstrom
$I_{AC,rms}$	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f
$I_{AC,max}$	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
$I_{AC,R}$	Rated ripple current	Nennwechselstrom
I _{AC,R} (B)	Rated ripple current for base cooling	Nennwechselstromstrom für Bodenkühlung
l _{leak}	Leakage current	Reststrom
$I_{leak,op}$	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R _{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
T	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T_A	Ambient temperature	Umgebungstemperatur
T _C	Case temperature	Gehäusetemperatur
T_B	Capacitor base temperature	Temperatur des Becherbodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Symbol	English	German
V	Voltage	Spannung
V_{F}	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V_R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
V_s	Surge voltage	Spitzenspannung
X_{c}	Capacitive reactance	Kapazitiver Blindwiderstand
X_L	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z_T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
$tan \ \delta$	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ϵ_{0}	Absolute permittivity	Elektrische Feldkonstante
ϵ_{r}	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.