elmos

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

<u>k</u>oHS compliant

Features

- For 1 bipolar stepper or up to 3 DC motors
- Motor currents up to 2* 800mA (peak) •
- Programmable chopper current values for sinus or customized micro-stepping
- 5.5 20V supply voltage (load dump 42V)
- Very low sleep mode current, typ. 30μA
- 8bit µController with assistance logic and
 - 256 Byte RAM, boot-loader
 - 8kByte FLASH or ROM (opt. firmware)
 - 64 Byte EEPROM for customer parameters
- 3 * Hall-sensor/potentiometer inputs+supply
- LIN 2.x, SAE J2602 or bidirect. PWM-interface compatible to LIN2.2Rev.A, 2.2, 2.1, 2.0, 1.3
- QFN32L6 package

Added value factors

- Sensor less "stall detection"
- JTAG or LIN FLASH programming
- -40°C +150°C peak junction temperature (for higher temperatures please contact local supplier)
- optional: LIN with Auto-Addressing (SNPD)

Applications

VBAT

- Automotive Head-Light-Adjust
- Automotive Front-Grill-Shutter
- Automotive Water-Valves

Typical Application Circuit

General Description

This system-in-a-chip IC controls bipolar stepper actuators with current-choppered micro-stepping. The IC is controlled by a LIN2.x interface. It's LIN-address can calculated by the "auto-addressing" feature (called "SNPD" in official LIN-specification). Alternatively the IC can be controlled by a PWM-interface, with diagnosis feedback. The integrated sensor-less "stall-detection" detects mechanical end-positions and stops the motor to re-duce acoustical noise during initialization runs. The calculating heart is an 8-bit controller which is assisted by powerful circuitry. For absolute precise positioning, up to 3 Hall-sensors or potentiometers can read out. The IC can also drive up to 3 DC motors or other loads. ICs with FLASH-memory are programmable via JTAG interface or LIN in normal or high speed mode. The IC is available with standard firmware as well as with a development system for individual firmware.

Ordering Information

Product ID	Features
E523.30B	LIN or PWM-interface, LIN auto-ad- dressing, 8k customer FLASH
E523.31B	LIN with firmware (FLASH)
E523.32B	LIN with firmware (ROM)
E523.33B	LIN or PWM with 8k customer ROM
E523.34B	PWM interface 8k customer FLASH
E523.35B	PWM interface with firmware (FLASH)
E523.36B	PWM interface with firmware (ROM)
E523.37B	LIN or PWM with 8k customer FLASH
E523.38B	LIN, auto-addressing, 8k customer ROM

Functional Diagram

Pin Configuration

Elmos Semiconductor AG

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

QM-No.: 25DS0115E.01

Data Sheet

Pin Description

Pin	Name	Туре 1)	Description	Power-up state
1	V5V	S	Hall sensor supply	off
2	VDDA	S	Regulator output for analog supply	
3	GNDA	S	Ground for analog supply	
4	TAIO	10	Analog test bus	
5	GNDBUS	S	LIN or PWM ground	
6	BUS_M or n.c.	ю	LIN bus (master direction) or PWM in- terface, not connected at versions without auto-addressing	Transmitter off
7	BUS_S or BUS	10	LIN bus interface (sensing toward slave direction) or not connected	BUS pull-up off (OEM requirements) Receiver Wake-up threshold enabled
8	n.c.	-	Not connected	
9	GNDPB	S	Ground for half bridges B	
10	BO	0	Motor coil driver B output 0	
11	B1	0	Motor coil driver B output 1	Driver off
12	VSPB	S	Power supply for driver B	Driver off
13	VSPA	S	Power supply for driver A	
14	A1	0	Motor coil driver A output 1	
15	A0	0	Motor coil driver A output 0	Driver off
16	GNDPA	S	Ground for half bridges A	Driver off
17	n.c.	-	not connected	
18	n.c.	-	not connected	
19	TSTRST	1	Test mode reset	
20	TMS	1	Test mode select (JTAG)	
21	TDI	I	Test data in (JTAG)	
22	ТСК	I	Test clock (JTAG)	
23	TESTEN	I	Test mode enable	
24	TDO	0	Test data out (JTAG)	
25	n.c.	-	not connected	
26	VDDD	S	Regulator output for digital supply	
27	GNDD	S	Ground for digital supply	
28	D3	10	General purpose I/O, Hall-sensor or po- tentiometer input	
29	D2	10	General purpose I/O, Hall-sensor or po- tentiometer input	
30	D1	Ю	General purpose I/O, Hall-sensor or po- tentiometer input	
31	NC	-	not connected	
32	VS	S	Battery voltage for internal supplies	
-	EP	S	Exposed Die Pad	

1) A = Analog, D = Digital, S = Supply, I = Input, O = Output, HV = High Voltage The QFN die pad shall be connected to ground. For ESD details see section "ESD".

1 Absolute Maximum Ratings

Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. These are stress ratings only; operation of the device at these or any other conditions beyond those listed in the operational sections of this document is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltages with respect to ground. Currents flowing into terminals are positive, those drawn out of a terminal are negative.

Description	Condition	Symbol	Min	Max	Unit
Absolute maximum supply voltage		V _{VS} , V _{VSPA} , V _{VSPB} LIN2.2A- spec. Param11: V _{SUP, NON, OP}	-0.3	40	v
Continuous operating voltage	Half-bridge driv- ers activated	V _{VS} , V _{VSPA} , V _{VSPB}	-0.3	20	V
Jump start operating voltage	T ≤ 60s	V _{VS} , V _{VSPA,} V _{VSPB}	-0.3	28	V
Load dump operating voltage	T ≤ 0.5s	V _{VS} , V _{VSPA} , V _{VSPB}	-0.3	42	V
Reverse polarity supply voltage	T < 0.5s I _{vs} > -1.0A	V _{VS} , V _{VSPA,} V _{VSPB}	-1		V
Voltage difference between any two pins out of GNDA, GNDD and exposed pad		V _{GND1}	-0.3	0.3	V
Voltage difference between GNDA and any pin out of GNDPA, GNDPB, GNDBUS		V _{GND2}	-0.8	0.8	V
Junction temperature		T,	-40	150	°C
Storage temperature range		T _{st}	-45	150	°C
Thermal resistance (Junction to ambient)	QFN32L6	R _{th,J-A}	18	20	K/W
Voltage at pin V5V		V _{V5V}	-0.3	5.5	V
Voltage at pins VDDA and VDDD		V _{VDD}	-0.3	3.6	V
Voltage at pins A0, A1, B0, B1		V	-1	43	V
Voltage at test pins (TDI, TCK, TMS, TDO, TSTEN, TSTRST, TAIO)	1)	V _{test}	-0.3	3.6 or VDDD+0.3	V
Voltage at D1, D2, D3 (digital IOs)	D1, D2, D3 pro- grammed as digital IOs ¹⁾	V _{DxD}	-0.3	5.5 or V5V+0.3	V
Voltage at D1, D2, D3 (analog ADC input)	D1, D2, D3 pro- grammed as analog ADC input ¹⁾	V _{DxA}	-0.3	3.6 or VDDA+0.3	V
Current into D1, D2, D3		I _{DX}	-10	10	mA
Current into pins A0, A1, B0, B1			-900	900	mA
External load current drawn from pin V5V		ILOADV5V	-45	0	mA
External load current drawn from pin VDDA		ILOADVDDA	-5	0	mA
Current into test pins (TDI, TCK, TMS, TDO, TSTEN, TSTRST, TAIO)		I _{test}	-10	10	mA
Voltage at pin BUS_S, BUS_M		V _{BUS}	-12	40	V
Voltage at pin BUS_S, BUS_M, load dump	t<0.5s	V _{BUS}		42	V

1) Whichever is smaller.

Elmos Semiconductor AG

, Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Data Sheet

2 Recommended Operating Conditions

Description	Condition	Symbol	Min	Тур	Max	Unit
Supply voltage ⁽¹	LIN Bus operating	V _{vs} , V _{vsp} LIN2.2A- spec. Param10: V _{SUP}	7		18	v
Supply voltage ⁽¹	PWM interface oper- ating and ECU running	V _{vs} , V _{vsp} LIN2.2A- spec. Param9: V _{BAT} :>8V	5.5		18	v
Supply voltage (1	FLASH programming	V _{vsfl}	11		15	V
Operating junction temperature range		T,	-40		150	°C
Operating ambient temperature		T _{amb}	-40		125	°C
Ambient temperature for FLASHing		T _{amb}	0		50	°C
Blocking capacitor for supply voltage		C _{vs}		100		nF
Blocking capacitor for Hall supply voltage		C _{V5V}		1		μF
Blocking capacitor for analog supply voltage		C _{VDDA}		1		μF
Blocking capacitor for digital supply voltage		C _{VDDD}		1		μF
External load current drawn from pin V5V		I _{LOADV5V}	-40		0	mA
External load current drawn from pin VDDA		ILOADVDDA	-4		0	mA
Number of LIN slaves capable of auto-addressing		N _{SL,AA}			15	
Ferrite RF attenuator proposal (optional for increasing perfor- mance at pin BUS, BUS_M, BUS_S)	High attenuation of RF Disturbances	L _{M, LS}		TDK MMZ201- 2Y202B or equivalent		
Source impedance at GPIO pins D1, D2, D3	Pin Dx configured as 3.3V analog input	R _{Dx}			10	kΩ
Input voltage on D1, D2 and D3 in analog mode	configured as analog input	V_{D1}, V_{D2}, V_{D3}	0V		V _{VDDA}	
Input voltage on D1, D2 and D3 in digital mode	configured as digital input	V_{D1}, V_{D2}, V_{D3}	0V		V _{vsv}	

1) Above 18V the software must disable drivers and BUS before reaching the absolute max. rating of 20V.

3 ESD Protection

Description	Condition	Symbol	Min	Max	Unit
ESD HBM Protection at all Pins	1)	V _{ESD(HBM)}	-2	2	kV
ESD HBM Protection at Pin BUS/ BUS_M/BUS_S to system ground	1)	V _{ESD(HBM)}	-6	6	kV
ESD HBM Protection at Pin VS/VSPA/ VSPB to system ground	1)	V _{esd(HBM)}	-4	4	kV
ESD CDM Protection at all Pins	2)	V _{ESD(CDM)}	-500	500	V
ESD CDM Protection at Edge Pins	2)	V _{esd(cdm)c}	-750	750	V
ESD Machine Model	3)	V _{esd(mm)}	-100	100	V

1) According to AEC-Q100-002 (HBM) chip level test

2) According to AEC-Q100-011 (CDM) chip level test

3) According to AEC-Q100-003 (MM) chip level test

4 Electrical Characteristics

 $(V_{vs} = +5.5V \text{ to } +18V, T_{j} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{vs} = +12V$ and $T_{j} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

			1		1	1
Description	Condition	Symbol	Min	Тур	Max	Unit
Supply Voltages						
Supply current	All motor drivers off, $I_{BUS}=0,$ $I_{VSV}=0$ $V_{VS}<18V$	I _{SUP}		8	15	mA
Sleep mode current	V _{vs} <14V T _{amb} <50°C	I _{VS_sleep}		30	50	μΑ
Power-on reset low threshold	V_{VDDx} falling ¹⁾	V _{TL,POR}	0.77	0.82	0.87	V _{VDDx}
Power-on reset high threshold	V _{VDDx} rising ¹⁾	V _{TH,POR}	0.85	0.90	0.95	V _{VDDx}
Power-on reset hysteresis		V _{HYST.POR}	200			mV
V5V hall sensor supply during ON	$V_{vs} \ge 7V, T_{amb} < 85^{\circ}C$ $I_{vsv} \le 40mA$ or $V_{vs} \ge 7V, T_{i} < 150^{\circ}C$ $I_{vsv} \le 10mA;$	V _{V5V}	4.75	5	5.25	V
V5V current limitation		I _{V5V lim}	41	82	160	mA
Internal analog supply voltage	external C _{VDDA} con- nected, no sleep mode	V _{VDDA}	3.13	3.3	3.47	V
Internal digital supply voltage	external C _{VDDD} con- nected, no sleep mode	V _{vddd}	3.0	3.3	3.6	V
Power-on reset on threshold referred to V _{vs}	V _{vs} falling	V _{TL,POR,VS}			3.8	
Power-on reset off threshold referred to V_{vs}	V _{vs} rising	V _{TH,POR,VS}			4.1	
Temperature Control						
High temperature threshold	T _j rising ²⁾	T	155	165	175	°C
Low temperature threshold	T _j falling ²⁾	T _{on}	135	145	155	°C
Oscillator						
Output frequency		f _{osc}	31	32	33	MHz
Clock frequency for digital part		f _{clk}		0.25		f _{osc}
Clock period for digital part		t		1/f		

1) VDDx means VDDD or VDDA, whichever reaches the threshold first.

2) Functionality of over-temperature shutoff is tested. Temperature thresholds are not tested in production.

Electrical Characteristics (continued)

 $(V_{vs} = +5.5V \text{ to } +18V, T_{J} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{vs} = +12V$ and $T_{J} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit		
LIN Transceiver (according to LIN standard) ¹⁾								
DC Characteristics of LIN Transceive	er							
Current Limitation for Driver dominant state	V _{BUS} =18V	I _{воз цім} Param12: 40- 200mA)	40	75	200	mA		
Input Leakage Current, at the Receiver incl. Pull-Up Resistor	transmitter passive, 7V <v<sub>vs<18V, V_{BUS}=0V</v<sub>	I _{BUS PAS dom} Param 13: min:-1mA for VS=12V	-1			mA		
Input Leakage Current, Driver Off	$\begin{array}{l} 7V < V_{VS} < 18V & {}^{5)} \\ 7V < V_{BUS} < 18V & \\ V_{BUS} \ge V_{VS} & \end{array}$	I _{BUS PAS rec} Param14: max:20μA for 8V18V			20	μΑ		
Input Leakage Current, Driver Off, under in typical conditions	V(LIN)=12V, VS=9-12V, Tjunct.< +50°C	IBUS_PAS_rec_50C		6	12	μΑ		
Input Leakage current, control unit disconnected from GND	12V ≤ V _{VS} ≤ 13.5V, 0V < V _{BUS} < 18V	$I_{BUS NO GND}$ Param15: -11mA for V _{vs} =12V	-1		0.1	mA		
Leakage current, supply disconnected	V ₆₎ VS=0V, 0V <v<sub>BUS<18V</v<sub>	I _{BUS NO BAT} Param16: max 100μΑ			10	μΑ		
Receiver dominant level	rising and falling edge	V _{BUSdom} Param17: max : 0.4V _{Vs}			0.4	V _{vs}		
Receiver recessive level		V _{BUSrec} Param18: min: 0.6V _{Vs}	0.6			V _{vs}		
Center voltage	2)	V _{BUS CNT} Param19: 0.475-0.525V _{vs}	0.475	0.5	0.525	V _{vs}		
Threshold hysteresis voltage	3)	V _{HYS} Param20: max. 0.175V _{vs}	0.03	0.05	0.175	V _{vs}		
Pull-up resistance	$V_{BUS} = 0V$ ⁴⁾	R _{slave} Param25: 20- 60kOhm	30	-	60	kΩ		

In sleep mode the pull-up is deactivated.

1) The IC is conform to the parameter limitations of the "LIN Physical Layer Spec. Revision 1.3" up to "LIN Physical Layer Spec. Revision 2.2A". In some parameters the IC provides better performance to meet the enhanced requirements of leading European OEMs.

2)
$$V_{BUS_CENTER} = \frac{V_{BUS_THRES+} + V_{BUS_THRES-}}{2}$$

3)
$$V_{BUS_HYS} = V_{BUS_THRES^+} - V_{BUS_THRES^-}$$

where V_{BUS_THRES+} : receiver threshold of the recessive to dominant bus edge and V_{BUS_THRES+} : receiver threshold of the dominant to recessive bus edge.

4) In sleep or unpowered mode the pull-up is deactivated, due to special OEM requirements.

5) max.-limit valid for Tj \leq 85°C, for Tj \leq 25°C the limit is 10µA, for Tj \geq 85°C the limit is 40µA

6) max.-limit valid for Tj \leq 85°C, for Tj \leq 85°C the limit is 100 μ A

Electrical Characteristics (continued)

(V_{vs} = +5.5V to +18V, T_i = -40°C to +150°C, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at V_{vs} = +12V and T₁ = +25°C. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
Recessive output voltage with active pullup	l _{вus} =0mA Bus recessive	V _{BUS_REC}	V _{vs} -1V		V _{vs}	
Dominant output voltage	Bus dominant, V_{vs} =7.0V, R_{BUS} =0.5k Ω to V_{s}	V _{BUSDOM}		0.7	1.2	V
Dominant output voltage	Bus dominant, V_{vs} =18V, R_{BUS} =0.5k Ω to V_{vs}	V _{BUSDOM}		1.1	2.0	v
Leakage current, supply discon- nected	V(LIN)=12V, VS=0V, Tjunct<50°C	I _{BUS,50}		1	2	μΑ
Clamping voltage, not production tested	V _{vs} =0V, I _{BUS} =1mA	V _{BUS,CLAMP}	42			V
LIN2.x Transceiver, AC Characteris	tics					
Input capacitance	7V <v<sub>s<18V</v<sub>	C _{LIN,PIN}			30	рF
Output slew-rate	$C_{\mu N}$ =1-10nF, $R_{\mu N}$ =0.5-1k Ω , 1 μ s <t_{\mu n}<5<math="">\mus, $V_{\nu S}$=18V</t_{\mu>	SR _{lin,out}	1		3	V/µs
Output slew-rate	C_{LIN} =1-10nF, R_{LIN} =0.5-1k Ω , 1 μ s <t_{lin}<5<math>\mus, V_{VS}=7V</t_{lin}<5<math>	SR _{lin,out}	0.5		3	V/µs
Symmetry of rising and falling edge	V _{VS} =18V ⁶⁾	t _{lin,sym}	-5		5	μs
Transmit propagation delay	6)	t _{tx pdr} , t _{tx pdf}			4	μs
Transmit propagation delay symmetry	$t_{tx_sym} = t_{tx_pdf} - t_{tx_pdr}^{6}$	t _{tx_sym}	-2		2	μs
Propagation delay BUS to RXD		t _{rx pdr} , t _{rx pdf}			6	μs
Propagation delay symmetry receiver	$t_{rx_sym} = t_{rx_pdf} - t_{rx_pdr}$	t _{rx_sym}	-2		2	μs
LIN bus pulse receiver debounce time		t _{lin,db}	0.3		6	μs
Wake-up debounce time		t _{lin,wu}	70		150	μs
Duty cycle 1	$\begin{array}{c} 1,5) \\ TH_{\text{Rec(max)}} = 0.744 \ ^{*}V_{\text{VS}} \\ TH_{\text{Dom(max)}} = 0.581 \ ^{*}V_{\text{VS}} \\ 7V \leq V_{\text{S}} \leq 18V \\ t_{\text{Bit}} = 50\mu\text{S} \end{array}$	D1	0.396			

1)	D1	t _{BUS_REC(MIN)}
_/	$D_1 =$	2 * t _{Bit}

4)

5) LIN driver, bus load conditions (CBUS; RBUS): 1nF; $1k\Omega / 6.8nF$; $660\Omega / 10nF$; 500Ω

6) This parameters are a documentation of LIN1.3 specification only and not valid for this product. Referring to the LIN2.2Aspecification (extract see below) LIN2.2A transceivers are compatible to LIN1.3 without being confirm to this parameter limits. LIN Specification Package Revision 2.2A December 31, 2010; Page 15

1.1.7.1 Compatibility with LIN 1.3

Elmos Semiconductor AG

LIN 2.2 is a superset of LIN 1.3.....The LIN 2.2 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.2 physical layer sets harder requirement, i.e. a node using the LIN 2.2 physical layer can operate in a LIN 1.3 cluster.

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

Electrical Characteristics (continued)

 $(V_{vs} = +5.5V \text{ to } +18V, T_{J} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{vs} = +12V$ and $T_{J} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
Duty cycle 2		D2			0.581	
Duty cycle 3		D3	0.417			
Duty cycle 4		D4			0.590	
Additional LIN Parameters			1		,	
Timeout for LIN dominant clamp- ing failure (deactivated for PWM version)		t _{lin,bus,dom}		12		ms
Baud rate for FLASH memory up- date via BUS	special mode to be activated via register, in send and receive mode	R		125		kB
LIN auto-addressing (only valid for	products including this	function)				
Bus pull-up current source for au- to-addressing	0°C <tj<50°c V_{BUS}=0V</tj<50°c 	I _{PD}	1.84	2.050	2.26	mA
Bus shunt resistor ²⁾	0°C <t_<50°c< td=""><td>R_{SHUNT}</td><td>0.75</td><td>1.00</td><td>1.25</td><td>Ω</td></t_<50°c<>	R _{SHUNT}	0.75	1.00	1.25	Ω
Temperature coefficient of bus shunt resistor ¹⁾	0°C <t,<50°c< td=""><td>TK_{SHUNT}</td><td></td><td>0.4</td><td></td><td>%/K</td></t,<50°c<>	TK _{SHUNT}		0.4		%/K
Differential amplifier differential input voltage range ³⁾	0°C <t<sub>,<50°C</t<sub>	V _{DIFF_AMP}	-10		30	mV
Differential amplifier common mode input voltage range ³⁾	0°C <t<sub>J<50°C</t<sub>	V _{COM_AMP}	0.00		2.50	V
Differential amplifier gain ²⁾	0°C <t_<50°c 0V<v<sub>PUE<2.5V</v<sub></t_<50°c 	A	65	70	74	1

Note) The auto-addressing parameters are valid only under the following conditions:

Ground shift: DC \leq 0.45V, AC \leq 100mV for f<1kHz

Noise $\leq 250 \mu V$ for a bandwidth less than f<1kHz

 $V_{BUSDOM_MASTER_MIN}$ =0.60V therefore $V_{BUS_INPUT_SLAVE}$ is always positive: 0.60V - 0.45V (max. ground shift) = 0.15V

- 1) Not tested in production.
- 2) Total gain of auto-addressing path is tested through digital ADC output.
- *3)* Operation outside of common mode and/or differential input voltage range will not result in damage, but will produce invalid results on the differential amplifier's output.

4)
$$D2 = \frac{t_{BUS_REC(MAX)}}{2^* t_{Bit}}$$
5)
$$D3 = \frac{t_{BUS_REC(MIN)}}{2^* t_{Bit}}$$
6)
$$D4 = \frac{t_{BUS_REC(MAX)}}{2^* t_{Bit}}$$

7) LIN driver, bus load conditions (CBUS; RBUS): 1nF; $1k\Omega$ / 6.8nF; 660Ω / 10nF; 500Ω

Electrical Characteristics (continued)

 $(V_{vs} = +5.5V \text{ to } +18V, T_{j} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{vs} = +12V$ and $T_{j} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
Hall Sensor or Potentiometer Input	•					
Low level input threshold D1, D2, D3		V _{TL,DIG}	0.7		-	V
High level input threshold D1, D2, D3		V _{TH,DIG}	-		2.1	V
Hysteresis D1, D2, D3		V _{HYS,DIG}	0.2		1.4	V
Low output level D1, D2, D3	I _{Dx} = +3.0mA ¹⁾	V _{ol,DIG}			0.8	V
High output level D1, D2, D3	I _{Dx} = -3.0mA ¹⁾	V _{OH,DIG}	4.2			V
Pull-up current D1, D2, D3	0 <v<sub>IN<v<sub>TH,DIG²⁾</v<sub></v<sub>	I _{PU}	-50		-25	μΑ
Pull-down current D1, D2, D3	V _{V5V} >V _{IN} >V _{TL,DIG} ²⁾	I _{PD}	25		50	μΑ
ADC and Input Multiplexer						
Supply voltage division factor		G _{VS_ADC}	11.75	12	12.25	
Temperature zero point		K _o		107.2		LSB
Temperature coefficient		G _T		-3.16		°C/ LSB
On-chip temperature measurement error		T _{err}	-15		15	°C
Reference Low voltage		V _{REEL}		V _{GNDA}		V
Reference High voltage		V _{REFH}		V _{VDDA}		V
Resolution		N		8		bit
Conversion time		t _{conv}		21		t _{clk}
Conversion time during LIN auto- addressing		t _{conv,aa}		171		t _{clk}
Differential non-linearity		DNL		0.9		LSB
Integral non-linearity		INL		0.9		LSB
Missing codes		MC		0		LSB
Offset error		ERROR	-0.5		0.5	LSB
Gain error			-0.5		0.5	LSB
Total unadjusted error		ERROR	-2		2	LSB
Half Bridge Drivers						
High leakage current of both half bridges together	Half bridge off I_{pD} switched off $V_{A/Bx} = V_{VS}$ $V_{VS}, V_{VSPx} < 14V$ $T_{amb} < 85^{\circ}C$	I _{leakh}	-10		10	μΑ
Low leakage current of both half bridges together	Half bridge off I_{pD} switched off $V_{A/B_x} = 0V$ $V_{VS}V_{VSP_x} < 14V$ $T_{amb} < 85^{\circ}C$	I _{leakl}	-10		10	μΑ

1) Dx means D1, D2 or D3. Dx is configured as digital output.

2) Pull-up, pull-down or high resistive is configurable by software. Dx is configured as digital output.

Electrical Characteristics (continued)

 $(V_{vs} = +5.5V \text{ to } +18V, T_{j} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{vs} = +12V$ and $T_{j} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
A/B coil current threshold range 1	IDACx = 0xFF	I _{TH,MAX1}	720	800	880	mA
A/B coil current threshold range 2	IDACx = 0xFF	I _{TH,MAX2}	540	600	660	mA
A/B coil current threshold range 3	IDACx = 0xFF	I _{TH,MAX3}	270	300	330	mA
Chopper current error	T _{amb} <85°C	ΔI_{nom}	-10		10	%
A/B coil current mismatch range 1	IDACx = 0xFF	I_ THDIFFAB1	-6		+6	%
A/B coil current mismatch range 1	IDACx = 0xFF	I	-6		+6	%
A/B coil current mismatch range 1	IDACx = 0xFF	I_ THDIFFAB3	-6		+6	%
A/B coil current mismatch range 1	IDACx = 0xFF 12V <v<sub>vs<14V -20°C<t<sub>j<85°C</t<sub></v<sub>	I _{thdiffab,r1}	-5%		+5%	%
A/B coil current mismatch range 2	IDACx = 0xFF 12V <v<sub>vs<14V -20°C<tj<85°c< td=""><td>I_{THDIFFAB,R2}</td><td>-5%</td><td></td><td>+5%</td><td>%</td></tj<85°c<></v<sub>	I _{THDIFFAB,R2}	-5%		+5%	%
A/B coil current mismatch range 3	IDACx = 0xFF 12V <v<sub>vs<14V -20°C<t<sub>j<85°C</t<sub></v<sub>	I _{thdiffab,r3}	-5%		+5%	%
Chopper current comparator prop- agation delay		t _{cc-del}		250		ns
Half bridge high side on resistance	I_{LOAD} =-600mA V_{VS}, V_{VSPX} =13.5V T_{J} =50 C	R _{onhisrt}		450	550	mΩ
Half bridge high side on resistance	I _{LOAD} =-600mA V _{VS} ,V _{VSP} =13.5V T _J =150°C	R _{onhi3ht}		650	750	mΩ
Half bridge high side on resistance	$I_{LOAD} = -600 \text{mA}$ $V_{VS}, V_{VSPx} = 8 \text{V}$ $T_{J} = 50 \text{ C}$	R _{onhsrt}		500	600	mΩ
Half bridge high side on resistance	I _{LOAD} =-600mA V _{VS} ,V _{VSP,} =8V T _J =150°C	R _{onhbht}		800	950	mΩ
Half bridge low side on resistance	$\begin{array}{l} I_{\text{LOAD}} = 600\text{mA} \\ V_{\text{VS}}, V_{\text{VSPx}} = 13.5\text{V} \\ T_{\text{J}} = 50\text{ C} \end{array}$	R _{onlijrt}		550	650	mΩ
Half bridge low side on resistance	I _{LOAD} =600mA V _{VS} ,V _{VSR} =13.5V T _J =150°C	R _{onlisht}		950	1050	mΩ
Half bridge low side on resistance	I _{LOAD} =600mA V _{VS} ,V _{VSPx} =8V T _J =50°C	R _{onlbrt}		700	800	mΩ
Half bridge low side on resistance	I _{LOAD} =600mA V _{VS} ,V _{VSR} =8V T _J =150°C	R _{onlsht}		1150	1250	mΩ
Reverse diode voltage	$I_{\text{DIODE}} = 600 \text{mA}$ $T_{\text{amb}} = 25^{\circ}\text{C}$	V _{DIODE}		0.9		V

1) Not tested in production.

Electrical Characteristics (continued)

 $(V_{VS} = +5.5V \text{ to } +18V, T_{J} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/µs. Typical values are at $V_{VS} = +12V$ and $T_{J} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
Half bridge pull-down current	Half bridge off V _{A/Bx} =V _{VS} =V _{VSPx}	I _{PD}	20	60	100	μΑ
Slew-rate of driver	Rising edge I _{LOAD} >0 SLEW[1:0]=10 _b	SR _{R10}		70		V/µs
Slew-rate of driver	Falling edge I _{LOAD} >0 SLEW[1:0]=10 _b	SR _{F10}		-70		V/µs
Slew-rate of driver	Rising edge $I_{LOAD} > 0$ SLEW[1:0]=11 _b	SR _{R11}		110		V/µs
Slew-rate of driver	Falling edge I _{LOAD} >0 SLEW[1:0]=11 _b	SR _{F11}		-110		V/µs
Propagation delay digital signal to driver pin		t _{del}		1		μs
Zero Crossing Comparator Offset Voltage		V _{ZC_OFF}	-150		150	mV
Zero Crossing Comparator common mode range		V _{zc_cm}	-0.1		2.5	V
Zero Crossing Comparator propagation delay		t _{zc-del}	-	410	-	ns
Motor Control		·	i			
PWM frequency		f _{PWM}	20	23.8		kHz
PWM period		t _{PWM}		1/f _{PWM}		
PWM step resolution		t _{PWM.RES}		2/f _{clk}		
Current comparator mask	adjustable	t _{MASK}	5		24	t _{ci K}
JTAG Interface						
Pull-down resistance at pins TSTEN, TCK, TDI, TMS and TSTRST		R _{PD}	90	125	160	kΩ
Output voltage at TDO for 'low' logic level	I _{-tpo} =1.5mA JTAG access	V _{TDO,LOW}	0		0.8	V
Output voltage at TDO for 'high' logic level	I _{-tpo} =-1.5mA JTAG access	V _{TDO,HIGH}	V _{VDDD} -0.8		V _{VDDD}	V
EEPROM			!		,	
Memory size		N		64		Byte
Data retention time (1)	T,<85°C	t	10			a
Data retention time 1)	T ₁ <150°C	t	1			а
Programming cycles 1)	T ₁ <85°	N	105			1
Programming cycles 1)	T ₁ <125°	N _{END}	104			1
Wake-up time		t _{wakeup,ee}		50		μs

13/74

Electrical Characteristics (continued)

 $(V_{VS} = +5.5V \text{ to } +18V, T_{J} = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$, unless otherwise noted. Slew rate at pin VS < 1V/ μ s. Typical values are at $V_{VS} = +12V$ and $T_{J} = +25^{\circ}\text{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Тур	Max	Unit
FLASH (only in products with FLASI	H memory)					
Memory size for E523.30 FLASH version		N _{FLASH_8k}		8		k Byte
Data retention biased: operat- ing life (IC powered up, operating mode)	T = -40150°C N _{CYC} =1	t _{op}	10000			h
Data retention biased: operat- ing life (IC powered up, operating mode)	T = -40150°C N _{CYC} =100	t _{op}	5500			h
Data retention unbiased, unpow- ered or sleep mode	T _j = -4085°C	t _{stor}	87600			h
Data retention unbiased, unpow- ered or sleep mode	T _j = 125°C	t _{stor}	10800			h
Data retention unbiased, unpow- ered or sleep mode	T _j = 150°C	t _{stor}	1000			h
Programming cycles	T _J <85°C t _{oP} < 120h	N _{END}	10000			
Wake-up time		t _{wakeup,fl}		20		μs

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

14/74

PRODUCTION DATA - DEC 18, 2013 5 Typical Operating Characteristics	
VS+VSPA+VSPB sleep mode current at +13.5V depend- ing on temperature (-40 +170°C) (with VCC connected to GND)	VS+VSPA+VSPB sleep mode current depending on voltage (5-28V) at T= 50°C (with VCC connected to GND)
VS+VSPA+VSPB sleep mode current and V(LIN) ramp 0V>13V>0V over time at T= 50°, VS=13V	VCC depending on VS (5-28V) with I(VCC = 10mA
RON via Temp . (-40 +170°C)	Temperature Sensor Voltage after ADC (-40 +170°C)

POWER LIN2.X STEPPER WITH STALL DETECTION

6 Functional Description

6.1 Chip Control

6.2 Internal Supply Voltage for Analog and **Digital Parts**

The analog and digital 3.3V regulators are supplied by the external supply voltage VS. An internal short circuit protection prevents the device from damage. Each internal supply voltage requires an external blocking capacitor. It is recommended to place the external capacitors as close as possible to the related pins. During sleep mode the regulators are deactivated.

The analog regulator is not intended to supply any external components, except for potentiometers at the input pins D1..D3 if the analog capability of the GPIO interface is selected.

The digital regulator is not intended to supply any external components.

An internal pre-regulator provides the supply voltage for the LIN receiver and the wake-up logic during sleep mode.

6.3 Hall-Sensor Supply

Elmos Semiconductor AG

The Hall-sensor supply voltage requires an external blocking capacitor. An internal short circuit protection prevents the device from damage. During sleep mode V5V is deactivated. When leaving the sleep mode, the Hall-sensor supply pin V5V is inactive and has to be turned on explicitly by writing into the μ C register GPIO Control Register during running mode.

6.4 Power-On Reset

The power-on reset depends on the internal 3.3V supply voltages V_{VDDD} , V_{VDDA} and the pre-regulator resets. The internal reset signal is set when at least one of these 3.3V supply voltages reaches the corresponding threshold level and is cleared, if all internal voltages are available. After power-on-reset the device is in active mode (μ controller supply on) and all drivers off.

There is no hardware supply monitoring for the supply voltage VVS in the case of its under-voltage or overvoltage. If under-voltage or over-voltage at VS occurs, necessary actions (e.g. disabling the H4 half bridges) have to be conducted by software. In case of an under-voltage event at the 3.3V supplies the CPU is shut down and the device goes in sleep mode, so no software counter measure can be taken. The device is in sleep mode until a LIN-wake-up or a power-on reset takes place. In this case the drivers are set to high-impedance state by hardware. The thresholds for poweron reset and an example of software driver shutdown are shown at the figure below. In case of a power-up or after an under-voltage situation with a reset condition, the device wakes up.

Figure 1. Under-voltage/Over-voltage Detection and POR

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products

		
time		
Timing Diagram		

OM-No.: 25DS0115E.01

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

Data Sheet

6.5 Wake-up

The IC will automatically wake-up after power-up or after under-voltage conditions and features a remote wake-up from sleep-mode via the LIN interface. A falling edge at the LIN bus followed by a dominant bus level maintained for a time period $t_{LIN,WU}$ and a rising edge on the LIN bus results in a remote wake-up. After wake-up it is possible to evaluate the reason for the last sleep situation, by examining the RESSTAT register. The following events affect the RESSTAT register.

- Power-up:
 - all bits cleared, except for the under-voltage identifier, which can be read out via μ C..

- VDDA or VDDD under-voltage: - digital part is reset,
- none of the identifiers is modified
- Watchdog or LIN timeout: - digital part is reset,
 - watchdog identifier can be read out via $\mu\text{C}.$
- Over-temperature: - no reset or sleep mode initialized,
 - IC remains alive, only drivers are disabled,
 over-temperature identifier can be read out via μC.
 - C clean mode
- μC sleep mode:
 - μ C sleep mode identifier can be read out via μ C.

Note: To detect a reset at VDDA/VDDD the precondition is, that the software has to clear the UV bit. After a new reset the UV bit displays '1' if the reset was forced by pre-regulator undervoltage (i.e. VS power-on). If the reset was forced by VDDA/VDDD undervoltage, then no change occurs in the status bits.

Table 1. Reset Status Register Table

Register Name	Address	Description
RESSTAT	0x0408	Reset Status Register

Table 2. Reset Status Register

RESSTAT	MSB							LSB
Content	CLR	-	-	-	WD	SLP	OT	UV
Reset value	0	0	0	0	0	0	0	1
Internal access								
External access	R/W	R	R	R	R	R	R	R
Bit Description	CLR : 1_b : Clears the reset status bits WD : 1_b : Watchdog or LIN timeout forced reset SLP : 1_b : μ C sleep mode forced reset OT : 1_b : Overtemperature event occurred UVN : 1_c : Preregulator undervoltage event (VS power-on) forced reset							

Figure 2. Wake-up via BUS Timing Diagram

Elmos Semiconductor AG Data Sheet OM-No.: 25DS0115E.01
--

6.6 Sleep Mode

The sleep mode may be initialized via software register (Table 3 General Configuration Register Table) access or during an under-voltage situation with a reset condition. When entering the sleep mode the following actions are applied:

- deactivating all driver outputs,
- resetting of registers,
- deactivating all circuit parts not needed in sleep mode to minimize sleep current consumption,
- deactivating the V5V regulator (Hall-sensor supply),
- deactivating LIN pullup

The sleep mode current of the device will not rise even in the case of slowly floating bus levels.

The following test criteria according to the "Klima-Arbeitskreis" are met:

- 1. V_{BUS} =13V; wait for 1min; check sleep mode current 2. step down V_{BUS} by 1V; wait for 1min; check sleep
- mode current
- 3. do 2. until $V_{BUS} = 0V$
- 4. step up V_{BUS} by 1V; wait for 1min; check sleep mode current
- 5. do 4. until V_{BUS} =13V

General configurations of the processor periphery have to be made by setting up the GENCFG register. The sleep mode is also activated via GENCFG. As a result of the sleep mode activation, the processor is reset, the control hardware is reset and the supplies are set in power down. A restart is only possible with a wake-up pulse on the BUS pin.

Table 3. General Configuration Register Table

Register Name	Address	Description
GENCFG	0x0401	General Configuration Register

Table 4. General Configuration Register

GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R	R	R	R	R	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	SLEEP : 1, : activates sleep mode LOWEMC : 1, : activates spread-spectrum clock (least-significant oscillator adjust bit is tog gled with driver PWM frame frequency, that is approx. 150kHz FSK with 12kHz modulation frequency) BSWT : 0, : LIN2.1 mode 1 · PWM interface mode							: bit is tog- nodulation

6.7 Temperature Control

The IC has an on-chip temperature sensing. The temperature value can be read out by the integrated μ C via the integrated ADC. Additionally to this feature, the voltage threshold of the over-temperature detection can be read out via ADC, too. It is possible to implement a temperature warning threshold

at system level to reduce the power dissipation, if necessary. Furthermore the IC generates an over-temperature signal to shut off the half bridge driver and Hall-supply. For the reaction to over-temperature please refer to the following status table.

6.8 Status Table

Hardware reaction is defined for the following cases:

Table 5. Status Table

Event	Reset	Active or Sleep mode	V5V supply	Motor drivers
Power-on	Yes	Active-Mode	Off	Off
Wake-up	Yes	Active-Mode	Off	Off
Over-temperature	No	Active-Mode	Off	Off
Watchdog or LIN timeout	Yes	Active-Mode	Off	Off
Half bridge short circuit	No	Active-Mode	No change	System-level action only
μP initiates sleep mode	Yes	Sleep-Mode	Off	Off

6.9 Oscillator

The IC has an on-chip 32Mhz oscillator. The digital circuitry is clocked with 8MHz. For the motor - PWM generation a frequency jitter is selectable via register LOWEMC. It is possible to activate a spread-spectrum clock (leastsignificant oscillator adjust bit is toggled with driver PWM frame frequency, that is approx. 150kHz FSK with 24kHz modulation frequency)

Table 6. General Configuration Register Table

Register Name	Address	Description
GENCFG	0x0401	General Configuration Register

Table 7. General Configuration Register

	-							
GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	SLEEP : see chapter Sleep-mode LOWEMC : 1 _b : activates spread-spectrum clock (least-significant oscillator adjust bit is toggled with driver PWM frame frequency, that is approx. 150kHz FSK with 24kHz modulation frequency) BSWT : see chapters LIN and PWM interface							

6.10 PWM interface (Receiving PWM Data)

The bus PWM interface can be used to receive position or speed requirements from an external PWM interface master. The bus PWM interface uses an internal frequency with 8 bit resolution. The PWM Input Interface can be configured by setting the PWMFREQ status bit in then PWMCFG Register (<u>Table 13 BUS PWM Configuration Register Table</u>) with a sampling clock of 500kHz. Otherwise the sampling clock is set to 250kHz (with a processor clock of 8MHz).

The registers are updated after equidistant time steps: 250kHz • 256 = 1.024ms or

250 kHz • 256 = 1.024 ms

500kHz • 256 = 0.512ms

These PWMLH and PWMHL registers contain the relative time values of edge events at BUS / RXD of the previous sample period. The value "255" means, that no proper edge was found. To signalize the availability of new register values, an interrupt is generated. If the controller does not read the register values within the given time slot, the old values will be overwritten by the new ones.

The sampling clock is not depending on the PWM frequency of the interface. So, with slow PWM interfaces it may take a number of readouts by the IC to be able to calculate the information, which is transferred by the PWM interface. The advantage of this "open" solution is, that the controller is able to analyze even special PWM codings with additional information hidden inside the cycle.

-	 		
Elmos Semiconductor AG	Data S	heet	QM-No.: 25DS0115E.01

Figure 3. PWM Flow

Table 8. BUS PWM Control Register Table

Register Name	Address	Description
PWMCTRL	0x000C	PWM Control Register

Table 9. PWM Control Register

PWMCTRL	MSB							LSB
Content	-	-	-	-	IRQ_EN	IRQ_CLR	IRQ	TXD
Reset value	0	0	0	0	0	0	0	1
Internal access	R	R	R	R	R/W	R/W	R	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	IRQ_EN : IRQ 1 : IRQ is unn 0 : IRQ is mas IRQ_CLR : IRQ 1 : clears the (Note: should 0 : <none> IRQ : IRQ Per 1 : An IRQ is p 0 : No IRQ is p TXD : CPU ac 0 : bus domir 1 : bus recess</none>	Mask Bit hasked Clear Bit(i actually pe be set in !! hding Bit bending bending cess to BUS hant hive	s automatio nding IRQ 5R and befo	cally reset to	o '0')			

Register Name	Address	Description					
PWMLH	0x000A	BUS PWM Rising Edge Position Register					
PWMHL	0x000B	PWM Falling Edge Position Register					

Table 10. BUS PWM Position Register Table

Table 11. BUS PWM Rising Edge Position Register

PWMLH	MSB							LSB
Content	PWM- LH[70]							
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description								

Table 12. PWM Falling Edge Position Register

PWMHL	MSB							LSB
Content	PWM- HL[70]							
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description								

Table 13. BUS PWM Configuration Register Table

Register Name	Address	Description
PWMCFG	0x0402	BUS PWM Configuration Register

Table 14. BUS PWM Configuration Register

PWMCTRL	MSB							LSB
Content	-	-	-	-	-	-	-	PWMFREQ
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	PWMFREQ : PWMCFG[0] 0 : sample frequency = 250kHz 1 : sample frequency = 500kHz							

Transmitting Data

Elmos Semiconductor AG

By writing the TXD register bit, the pin BUS can be directly activated by the controller. The "LIN TXD Time Out" functionality is deactivated when the pin BUS is set to PWM interface mode.

Data Sheet

6.11 LIN interface (only for products with LIN interface)

The bus interface can be either set to LIN mode or to PWM interface-mode by configuring the bit BSWT of GENCFG register (Table 16 General Configuration Register). This setup should be done directly after μ C start (after power-up or reset condition). The LIN pull-up re-

sistor can be activated or deactivated by setting of the bit ON30K in the LINAA register (Table 30 LIN Auto-addressing Register). In sleep mode the pull-up is deactivated. The pullup is activated automatically after wakeup.

Table 15. General Configuration Register Table

Register Name	Address	Description
GENCFG	0x0401	General Configuration Register

Table 16. General Configuration Register

GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	SLEEP : see chapter Sleep-mode LOWEMC : see chapter oscillator BSWT : 0 _b : LIN mode 1 _b : PWM mode							

The LIN communication module consists of:

- LIN receiver with a capability of speed up to 125 kbit/s,
- LIN transmitter with a capability of speed up to 125 kbit/s,
- LIN-UART : SCI interface (Serial Communication Interface)
- Auto-addressing.

Figure 4. Block diagram of LIN SCI

The parameters of the following bus timing diagram are specified in section LIN Transceiver.

Figure 5. LIN Timing

6.12 LIN Receiver

The LIN transceiver consists of a receiver and a transmitter. The figure below shows a block diagram of the receiver.

Figure 6. Block Diagram of the LIN Receiver

The low-pass filter at the input filters out high frequency components and assures faultless communication even under severe RF conditions. The reference voltage of the comparator is derived from the supply voltage. This way a duty cycle close to 50% is achieved under all supply conditions. The debounce filter is chosen so, that the digital SCI receives a signal without any spikes. This ensures a good decoding of the received data even in a harsh automotive environment.

The debounce filter is by passed in 125kbit/s high-speed LIN mode.

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products

Elmos Semiconductor AG

6.13 LIN Transmitter

The transmitter is slew-rate controlled through the feedback capacitor C1 to minimize electrical noise on the bus line. Both negative and positive edges are regulated. Due to the construction, a positive edge is only controlled by the device when the slew-rate is higher that the time constant on the bus pin (capacitance and wiring of all nodes connected to the bus).

The output stage is protected against short circuit to VVS with a current limiting circuit. To protect the device against loss of ground the diode D2 is included. This minimizes the disturbing current on the bus lines when the ground line is broken. The recessive output voltage is defined by the diode D1 and the pull up resistance. The dominant voltage is generated through M1 and D2.

A block diagram of the transmitter circuit is shown in figure below.

Figure 7. Block Diagram of the LIN Transmitter

TXD Timeout Functionality

If the TXD signal is dominant for the time t > $t_{LIN,BUS,DOM}$ the device gets an internal reset. This implies that the TXD signal switches to a recessive level and further this prevents the LIN bus being blocked by a dominant level. In the initial state of the device the TXD Timeout Functionality is enabled. But it can be disabled anytime by setting the TXD TO DIS-Bit in the LIN MODE register (Table 18 LIN Mode Configuration Register)

Figure 8. TXD Timeout

24/74

V _{BUS}	\square		
			t

6.14 LIN-UART / LIN- SCI Controlling the LIN-Interface

Features of LIN SCI:

- Full duplex operation
- 8N1 data format, standard mark/space NRZ format
- extended baud rate selection options
- Interrupt-driven operation with four flags:
 - 1. receiver full
 - 2. transmitter empty
 - 3. measurement finished

4. break character received

Special LIN support:

- 13 bit break generation
- 11 bit break detection threshold
- A fractional-divide baud rate pre-scaler that allows fine adjustment of the baud rate

- Measurement counter which has 16 bits and can be used as a mini-timer to measure break and bit times (baud rate recovery).
- Baud measurement results can directly be fed into the baud register to adjust the baud rate (baud selfsynchronization with SYNC byte)
- A special high-speed LIN mode allows an increasing of receiver bit transfer up to 125 kbit/s.

The LIN SCI uses a clock whose frequency is 16 times $1/t_{\rm Bit}$. The detection of the start bit takes place at S1 in figure below. The sampling of the received signal occurs in the middle of the bit with three samples. The majority of the samples defines the bit level. This way the LIN requirements $t_{\rm BFS}$, $t_{\rm EBS}$ and $t_{\rm LBS}$ are fulfilled.

Figure 9. LIN SCI Operations

The LIN_MODE register is used to select between the normal and high speed LIN mode. The high speed LIN mode allows data transmission rates of up to 125 kbit/s. Additionally, the SCI module can be disabled in order to control the LIN transceiver directly by CPU. This can be used to set up a custom specific protocol.

Table 17. LIN Mode Configuration, Status and Data Register Table

Register Name	Address	Description
SCIBRH	0x0010	SCI Baud Rate Register High Byte
SCIBRL	0x0011	SCI Baud Rate Register Low Byte
SCICTRL	0x0013	SCI Control Register
SCISTATH	0x0014	SCI Status Register High Byte
SCISTATL	0x0015	SCI Status Register Low Byte
SCIDATA	0x0017	SCI Data Register
SCIMEASCTRH	0x0018	SCI Measurement Control Register High Byte
SCIMEASCTRL	0x0019	SCI Measurement Control Register Low Byte
SCIMEASDATH	0x001A	SCI Measurement Data Register High Byte
SCIMEASDATL	0x001B	SCI Measurement Data Register Low Byte
LIN_MODE	0x001E	LIN Mode Configuration Register

Table 18	ΠN	Mode	Configu	iration	Register
TUDIC 10.		mouc	Conngo	nation	REGISTEI

LIN_MODE	MSB							LSB
Content	TXD_TO_ DIS	RXD_F_ IRQ	RXD_R_ IRQ	RXD_ IRQ_EN	HS_EN	SCI_DIS	TXD	RXD
Reset value	0	0	0	0	0	0	1	-
Internal access								
External access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Bit Description	TXD TO DIS 1. : functiona 0. : functiona RXD F IRQ : 1. : indicates Write '0' to cl RXD R IRQ : 1. : indicates Write '0' to cl RXD IRQ EN 0. : interrupt HS EN : enab 0. : normal LI 1. : high spece SCI DIS : disa 0. : SCI modu TXD : CPU ac 0. : bus domi 1. : bus reces RXD : read cu	: disable T ality disable Ality enable RXD falling a falling ed ear this bit RXD rising a rising ed ear this bit I : RXD edg disabled ole high spe N mode d receiver able interna- ile active able interna- able interna- a	XD timeou ed g edge inte ge on the ge on the b ge on the b ge interrup eed receive enabled al SCI mod l, LIN trans 5 (only if SC	rrupt bus input rrupt ous input t enable er: ule: mitter con CI_DIS=1):	ality: trolled by I	pit number	• 1 'TXD'	

Table 19. SCI Baud Rate Register High Byte

SCIBRH	MSB							LSB
Content	BD[15]	BD[14]	BD[13]	BD[12]	BD[11]	BD[10]	BD[9]	BD[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	BD[15] : MSB BD[8] : LSB o	of SCI baud f SCI baud r	d rate diviso ate divisor	or select hig select low b	sh byte byte			

Table 20. SCI Baud Rate Register Low Byte

SCIBRL	MSB							LSB
Content	BD[7]	BD[6]	BD[5]	BD[4]	BD[3]	BD[2]	BD[1]	BD[0]
Reset value	0	0	1	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	BD[7] : MSB of BD[0] : LSB of Divisor: Set BD[15:0] BD[15:0]=0x0 BD[15:0]=0x0 BD[15:0]=0x0 BD[15:0]=0x0	of SCI baud SCI baud r BD[15: as follows: 080 for 12 0341 for 19. 0683 for 9.6 0000 means	rate divisor ate divisor s $0] = \frac{2 \cdot f}{Baud}$ 5kbit/s 2kbit/s kbit/s s bypassing	select low b select low b CLK Irate	byte byte ate divisor			

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

Table 21. SCI Control Register

SCICTRL	MSB							LSB
Content	TIE	LIN	RIE	BIE	TE	RE	MFIE	SBK
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	TIE : TxD Inte LIN : Lin Mod LIN break trai LIN break rec RIE : RxD Inte BIE : Break de TE : Transmit If software cl shift register message, alw RE : Receiver RE set to '0' s Setting RE to rupt generati Setting RE to rupt generati Setting RE to rupt generati Setting RE to rupt generati Setting Set Set) SBK : Send Br Toggling SBK set). Toggling ting. As long bits respectiv	rrupt Enabl e: nsmit enable eive detect errupt Enable etection Into ter Enable ears TE wh continues to vays wait fo Enable uppresses s '1' during a con (RDRF), '0' during a on (RDRF), '0' during a on (RDRF), rement Fin reaK bit sends one g implies cle as SBK is se vely 13 bits)	e (generate le (13 bit br ion enable (le (generate errupt Enab ile a transm to shift out. or TDRE to g start bit reco n ongoing t received da ish Interrup break chara taring the Si t, the trans	eak symbol (detects a 1 es SCI_RIE IF es SCI_RIE IF es SCI_RIE IF ile (generate nission is in . To avoid ac o high after ognition. transfer can transfer can	RQ interrup instead of 1 bit break RQ interrup es SCI_BIE_ progress (Tr cidentally of the last fra- cause erro cause erro	t when TDF 10 bit), symbol inst t when RDF IRQ interru C = 0), the f cutting off f ame before neous data neous data cl_MFIE_IRC spectively 1 character h nd complete	RE is set) cead of 10 b F is set) pt when BR rame in the the last fran clearing TE. reception a reception a 2 interrupt 3 logic zero nas finished e break chai	hit) F is set) transmit me in a and inter- and inter- when MF s if LIN is I transmit- racters (10

Table 22. SCI Status Register High Byte

SCISTATH	MSB							LSB
Content	-	-	-	-	-	-	ABT	AMT
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	ABT : Auto Ba Set when new valid SNYC by AMT : Auto M Set when me when reading	aud Triggere w baud valu yte measure Aeas Trigge easurement g the MSB c	ed ue was copi ement. Clea red was starte of the statu	ed automa ared when r d automati s word.	tically to ba eading the cally after r	ud configur MSB of the eception of	ration regist status wor a valid brea	ter after a d. ak. Cleared

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

27/74

Table 23. SCI Baud Rate Register Low Byte

SCISTATL	MSB							LSB
Content	TDRE	TC	RDRF	BRF	OV	MRUN	MF	FE
Reset value	1	1	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	TDRE : Transr Clear TDRE b not empty, so TC : Transmit TC is set to '0 RDRF : Receiv Clear RDRF b NOTE: RDRF b NOTE: RDRF b a) in case of c bits are samp set after the b) in case of c BRF : Break R Clear BRF by The BR flag w set) logic 0 ds When BRF is Note: flag ge OV : receiver Clear OV by r OV will be se frame or a br MRUN : Measure Clear MF by r FE : Framing FE is set whe FE will be upo	nit Data Re y writing to o check if TI Complete ' while a tra ve Data Reg y reading SC will be set: data recepti oled in the r estimated e oreak recept eceived Flag reading SCI vill be set w ata bits and set FE and F neration (in overrun de eading SCI s t when a re eak charact surement R ement Finis read accessi Error flag n the logic of dated at the	gister Empt SCI data re DRE = 1 bef flag ansmission ister Full fla CI status wi ion: 1/8 nor middle of a end of the a tion: see BR g (LIN mode status with then the sta I a logic 0 w RDRF will be ccl. BRF) will tected status with ceived data ter arrives. T unning h flag ng the mea does not de e same time	ty egister. Writ ore writing is in progree g th RDRF set minal bit ler nominal bit ler nominal bit ective stop b CF descriptic e dependen n BRF set an art bit is foll where the st e set, too. TI l be suppres OV set and a byte is not The second asurement c etect a logic e as RDRF.	e will be igr to transmit ss and then r ngth after t length, the bit. on below t) id then read owed by 8 (op bit shou he SCI data ssed when / l then readi read befor data byte v counter. 1 where th	eading SCI eading SCI he recogniz e flags and t ding SCI dat register wil AAM is set. ng SCI data e the data I vill be ignor	a transmit re data register red stop bit. the interrup a register. y 9 when LI II be cleared register. byte of the red. hould be.	egister is er. Since the ot will be N mode is I. next

Table 24. SCI Data Register

SCIDATA	MSB							LSB
Content	SCIDATA[7]	SCIDA- TA[6]	SCIDA- TA[5]	SCIDA- TA[4]	SCIDA- TA[3]	SCIDA- TA[2]	SCIDA- TA[1]	SCIDA- TA[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	SCIDATA[7] : SCIDATA[0] : write SCIDAT	MSB of SCI LSB of SCI d A[7:0] for tr	data registe lata registe ansmitting	er r a byte, rea	d it for a rec	ceived byte		

SCIMEASCTRH	MSB							LSB
Content	-	-	DBC[6]	DBC[5]	DBC[4]	DBC[3]	DBC[2]	DBC[1]
Reset value	0	0	0	1	0	1	0	0
Internal access	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	DBC[6] : MSB DBC[1] : DBC DBC[0] is alw t _{debounce} = DBC The reset val	of deboun [6:1] - debo ays set to lo [6:0] • t _{cLK} ue is decim	cing filter v uncing filte ogic 1. DBC al 41 (nomi	alue r threshold [6:0] set the nally 5125n	for baud ra debouncir s).	te measure g time as fo	ment (MM ollows:	ODE=0)

Table 25.	SCI Measurement	Control	Register	High	Byte
-----------	-----------------	---------	----------	------	------

Table 26. SCI Measurement Control Register Low Byte

SCIMEASCTRL	MSB							LSB
Content	-	-	-	-	AB	AM	MMODE	MEN
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	AB : AutoBau Automaticall measuremen NOTE: During ceived, only t interrupt). AM : Auto Mi Automaticall flag will be se NOTE: AUTO BRF). MMODE : Me 0 : Baud rate falling edges NOTE: The ba in the LIN pro 1 : break time RxD line is ze NOTE: only a MEN : Measu Set to '1' to si After the me NOTE: When NOTE: When NOTE: When	Id y copy baud t (expecting g baud mea he measure eas y start a ba et. 	d measuren g SYNC byte surement t ement logic ud rate mea de suppress Mode Sele ent, counte s are measu ement expe nent, count gether with able urement. is finished, is set, MEN EN resets th	hent result e). The ABT he receiver is active w asurement ses the flag ect r runs with ired), debou ects a 0x55 er runs with h MEN cont the MEN bir I must not b he measure	to baud cor flag will be is disabled hich will se after recep specific flag system clou incer is enal data byte t n 16-fold ba rol bit. t will be cle be used. ment logic	nfig register set. an therefor t the MF fla tion of a val g generation ck and mea bled. to measure, nud rate, me ared autom and allows	after a vali e no data w g (configura lid break. Th n (see SCI_s sures time f this is the S easures time natically. a safe resta	d baud vill be re- able as ne AMT tatus -> petween 4 SYNC byte e when

Table 27. SCI Measurement Data Register High Byte

SCIMEASDATH	MSB							LSB
Content	MC[15]	MC[14]	MC[13]	MC[12]	MC[11]	MC[10]	MC[9]	MC[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	MC[15] : MSE MC[8] : MSB	of Measur of Measure	ement Cour ment Coun	nter high by ter high byt	/te :e			

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

POWER LIN2.X STEPPER WITH STALL DETECTION PRODUCTION DATA - DEC 18, 2013

SCIMEASDATL	MSB							LSB
Content	MC[7]	MC[6]	MC[5]	MC[4]	MC[3]	MC[2]	MC[1]	MC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	MC[7] : MSB MC[0] : LSB of The counter When the me the measure an adapted b Note: in baud baud rate reg	of Measurer of Measurer is cleared b easuremen ment will b baud rate se d measuren gister to adj	ment Coun nent Count y every star t counter ov e stopped (etting. nent mode ust the bau	ter low byte er low byte t of a new r verflows, th MF flag set) the resultin id rate BD[1	e measureme e counter v). The meas ng 16 bit val .5:0].	ent. value is satu urement sh lue MC[15:0	irated to 0x ould be rep)] can be fec	FFFF and reated with d into the

Table 28. SCI Measurement Data Register Low Byte

The following diagram shows the automatic baud rate measurement process with AM=1. The measurement run (MRUN) starts automatically after lin break detection and ends after sync-field measurement. The up-

date_baud signal indicates the baud rate register update time, if AB=1. During the baud rate measurement the flags in the SCISTATL register are not updated.

Figure 10. Timing Diagram of Autobaud Measurement

6.15 LIN Auto-addressing (only in products with LIN Auto-addressing)

Called "SNPD" in official LIN-specification

Table 29. LIN Auto-addressing Register Table

Register Name	Address	Description
LINAA	0x001F	LIN Auto-addressing Register

Table 30.	LIN Auto-addressing	Register
-----------	---------------------	----------

LINAA	MSB							LSB
Content	-	REF_ON	REF_SEL	I2MEN	ON30K	AAEN	-	-
Reset value	0	0	0	0	1	0	0	0
Internal access	R	R/W	R/W	R/W	R/W	R/W	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	REF_ON : 1 REF_SEL : 1 0 0 I2MEN : 1 ON30K : 1 AAEN : 1	REF_ON :1.1.1.1.REF_SEL :1.: selects the 10Ω reference current source of the LIN busREF_SEL :1.: selects the 1Ω auto-addressing resistor0.: selects the 1Ω auto-addressing resistorI2MEN :1.: activates the 2mA current source of the LIN busON30K :1.: activates the pull-up resistor on the LIN busON30K :1.: uto-addressing enable						

Elmos Semiconductor AG	Data Sheet	QM-No.: 25DS0115E.01

Auto-addressing Mechanism

The auto-addressing feature added to the normal LIN bus functionality allows that slaves to detect their relative position within a bus system. The hardware extensions needed for that purpose are a shunt resistor between the BUS_M and BUS_S nodes of the slave, a pull-up current source of typically 2mA and a circuitry that allows to measure the differential voltage across the bus shunt. The measurement is performed via the internal ADC. The slaves within such a bus system have to be connected as a displayed below. The following diagram shows such a bus architecture:

Figure 11. LIN Bus Auto-addressing Architecture

Figure 12. LIN Auto-addressing Reference Threshold Generation

On the left side of the schematic the ECU is terminating the LIN bus. Next there is a group of addressable slaves, each of them having its own auto-addressing circuitry. Finally, shown on the right side of the schematic, there may be some standard LIN bus transceivers without auto-addressing capability. As well they may be mixed up with the addressable slaves in any possible position.

The start of the addressing sequence is initialized by the ECU, with a command sent to the slaves telling them that the addressing sequence starts with the next sync break. After receiving this message, the slave performs a self-calibration. The 100 μ A reference current source is enabled, the amplifier input is multiplexed to the 10 Ω reference resistor and a reference threshold voltage is measured by the ADC, see figure above. During the next sync break each slave starts its auto-address-

ing sequence. The sequence is divided up in measuring the offset current on the bus line, measuring the bus load and, depending on the bus load, switching on the current source for the detection of the last not addressed slave in the line. It is recommended to use a threshold value of 1mA for the decision in the following flow chart (as derived by the self-calibration measurement). This gives the maximum noise immunity to the low value (0mA) and the high value (2mA if only one other slave is behind).

In order to assure that the different steps of the autoaddressing sequence are executed synchronously by all the slaves, a timing scheme for the sync break is defined. The time reference is the bit time $t_{BIT,SLAVE}$. The following timing diagram shows the requested timing for the different steps to executed during the sync break.

Figure 13. Timing Diagram Auto-addressing Process

The following flowchart shows the command sequence, that is executed during every synch break within the autoaddressing process.

Figure 14. Flowchart Auto-addressing Process

-	-	 	
Elmos Semiconductor AG		Data Sheet	QM-No.: 25DS0115E.01

6.16 Hall Sensor or Potentiometer Input

The pins D1, D2, D3 have two functions:

1. The pins are 3.3V analog inputs. The input voltage can be measured with the internal ADC. The maximum measurable voltage is equal to the internal ADC reference voltage).

2. The pins are configured as 5V general purpose inputs or outputs. They can individually be configured as input or as output. In input mode they can interface digital Hall-sensors.

It is possible to set the functionality of each pin D1, D2, D3 individually, e.g. D1 is configured as 3.3V analog input, D2 as 5V digital input and D3 as 5V digital output. If the pins are used, the V5V regulator has to be turned on, regardless of the configuration of the pins.

The pins are equipped with software-controllable pullup and pull-down structures. These can be configured individually for each pin.

It is possible to generate an interrupt, if the state of the input pins is changed. The interrupt is enabled with GPIO_IE in the register GPIOCFG by writing a '1'. A pending interrupt is reset by writing a '0' at GPIO_IE.

NOTE: The three features analog/digital input, digital output level and pull-up/pull-down can be configured in an arbitrary manner for each pin. For analog input pins care has to be taken, that the reduced analog input voltage range is met by the configuration.

Figure 15. GPIO block diagram

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products

34/74

Table 31.	GPIO	Register	Table
-----------	------	----------	-------

Register Name	Address	Description			
GPIO	0x0002	GPIO Input Register			
GPIOPUD	0x0003	IO Pull-up and Pull-down			
GPIOCFG	0x0403	GPIO Control Register			

Table 32. GPIO Control Register

GPIOCFG	MSB							LSB
Content	EN_V5V0	GPIO_IE	D3DIG	D2DIG	D1DIG	D3D	D2D	D1D
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	EN_V5V0 : Er GPIO_IE : 1, F 0, R D3DIG : 1, 0, P D2DIG : 1, 0, P D1DIG : 1, 0, P D1DIG : 1, 0, P D3D : 1, F 0, If D2D : 1, F 0, If D1D : 1, If 0, If	hable Hall-s Enables inter esets a pen Pin D3 is con in D3 is con Pin D2 is con in D3 is con f configured f configured configured configured configured	ensor suppl errupt at GP ding interru nfigured as ifigured as ifigured as ifigured as ifigured as d as 5V GPIO d as 5V GPIO as 5V GPIO as 5V GPIO as 5V GPIO as 5V GPIO as 5V GPIO	y regulator IO Jpt 5V GPIO 3.3V analog 5V GPIO 3.3V analog 5V GPIO 3.3V analog 0, then pin D 0, then pin D 0, then pin D 0, then pin D 0, then pin D	input input D3 is outpu D2 is input D2 is outpu D1 is outpur D1 is input	t t		

Table 33. GPIO Input Register

GPIO	MSB							LSB
Content	-	-	-	-	-	D3	D2	D1
Reset value	0	0	0	0	0	0	0	0
Internal access	-	-	-	-	-	R/W	RW	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	D3 : State of D3 D2 : State of D2 D1 : State of D1							

Table 34. GPIO Pull-up and Pull-down

GPIOPUD	MSB							LSB
Content	-	D3PD	D2PD	D1PD	-	D3PU	D2PU	D1PU
Reset value	-	0	0	0	-	0	0	0
Internal access	-	R/W	R/W	R/W	-	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	D3PD : 1_{b} Enables pull-down resistor on D3 D2PD : 1_{b} Enables pull-down resistor on D2 D1PD : 1_{b} Enables pull-down resistor on D1 D3PU : 1_{b} Enables pull-up resistor on D3 D2PU : 1_{b} Enables pull-up resistor on D2 D1PU : 1_{b} Enables pull-up resistor on D2 D1PU : 1_{b} Enables pull-up resistor on D1							

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG

35/74

6.17 ADC and Input Multiplexer

The controller has access to an internal 8-bit ADC. The ADC has different input sources:

- 1. Potentiometer input D1,
- 2. Potentiometer input D2,
- 3. Potentiometer input D3,
- 4. Resistively divided supply voltage,
- 5. Temperature monitor,
- 6. Temperature shutoff threshold.

The ADC source is selectable with SEL[2:0] in the ADCC-NTR register.

The pins D1 to D3 are configurable as Hall or potentiometer inputs via the GPIOCNTR register. The measurement principle is ratio-metric, if an external potentiometer of typically $10k\Omega$ is connected between VDDA and GNDA, as the internal ADC references are equal to the VDDA/GNDA voltages. Ambient temperature measurements are also possible if an external sensor is used. The supply voltage is divided by 12. The input range is $0..12^*V_{VDDA}$. It is possible to realize over- or under-voltage warning thresholds at system level.

The chip temperature is also monitored. It is possible to program a hot or cold warning function at system level. The measured temperature is scaled in the following way: $T_J(^{\circ}C)= (ADC-K_0)^{*}G_{T}$. The temperature shutoff threshold is calculated in the same way.

Following decimal values are typically expected: 120 @ -40°C, 99 @ 25°C, 68 @ 125°C and 60 @ 150°C.

The ADC is a 8-Bit SAR ADC. The ADC consists of two parts, the analog and the digital ones. The ADC uses a charge redistribution split array DAC and a comparator in a successive-approximation loop to achieve a conversion time of 21 t_{CLK} clock cycles. The ADC conversion time of the chip is therefore 2.625µs (4 clk for sampling window). If the channel for the LIN Auto Addressing is set, the conversion time is 171 t_{CLK} clock cycles (128 t_{CLK} for sampling window) or approximately 21.4µs.

Table 35. ADC Register Table

Register Name	Address	Description
ADCCNTR	0x0020	ADC Control Register
ADCDAT	0x0021	ADC Data

ADCCNTR	MSB							LSB
Content	EOC	TADC1	TADC0	SEL[3]	SEL[2]	SEL[1]	SEL[0]	SOC
Reset value	1	0	0	0	0	0	0	0
Internal access	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	EOC : End of conversion TADC1 : Test TADC0 : Test SEL[3] : ADC input select 3 SEL[2] : ADC input select 1 SEL[0] : ADC input select 1 SEL[0] : ADC input select 0 0000_b: D1 voltage 0011_b: D2 voltage 0011_b: T_b 0100_b: T_b 0100_b: T_b 0100_b: T_b 0110_b: LIN Addressing 0111_b: 1000_b: TDAIO 1001_b: Zero SOC : Start of conversion							

Table 36. ADC Control Register
Table 37. ADC Data

ADCDAT	MSB							LSB
Content	ADC[7]	ADC[6]	ADC[5]	ADC[4]	ADC[3]	ADC[2]	ADC[1]	ADC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description								

7 Half Bridge Drivers

7.1 Output Drivers and Control

The output drivers A0/A1 and B0/B1 are composed of two H-bridges. Each driver of the H-bridge is accessible separately through a control register. If an over-temper-

ature condition is detected, the drivers are switched off by hardware. The following diagram shows the structure of one full bridge.

Figure 16. Current Control Loop

7.2 Chopper Current Control Loop

A chopper control is for torque control and micro-stepping implemented. The IC provides a fixed frequency PWM to allow a more precise supply filtering for EMI reduction. The chopper t_{oN} phase starts with the base frequency. The t_{oN} phase ends if the comparator indicates that the current level is reached. Due to the fact that there may be short current peaks at the beginning

of each tON phase caused by capacitive loads on A0/1 or B0/1, the current measurement hardware will be masked for a defined time t_{mask} after the beginning of any t_{ON} phase. The off-time will not be present if the peak current is not attained during the PWM on-time. The current level for coils A and B are set up with the values of registers IDACA and IDACB.

Figure 17. Simplified schematic of the current control loop of one full bridge

The driver currents I_{A0} and I_{A1} are mirrored into the current measurement hardware by splitting the related power transistors into two sections. The driver and sense transistors of each half bridge share common gate and source nodes, the drain nodes of both sense transistors belonging to one full bridge are tied together. Due to the fact that only one of the full bridge's low-side drivers may be enabled at a time, these two drain nodes may be connected without any additional switch.

In order to make the driver current and the sensed current match the width relation of driver and sense transistor, the drain voltage has to be controlled by an operation amplifier. The reference voltage of this control loop is one of the half bridge output voltages V_{A0} or V_{A1} , depending on the state of the full bridge. If the full bridge is disabled or in its tOFF phase, the input voltage of the operation amplifier has to be tied to a defined bias voltage.

The output signal of the circuitry around the low side driver transistors equals the coil current divided by a special mirror factor, that was defined by the driver/ sense transistor width relation. This internal sense current will be mirrored a second time and then will be compared to a reference current I_{DAC} .

Due to the fact that there may be short current peaks at the beginning of each t_{ON} phase caused by capacitive loads on A0 or A1, the current measurement hardware will be masked for a defined time t_{MASK} after the beginning of any tON phase. During this phase the current measurement hardware is held in a safe state (COMP=0_b). After the end of the mask time the current measurement hardware will settle from this initial state to the normal operating condition. For setting the masking time, refer to register HBCTRL (Table 43 Half Bridge Control Register).

The following table shows the setup of the current control loop for the different configurations of the half bridge A.

Phase	A0H	AOL	A1H	A1L	S0	S1	A	I _{A,INT}
t _{on}	-	ON	ON	-	ON	-	V _{A0}	I _{A0} /M
t _{on} , reversed direction	ON	-	-	ON	-	ON	V _{A1}	I _{A1} /M
t _{off}	ON	-	ON	-	-	-	Idle	0
Drivers disabled	-	-		-	-	-	Idle	0

Table 38. Current Control and Half Bridge State Table

7.3 Motor Register Control

The half bridge drivers get their control signals from the motor control logic. The rotational position of the motor and the torque of the motor is controlled by the current of coils A and B. The control logic includes the PWM

generation, the current control and the stall detection. Waveform Control to be done by software with minimum 10 kHz refresh rate.

Register Name	Address	Description
STLDTHR	0x0000	Motor Configuration Register 1 (please contact supplier for optimized values)
CNTFBC	0x000D	Motor Configuration Register (read only, not needed for application)
STLFINC	0x000E	Motor Configuration Register 2 (please contact supplier for optimized values)
STLFLVL	0x000F	Motor Configuration Register 3 (please contact supplier for optimized values)
HBCTRL	0x0028	Half Bridge Control Register
HBDATA	0x0029	Half Bridge Data Register
HBSTATUS	0x002A	Half Bridge Status Register
IDACA	0x002B	Chopper Current Register of Half Bridge A
IDACB	0x002C	Chopper Current Register of Half Bridge B
DECCTRL	0x002D	Decay Control Register
ONTIME	0x002E	On-Time Register
MOTSTA	0x002F	Motor Status Register
STLFTHR	0x0411	Motor Configuration Register 4 (please contact supplier for optimized values)

Table 39. Motor Control Register Table

Table 40. Motor Configuration Register 1

STLDTHR (0x0000)	MSB							LSB		
Content	-	DTHR[6]	DTHR[5]	DTHR[4]	DTHR[3]	DTHR[2]	DTHR[1]	DTHR[0]		
Reset value	0	0	0	0	0	0	0	0		
Internal access	R	R/W								
External access	-	-	-	-	-	-	-	-		
Bit Description	DTHR[6:0]Motor Configuration Register 1 (please contact supplier for optimized values)									

Table 41. Motor Configuration Register 2

STLFINC (0x000E)	MSB							LSB
Content	FINC[5]	FINC[4]	FINC[3]	FINC[2]	FINC[1]	FINC[0]	MOTP- WM_IE	MOTP- WM_IRQ
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	FINC[5:0] Motor configuration Parameter Set 2 (please contact supplier for optimized values) MOTPWM_IE : 1 _b enables the MOTPWM Interrupt MOTPWM_IRO : Indicates the beginning of a new PWM cycle. Setting 1, resets the bit							

Table 42. Motor Configuration Register 3

Elmos Semiconductor AG

STLFLVL (0x000F)	MSB							LSB
Content	FLVL[7]	FLVL[6]	FLVL[5]	FLVL[4]	FLVL[3]	FLVL[2]	FLVL[1]	FLVL[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	FLVL[7:0] : Mo ues)	otor Config	uration Para	ameter Set	3 (please co	ontact supp	lier for opti	mized val-

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Data Sheet

QM-No.: 25DS0115E.01

Table 43. Half Bridge Control Register

HBCTRL (0x0028)	MSB							LSB
Content	MASK[1:0]	MASK[1:0]	-	SLEW	FDECA	FDECB	RNG[1:0]	RNG[1:0]
Reset value	0	1	0	1	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	MASK[1:0] m 00_b : 750ns 01_b : 1500ns 10_b : 2250ns 11_b : 3000ns SLEW : SLEW 0_b : 70V/µs m 1_b : 110V/µs FDECA : Enab FDECB : Enab Note: No sim gets effective RNG[1:0] : se 00_b : 300mA 10_b : 600mA 11_b : 800mA	1:0] sets the s node mode le Fast Decay le Fast Decay ultaneous set e. ts the motor o	omparato slew rate co on Coil A on Coil B ting of FDE current ran	r signal at t ontrol ECA and FD ge	be leading	edge for a	defined tin	ne t _{mask} FDECA

Table 44. Half Bridge Data Register

HBDATA (0x0029)	MSB							LSB
Content	ENA0	ENA1	ENB0	ENB1	SETA0	SETA1	SETB0	SETB1
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	ENAO : 1_b : En ENA1 : 1_b : En ENB0 : 1_b : En ENB1 : 1_b : En SETA0 : 1_b : So SETA1 : 1_b : So SETB1 : 1_b : So SETB1 : 1_b : So Note , that HE bridge output	ables half t ables half t ables half t ables half t witches hal witches hal witches hal witches hal BDATA value t is also affe	oridge A0 (n oridge A1 (r oridge B0 (n oridge B1 (n f bridge A0 f bridge A1 f bridge B0 f bridge B1 es get effec ected by th	not tri-state not tri-state ot tri-state ot tri-state to High, ot to High, ot to High, ot to High, ot to High, ot to High, ot to High ot tive at the e chopper l)) herwise to herwise to herwise to I nerwise to I beginning c ogic.	Low Low Low Low of the next	PWM frame	e and the

Table 45. Half Bridge Status Register

HBSTATUS (0x002A)	MSB							LSB	
Content	ZCCA	ZCCB	CCA	CCB	х	х	х	х	
Reset value	0	0	0	0	0	0	0	0	
Internal access	R/W	R/W	R/W	R/W	R	R	R	R	
External access	-	-	-	-	-	-	-	-	
Bit Description	ZCCA : Zero c ZCCB : Zero c CCA : Choppe CCB : Choppe	ZCCA : Zero crossing comparator A (transparent) ZCCB : Zero crossing comparator B (transparent) CCA : Chopper Current comparator A (transparent) CCB : Chopper Current comparator B (transparent)							

	-	-						
IDACA (0x002B)	MSB							LSB
Content	IDACA[7]	IDACA[6]	IDACA[5]	IDACA[4]	IDACA[3]	IDACA[2]	IDACA[1]	IDACA[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	IDACA[70] : Chopper threshold for current in coil A Note, that IDACA values get effective at the beginning of the next PWM frame. When the register is read, the actual IDACA value is returned, that may differ from the last written value due to the aforementioned							

Table 46. Chopper Current Register of Half Bridge A

Table 47. Chopper Current Register of Half Bridge B

IDACB (0x002C)	MSB							LSB	
Content	IDACB[7]	IDACB[6]	IDACB[5]	IDACB[4]	IDACB[3]	IDACB[2]	IDACB[1]	IDACB[0]	
Reset value	0	0	0	0	0	0	0	0	
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
External access	-	-	-	-	-	-	-	-	
Bit Description	IDACB[70] : Note, that ID register is rea value due to	IDACB[7.0] : Chopper threshold for current in coil B. Note, that IDACB values get effective at the beginning of the next PWM frame. When the register is read, the actual IDACB value is returned, that may differ from the last written value due to the aforementioned.							

Table 48. Decay Control Register

DECCTRL (0x002D)	MSB							LSB
Content	DECCTRL[7]	DEC- CTRL[6]	DEC- CTRL[5]	DEC- CTRL[4]	DEC- CTRL[3]	DEC- CTRL[2]	DEC- CTRL[1]	DEC- CTRL[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	DECCTRL[70] : Length o	f fast decay	ı (1LSB mea	ns t _{pwm res})			

Table 49. On-Time Register

ONTIME (0x002E)	MSB							LSB
Content	ONT[7]	ONT[6]	ONT[5]	ONT[4]	ONT[3]	ONT[2]	ONT[1]	ONT[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	ONT[70] : shows on-time of the last PWM frame (1LSB means $t_{PWM, RES}$) of the phase, when fast decay was set. If neither FDECA nor FDECB was set, then ONT[7:0] is set to 0x00.				ase, where x00.			

D]

Table 50. Motor Status Register

MOTSTA (0x002F)	MSB							LSB
Content	STOP	STEN	ZCC_IE	ICAP	ESEL	CSEL	STE	STW
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R	R
External access								
Bit Description	STOP : Motor behavior in case of stall detected STEN : Stall detection enable ZCC_IE : Zero crossing interrupt enable ICAP : Zero crossing input capture, 1, when zero crossing has been detected, if writing 1, the zero crossing interrupt is reset ESEL : Edge selection for zero crossing, 1, rising edge is selected CSEL : Comparator selection for zero crossing, 1, comparator A is selected STE : Stall detection error, 1, indicates a confirmed stall detection STW : Stall detection warning 1 indicates a possible stall detection							

Table 51. Motor Configuration Register 4

STLFTHR (0x0411)	MSB							LSB
Content	FTHR[7]	FTHR[6]	FTHR[5]	FTHR[4]	FTHR[3]	FTHR[2]	FTHR[1]	FTHR[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access								
Bit Description	FTHR[7:0] : N	THR[7:0] : Motor Configuration Register 4 (please contact supplier for optimized values)						

7.4 Chopper Control

A chopper control is for torque control and microstepping implemented. The IC provides a fixed frequency PWM to allow a more precise supply filtering for EMI reduction. The chopper t_{oN} phase starts with the base frequency. The t_{oN} phase ends if the comparator indicates that the current level is reached. Due to the fact that there may be short current peaks at the beginning

of each t_{ON} phase caused by capacitive loads on A0/1 or B0/1, the current measurement hardware will be masked for a defined time t_{mask} after the beginning of any t_{ON} phase. The off-time will not be present if the peak current is not attained during the PWM on-time. The current level for coils A and B are set up with the values of registers IDACA and IDACB.

7.5 Current Decay

The IC offers the possibility to select between fast, slow and mixed decay mode.

- Slow decay is favorable when the current is rising from step to step. This occurs when the phase winding is shorted by switching on both high side FETs in the full bridge.
- Fast decay is most effective when the current is falling from step to step. This occurs when the voltage on the phase is reversed. To activate Fast or Mixed Decay Mode the corresponding bit in the register HBCTRL (Table 43 Half Bridge Control Register) has to be set. It is only possible to set the fast decay mode for one coil.

The setting of FDECA and FDECB simultaneously is not allowed.

One disadvantage of fast decay is the increased current ripple in the phase winding. To reduce the current rip-

ple, the fast decay is used only a short time followed by the slow decay for the remainder PWM off-time. This technique is called mixed decay.

The decay behavior is selectable by software via the DECCTRL register and . A value of 0x00 means slow decay for the entire t_{off} phase is selected. A value of 0xff means that fast decay is selected. Mixed decay means that the fast decay period starts with the beginning of the t_{off} phase. The decay mode is switched to slow after a time of DECCTRL* $t_{PWM,RES}$. Automatic decay is feasible by software.

The length of the t_{ON} phase gives an indication of the current ripple. Therefore it may be helpful to know the t_{ON} time. It is measured in every cycle for the coil which is in Fast or Mixed Decay mode and is readable in the ONTIME register.

Figure 18. Current Decay Waveform

7.6 Waveform Control

Waveform Control shall be done by software with minimum 10 kHz refresh rate.

7.7 Stall Detection

For proper stall detection functionality the following motor configuration registers have to be set .(please contact supplier for optimized values)

Register Name	Address	Description
STLDTHR	0x0000	Motor Configuration Register 1
STLFINC	0x000E	Motor Configuration Register 2
STLFLVL	0x000F	Motor Configuration Register 3
STLFTHR	0x0411	Motor Configuration Register 4

Table 52. Motor Configuration Register Table

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG Data Sheet QM-No

It has to be guaranteed by the software, that the stepping frequency is not jittering more than +/-2%. Long term stepping frequency change, due to slow speed changes or oscillator temperature dependency, is tolerated by the stall detection logic. Further configurations recommended for stepper motor with stall detection are:

a) In the last step before reaching zero current in coil A or $\ensuremath{\mathsf{B}}$

check register 0x00D. If it's "zero" clear register bit
STW of register Register MOTSTAT (0x002F) (see below)
activate the stall detection by setting bit "STEN" of register "MOTSTA" (please also refer to chapter "Controlling the motor functions")

b) Set the half-bridge on the concerning coil, which is high, to low and the other which is low, to high impedance.

The stall detection analysis starts automatically, when STEN is set and the HBDATA value is transferred to the half bridge.

The stall detection logic will generate two status signal bits in register MOTSTA.

The first signal indicates a potential stall condition and sets the referred stall warning flag STW. If STW is 1_b , it is recommended that the controller saves the current motor position for later use.

The second signal called stall error flag STE indicates a confirmed stall condition. If STE is 1_{h} , the previously saved position should be considered as the actual mechanical position by the controller. This procedure allows to minimize the mismatch between mechanical stop and the position where STE is set, which is caused by the stall detection filters. When a confirmed stall condition has been indicated by the STE flag, the controller is in charge to stop the motor movement, in order to prevent from noise or too high mechanical load.

If a stall condition has been confirmed and the related flag bit STE is set, the behavior of the circuit depends on the configuration of the STOP control bit. If the STOP bit is 0_b , a confirmed stall condition does not have any effects on the motor drivers. The integrated controller is in charge to stop the motor movement.

Depending on the stepper motor type or mechanical characteristics of gearbox or bearing it may be necessary to perform an additional filtering of the STE flag in the external controller. If a stall warning or a confirmed stall condition disappears, the related flags STW or STE will be automatically cleared by the logic without further acknowledgment by the micro-controller. If the STOP bit is 1_{b} , the confirmed stall condition information can be used by the controller to lead in a stop scenario, which may be "driver off" or "all drivers to GND" or "apply hold PWM" to increase the motors hold torque. In order to recover from this stall condition, the controller has first to stop and then to start the continuous motor stepping.

Note: For using "stall detection" there is no need to handle register bits regarding "zero crossing". ZCC_IE can be off.

Table 53. Motor Sta	atus Register
---------------------	---------------

MOTSTA (0x002F)	MSB							LSB
Content	STOP	STEN	ZCC_IE	ICAP	ESEL	CSEL	STE	STW
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R	R
External access								
Bit Description	 STOP : Motor behavior in case of stall detected STEN : Stall detection enable ZCC_IE : Zero crossing input capture, 1, when zero crossing has been detected, if writing 1, the zero crossing interrupt is reset ESEL : Edge selection for zero crossing, 1, rising edge is selected CSEL : Comparator selection for zero crossing, 1, comparator A is selected STE : Stall detection warning 1 indicates a confirmed stall detection 							

7.8 Zero Crossing Detection

Figure 19. Zero Crossing Comparator

In "1 phase ON" mode it is possible to determine the point in time when the BEMF crosses through zero by observing the non-supplied coil. This signal may be used for an auto commutation application. The figure demonstrates the principle of the measurement.

After the micro-controller writes into the ZCTL register, the zero crossing detection starts. After the detection

7.9 Watchdog

The watchdog timer is implemented as a window watchdog. It starts after the first write to the window mode bits (WDCFG = 1) and can not be stopped any more. It triggers a reset pulse for the micro-controller system when software operation does not write the signature of 0x55 to the watchdog register within a configured watchdog window. The watchdog timer is clocked with f_{CLK} , so its resolution is 125ns.

The watchdog unit can be configured as simple time-

out watchdog (means: open time window) or window watchdog (means: closed time window). Configuration is done by writing a specified value to Watchdog Register.

of the selected edge, the flag ICAP is set by the hard-

ware and an interrupt is generated. The interrupt can

be disabled by setting the bit ZCCS I EN. For using the

zero crossing comparator please also refer to chapter "Controlling the motor functions", register MOTSTA.

For using "zero crossing" there is no need to handle reg-

ister bits regarding "stall detection". STEN can be off.

NOTE: A (re-)configuration of the watchdog unit does not influence the watchdog timer! For resetting the watchdog timer the signature 0x55 must be written to the watchdog register in the configured time window. That means within the configured open/closed watchdog timing range.

T. I. I	1 A / . I . I . I .		T . I. I
lable 54	. vvatchdo	g kegister	lable

Register Name	Address	Description
WDREG	0x0001	Watchdog Register

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

45/74

Table 55. Watchdog Register

WDREG (0x0001)	MSB							LSB
Content	WDCFG	WDM[1]	WDM[0]	WDPRE	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	W	R/W	R/W	R/W	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	- -					watchdog 3 0x55 ected		

Table 56. Watchdog Window Settings Description WDPRE = 0

WDM[1:0]	Start window (number of clocks)	Start window (number of clocks)	Time for f _{BUS} = 8 MHz /μs
00	0	2048	0-256
01	256	2048	32-256
10	256	1024	32-128
11	512	2048	64-256

Table 57. Watchdog Window Settings Description WDPRE = 1

WDM[1:0]	Start window (number of clocks)	Start window (number of clocks)	Time for f _{BUS} = 8 MHz /μs
00	0	65536	0-8192
01	8192	65536	1024-8192
10	8192	32786	1024-4096
11	16384	65536	2048-8192

7.10 Counter

The timer is implemented as a 16 bit free running counter. To ensure the readout of consistent timer values the timer low byte is latched if the timer high byte is read. The compare register can be used to generated defined timer compare interrupts.

- Compare overflow flag (OCF) is cleared by reading register CNTCMPL.
- Interrupts may be enabled by setting bit INTD to a logical '0' and bits OCIE/TFOI of control register CNTCTRL.
- In order to use interrupts an interrupt enable command CLI should be performed.
- Interrupts are disabled by STI command.
- Counter overflow flag (OTF) is cleared by writing a logical '1' into bit TOF of counter status register CNTSTAT.

Table 58. Counter Register Table

Register Name	Address	Description
CNTH	0x0022	Counter High Byte Register
CNTL	0x0023	Counter Low Byte Register
CNTCMPH	0x0024	Counter Compare High Byte Register
CNTCMPL	0x0025	Counter Compare Low Byte Register
CNTCTRL	0x0026	Counter Control Register
CNTSTAT	0x0027	Counter Status Register

Elmos Semiconductor AG	Data Sheet	QM-No.: 25DS0115E.01

Table 59. Counter high byte register

CNTH (0x0022)	MSB							LSB
Content	TR[15]	TR[14]	TR[13]	TR[12]	TR[11]	TR[10]	TR[9]	TR[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R R R R R R R						
External access	-	-	-	-	-	-	-	-
Bit Description	n TR[15:8] : high byte of timer register , access latches TIM1RL							

Table 60. Counter low byte register

CNTL (0x0023)	MSB							LSB
Content	TR[7]	TR[6]	TR[5]	TR[4]	TR[3]	TR[2]	TR[1]	TR[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	TR[7:0] : low byte of timer register							

Table 61. Counter compare high byte register

CNTCMPH (0x0024)	MSB							LSB	
Content	TCMP[15]	TCMP[14]	TCMP[13]	TCMP[12]	TCMP[11]	TCMP[10]	TCMP[9]	TCMP[8]	
Reset value	0	0	0	0	0	0	0	0	
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
External access	-	-	-	-	-	-	-	-	
Bit Description	TCMP[15:8] :	TCMP[15:8] : high byte of timer compare register							

Table 62. Counter compare low byte register

CNTCMPL (0x0025)	MSB							LSB
Content	TCMP[7]	TCMP[6]	TCMP[5]	TCMP[4]	TCMP[3]	TCMP[2]	TCMP[1]	TCMP[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	Z/W R/W R/W R/W R/W R/W R/W						
External access	-	-	-	-	-	-	-	-
Bit Description	TCMP[7:0] : low byte of timer compare register							

Table 63. Counter control register

CNTCTRL (0x0026)	MSB							LSB
Content	-	OCIE	TOFIE	INTD	-	PRE[1]	PRE[0]	-
Reset value	0	0	0	1	0	0	0	0
Internal access	R	R/W	R/W	R/W	R	R/W	R/W	R
External access	-	-	-	-	-	-	-	-
Bit Description	OCIE : interru TOFIE : interru INTD : interru 1 : disables al PRE[1:0] : sele 00 : counter i 01 : counter i 10 : counter i 11 : counter i	ipt enable f upt enable upt disable ll ects the pre ncremente ncremente ncremente ncremente	or output c for counter for all coun e-scaler for d with f _{osc} d with f _{osc} d with f _{osc} d with f _{osc}	ompare overflow ter interrup the timer re / 2 / 4 / 8 / 16	ts egister			

Table 64. Counter status register

CNTSTAT (0x0027)	MSB							LSB
Content	-	OCF	TOF	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R/W	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	OCF : flag for - set by timer match. No fu MPL register. TOF : flag for - set by courr - cleared by v	output cor hardware rther comp counter ov ter hardwar vriting a '1'	npare : when value arison is m erflow : re to TOF bit	es of CNTH/ ade until th	CNTL and o e OCF bit is	f CNTCMPF cleared by	I/CNTCMPL reading of 1	register the CNTC-

7.11 Integrated μ C (CPU) with RAM, ROM, FLASH , EEPROM

7.12 Central Processing Unit (CPU)

The range of CPU functions is:

- Control of peripherals such as LIN transceiver, PWM interface,
- Hall and potentiometer analysis,
- Stepper motor control.

The CPU may be reset by any of these sources:

- Power-on,
- Under-voltage at VDDD or VDDA,
- Internal watchdog timeout.

The CPU may be interrupted by any of these sources:

- Software interrupt instruction (SWI),
- SCI interface,
- EEPROM,
- GPIO pins,
- Timer.
- Motor controller.

Two different versions are available. The first one has 8KByte FLASH memory for application programs and 4KByte ROM for system routines (SysROM). The second version has 8KByte ROM for application software and

Table 65. CPU Mode Register Table

4KByte SysROM.

Device Operation Modes

The CPU provides two different device operation modes:

Configuration mode

1. Self test mode2. Production test support

3. Adjustment setting

4. Programming of customer memory area via LIN protocol

Operational mode

- 1. LIN or PWM protocol processing
- 2. Stepper motor control
- 3. Error detection and handling

After power-on reset the IC is in the configuration mode. It may be switched to operation mode by writing the value 0xA5 to the CPU Mode Register.

	8	
Register Name	Address	Description
CPUMOD	0x0400	CPU Mode Register

Table	66	CPU	Mode	Register	
Iadie	00.	CFU	moue	Register	

CPUMOD (0x0400)	MSB							LSB
Content	MODCFG[7]	MOD- CFG[6]	MOD- CFG[5]	MOD- CFG[4]	MOD- CFG[3]	MOD- CFG[2]	MOD- CFG[1]	MOD- CFG[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	W	W	W	W	W	W	W
External access	-	-	-	-	-	-	-	-
Bit Description MODCFG[7] : current device state 0:configuration mode, 1:operational mode MODECFG[7:0]: write 0xA5 to switch from configuration to operational mode								
Elmos Semiconductor AG reserves	the right to change the	detail specification	s as may be require	d to permit improv	ements in the desig	n of its products.		

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

POWER LIN2.X STEPPER WITH STALL DETECTION PRODUCTION DATA - DEC 18, 2013

RODOCTION DAIA - DEC 18, 2013

Memory Map - Base Address Table

The memory map is designed to provide both configuration and operational modes. It is achieved by switching of memory addresses as shown in <u>(Figure 20 Memory Map of 8KByte FLASH Version)</u>.

Wake-up:

The μ C always starts in configuration mode after wakeup (Boot Manager Module is started). In this mode the FLASH firmware memory (only the FLASH version of the IC) or EEPROM cells can be erased/programmed via LIN2.1. After power-on reset the memory map for configuration mode is valid.

Switching to operational mode:

The device changes to operational mode either after a timeout or after receiving a bmmcommand_CLOSE message. In operational mode only the highest 16 bytes of EEPROM are erasable/programmable. FLASH access is read-only in this mode.

According to this mode switching, the memory spaces of the customer programmable FLASH firmware memory/ROM and the SysROM are modified as shown in (Figure 20 Memory Map of 8KByte FLASH Version).

Figure 20. N	Memory .	Мар	of	8KByte	FLASH	Version
--------------	----------	-----	----	--------	-------	---------

Table 67. Base Address Table of Operational Mode for 8KByt	e FLASH Version
--	-----------------

Base Address	Size	Module Name
0xE000	0x2000	FLASH 8K X 8 or AppROM
0x3000	0xB000	unused
0x2000	0x1000	SysROM 4K X 8
0x0420	0x1BE0	unused
0x0400	0x0020	SSFR 32x8
0x0340	0x00C0	unused
0x0300	0x0040	EEPROM 64 X 8
0x0130	0x01D0	unused
0x0030	0x0100	RAM 256 X 8
0x0000	0x0030	FSFR 48 X 8

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG Data Sheet QM-No.: 25DS0115E.01

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

Table 68. Base Address Table of Configuration Mode for 8KByte FLASH Version

Base Address	Size	Module Name
0xF000	0x1000	SysROM 4K X 8
0x6000	0x9000	unused
0x4000	0x2000	FLASH 8K X 8 or AppROM
0x3000	0x1000	unused
0x2000	0x1000	SysROM 4K X 8
0x0420	0x1BE0	unused
0x0400	0x0020	SSFR 32x8
0x0340	0x00C0	unused
0x0300	0x0040	EEPROM 64 X 8
0x0130	0x01D0	unused
0x0030	0x0100	RAM 256 X 8
0x0000	0x0030	FSFR 48 X 8

Table 69. SFR Address Table

Base Address	Size	Module Name
0x0411	STLFTHR	Motor Control
0x0410	FLASH_KEY4	FLASH
0x040f	FLASH_KEY3	FLASH
0x040e	FLASH_KEY2	FLASH
0x040d	FLASH_KEY1	FLASH
0x040c	FLASH_KEY_OK	FLASH
0x0408	RESSTAT	DIGITAL
0x0404	EE64IRQ	EEPROM
0x0403	GPIOCFG	GPIO Interface
0x0402	PWMCFG	PWM Interface
0x0401	GENCFG	Periphery
0x0400	CPUMOD	CPU
0x0402	PWMCFG	PWM Interface
0x0401	GENCFG	Periphery
0x0400	CPUMOD	CPU
0x002F	MOTSTAT	Motor Control
0x002E	ONTIME	Motor Control
0x002D	DECCTRL	Motor Control
0x002C	IDACB	Motor Control
0x002B	IDACA	Motor Control
0x002A	HBSTATUS	Motor Control
0x0029	HBDATA	Motor Control
0x0028	HBCTRL	Motor Control
0x0027	CNTSTAT	Counter
0x0026	CNTCTRL	Counter
0x0025	CNTCMPL	Counter
0x0024	CNTCMPH	Counter
0x0023	CNTL	Counter
0x0022	CNTH	Counter
0x0021	ADCDAT	ADC
0x0020	ADCCNTR	ADC
0x001F	LINAA	BUS Interface
0x001E	LIN_MODE	SCI
0x001B	SCIMEASDATL	SCI

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

Base Address	Size	Module Name
0x001A	SCIMEASDATH	SCI
0x0019	SCIMEASCTRL	SCI
0x0018	SCIMEASCTRH	SCI
0x0017	SCIDATA	SCI
0x0015	SCISTATL	SCI
0x0014	SCISTATH	SCI
0x0013	SCICTRL	SCI
0x0011	SCIBRL	SCI
0x0010	SCIBRH	SCI
0x000F	STLFLVL	Motor Control
0x000E	STLFINC	Motor Control
0x000D	CNTFBC	Motor Control
0x000C	PWMCTRL	PWM Interface
0x000B	PWMHL	PWM Interface
0x000A	PWMLH	PWM Interface
0x0009	FLECR	FLASH
0x0008	FLCR	FLASH
0x0007	EE64ECC	EEPROM
0x0006	EE64LKR	EEPROM
0x0005	EE64CSR	EEPROM
0x0004	EE64TST	EEPROM
0x0003	GPIOPUD	GPIO
0x0002	GPIO	GPIO
0x0001	WDREG	Watchdog
0x0000	STLDTHR	Motor Control

Interrupt vector

The following table shows a summary of all interrupt sources and their vector addresses. The interrupt number represents the priority, the highest number has the highest priority.

Table 70. Reset and Interrupt Vectors List

Number	Block	Vector Address	Source
15	POR/WD	0xFFFE - 0xFFFF	Power-on reset watchdog
14	CPU	0xFFFC - 0xFFFD	Software interrupt (SWI)
13	EEPROM EE_ERR_IRQ	0xFFFA - 0xFFFB	Wrong write sequence de- tected
12	EEPROM EE_READY_IRQ	0xFFF8 - 0xFFF9	Erase/programming fin- ished
11	EEPROM EE_ECCERR_IRQ	0xFFF6 - 0xFFF7	ECC error detected
10	Counter Counter_OC_IRQ	0xFFF4 - 0xFFF5	Counter output compare
9	Counter Counter_OF_IRQ	0xFFF2 - 0xFFF3	Counter overflow
8	SCI SCI_BIE_IRQ PWM PWM_EIE_IRQ	0xFFF0 - 0xFFF1	LIN Break detected PWM Edge detected
7	SCI SCI_MFIE_IRQ	0xFFEE - 0xFFEF	LIN Measurement finished
6	SCI SCI_RIE_IRQ	0xFFEC - 0xFFED	LIN Receive register full

Number	Block	Vector Address	Source
5	SCI SCI_TIE_IRQ	0xFFEA - 0xFFEB	LIN Transmit register empty
4	GPIO GPIO_IRQ	0xFFE8 - 0xFFE9	GPIO edge event on D1-D3
3	Motor Control ZC_IRQ	0xFFE6 - 0xFFE7	Zero Crossing comparator
2	Motor Control MOTPWM IRQ	- 0xFFE4 - 0xFFE5	Start of new PWM frame
1	-	0xFFE2 - 0xFFE3	Reserved
0	-	0xFFE0 - 0xFFE1	Reserved

Software interrupt (SWI):

A jump of the program counter to an unused ROM/ FLASH address has to lead to a software interrupt. So it is strongly recommended to fill all unused storage with the interrupt vector address of the software interrupt (see above).

2. 2.15 interrupt vectors

- 3. 1 reset vector
- 4. 16 bit address bus width
- 5. 64 KByte data/program address space (0x0000 0xFFF)
- 6. Clock frequency 8MHz
- 7. 6 bit stack pointer
- 8. 16 bit extended program counter

CPU EL3.5 Core

1. 6805 instruction set compatible including 8 by 8 multiplication

Figure 21. Programming Model

The EL3.5 CPU can be reset in variable ways:

- by an initial power-on reset,
- by a watchdog reset,
- by a switching from configuration mode to operational mode.

Any of these resets will bring:

- the program counter to its starting address,
- all registers to their reset values,
- the interrupt mask bit set to interrupt disable,
- the stack pointer to 0x00FF.

Elmos Semiconductor AG

The interrupt controller accepts several different interrupt sources. To accept interrupts the CCR I bit has to be cleared with the CLI instruction.

Please note that interrupt masking via CCR I bit does not disable the interrupt sources. It's only working as a masking. Before the reactivation interrupts again by clearing CCT I bit, it's recommended to clear possible interrupt events which may occurred during interrupt masking time.

Debug Interface

The IC supports debugging of the EL3.5 CPU. To access the debug structures of the EL3.5 CPU a 4-wire standard JTAG interface is used while the TESTEN pin is set to high level. Resetting TESTEN to low level resets all test and debug structures and the IC operates in normal mode.

CPU Registers

The accumulator A is used for general calculations. The X register is used for indirect and indexed addressing. The stack pointer SP is used internally by the CPU. The first 2 bits of the SP register are fixed to one. This is to protect the rest of the RAM in case of a stack overflow. The program counter is 16 bit long. So the maximum addressable code area is 64KByte.

Table 71. CPU Register Table

Name	Size	Description
CCR	5 bits	Condition Code Register
PC	16 bits	Program Counter
SP	6 bits	Stack Pointer
X	8 bits	Index Register
A	8 bits	Accumulator
STACK	64 bytes	Stack 64 byte LIFO (last-in first-out)

Table 72. Condition Code Register

Bit	Name	Description
4	Н	Half-Carry (from bit 3)
3	1	Interrupt mask
2	Ν	Negative flag
1	Z	Zero flag
0	С	Carry bit

7.13 Instruction Set

Source	Source Operation Description				Effect CC			cton နို့်ခိုင် CR ခိုင်ခ			les
Form	Operation	Description	н	I	N	z	С	Add	0pc	Opei	cyo
ADC #opr								IMM	A9	ii	2
ADC opr								DIR	B9	dd	3
ADC opr	Add with Carry	$\Delta \leftarrow (\Delta) + (M) + (C)$	1		1	1	1	EXT	C9	hh II	4
ADC opr,X			ľ		ľ	ľ	Ť	IX2	D9	ee ff	4
ADC opr,X								IX1	E9	ff	4
ADC ,X			_					IX	F9		3
ADD #opr								IMM	AB	ii	2
ADD opr								DIR	BB	dd	3
ADD opr	Add without Carry	A ← (A) + (M)	1	_	1	¢	1	EXT	CB	hh II	4
ADD opr,X								IX2	DB	ee ff	4
ADD opr,X									EB	Π	4
ADD ,X						-			FB		3
AND #opr									A4	 - -	2
									B4		3
	Logical AND	$A \leftarrow (A) \land (M)$	-	—	1	1					4
										ff	4
											3
									38	dd	5
ASLA								INH	48		3
ASLX	Arithmetic Shift Left (Same as LSL)		_	_	1	1		‡ INH	58		3
ASL opr.X		b7 b0						IX1	68	ff	6
ASL ,X								IX	78		5
ASR opr								DIR	37	dd	5
ASRA								INH	47		3
ASRX	Arithmetic Shift Right		_	_	1	1		‡ inh	57		3
ASR opr,X		b7 b0						IX1	67	ff	6
ASR ,X								IX	77		5
BCC rel	Branch if Carry Bit Clear	PC ← (PC) + 2 +rel ? C = 0	-	—	_	╞	-	REL	24	rr	3
								DIR (b0)	11	dd	5
								DIR (b1)	13	dd	5
								DIR (b2)	15	dd	5
BCLR n opr	Clear Bit n	Mn ← 0	_	_	_	_	_	DIR (b3)	17	dd	5
								DIR (b4)	19	dd	5
								DIR (b5)	1B	dd	5
								DIR (b6)	1D	dd	5
			-			-		DIR (b7)	1F	dd	5
BCS rel	Branch if Carry Bit Set (Same as BLO)	$PC \leftarrow (PC) + 2 + rel ? C = 1$	F	F	F	╞	-	REL	25	rr rr	3
BEQ rel	Branch if Half Carry Dit Olass	$PC \leftarrow (PC) + 2 + rel ? Z = 1$	F	F	-		╞		21		
BHCC rel	Branch if Half-Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel? H = 0$	F	┢	1-	-	╞		28	rr r-	3
BHCS rel	Branch IT Half-Carry Bit Set	$PC \leftarrow (PC) + 2 + rel ? H = 1$	┢	F	-	1=	┢		29	rr	3
	Branch If Higher	$PC \leftarrow (PC) + 2 + rel? C \forall Z = 0$	╞	-	-		┢		22	rr	3

Figure 22. Instruction Set Summary (Sheet 1 of 6)

Source	Operation	Description		Eff	ect CC	t o R	n	ress ode	ode	rand	sels
Form	Operation	Description	н	I	N	z	c	Add	obc	Ope	ပ်
BIT #opr								IMM	A5	ii	2
BIT opr								DIR	B5	dd	3
BIT opr	Bit Test Assumulator with Momony Puts				↑	↑		EXT	C5	hh ll	4
BIT opr,X	Bit rest Accumulator with Memory Byte			_	1	*	-	IX2	D5	ee ff	4
BIT opr,X								IX1	E5	ff	4
BIT ,X								IX	F5		3
BLO rel	Branch if Lower (Same as BCS)	PC ← (PC) + 2 +rel ? C = 1	_	_	_	_	-	REL	25	rr	3
BLS rel	Branch ifLower orSame	PC ← (PC) + 2 +rel ? C VZ = 1	_	_	_	_	_	REL	23	rr	3
BMC rel	Branch if Interrupt Mask Clear	PC ← (PC) + 2 +rel ? I = 0	_	_	_	_	_	REL	2C	rr	3
BMI rel	Branch if Minus	PC ← (PC) + 2 +rel ? N = 1	_	_	_	_	_	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 +rel ? I = 1			_	_	_	REL	2D	rr	3
BNE rel	Branch if Not Equal	PC ← (PC) + 2 +rel ? Z = 0		_	_	_	_	REL	26	rr	3
BPL rel	Branch if Plus	PC ← (PC) + 2 +rel ? N = 0			_	_		REL	2A	rr	3
BRA rel	Branch Always	PC ← (PC) + 2 +rel ? 1 = 1	_	_				REL	20	rr	3
								DIR (b0)	01	dd rr	5
								DIR (b1)	03	dd rr	5
								DIR (b2)	05	dd rr	5
								DIR (b3)	07	dd rr	5
BRCLR n opr rel	Branch if Bit n Clear	$PC \leftarrow (PC) + 2 + rel ? Mn = 0$		-	-	-	↓	DIR (b4)	09	dd rr	5
								DIR (b5)	0B	dd rr	5
								DIR (b6)	0D	dd rr	5
								DIR (b7)	0F	dd rr	5
BRN rel	Branch Never	PC ← (PC) + 2 +rel ? 1 = 0	_			_	_	REL	21	rr	3
								DIR (b0)	00	dd rr	5
								DIR (b1)	02	dd rr	5
								DIR (b2)	04	dd rr	5
								DIR (b3)	06	dd rr	5
BRSET n opr rel	Branch if Bit n Set	PC ← (PC) + 2 +rel ? Mn = 1	-		-	-	- ↓	DIR (b4)	08	dd rr	5
								DIR (61)	04	dd rr	5
									00	dd rr	5
										dd rr	5
									10	dd	5
									12	dd	5
									14	dd	5
									16	dd	5
BSET n opr	Set Bit n	Mn ← 1	-			-			10	dd	5
									10	dd	5
										dd	5
								(00) אוט		dd	5
		$PC \leftarrow (PC) + 2$; such (PC) \	-	-	\vdash	-		(10) אוט		ua	10
		PO = (PO) + 2; pusn (POL)									
BSR rel	Branch to Subroutine	(OP) = 1, pusit (PCH)		_	-	_	-	REL	AD	rr	6
		r = (r) - 1									
	Clean Carry Dit		-	-	\vdash		-	18.11.1	00		
			-	-	1-	-	0		98		2
ULI	Clear Interrupt Mask		-	0	1-		-	INH	9A		2

Figure 23. Instruction Set Summary (Sheet 2 of 6)

Source	Source Form Operation Description			Effe	eci C	t o R	n	ess de	ode	and	les
Form			н	I	N	z	с	Addr Mo	Opc	Oper	Cyc
CLR opr		M ← \$00						DIR	3F	dd	5
CLRA		A ← \$00						INH	4F		3
CLRX	Clear Byte	X ← \$00	_		0	1	-	INH	5F		3
CLR opr,X		M ← \$00						IX1	6F	ff	6
CLR ,X		M ← \$00						IX	7F		5
CMP #opr								IMM	A1	ii	2
CMP opr								DIR	B1	dd	3
CMP opr					•	^		, EXT	C1	hh ll	4
CMP opr,X	Compare Accumulator with Memory Byte	(A) – (M)	-	-	↓↓	↓↓		↓ IX2	D1	ee ff	5
CMP opr.X								IX1	E1	ff	4
CMP X								іх	F1		3
COM opr								DIR	33	dd	5
COMA		$M \leftarrow (M) = \$FF - (M)$						INH	43		3
COMX	Complement Byte (One's Complement)	$X \leftarrow (X) = $ SFF - (X) $X \leftarrow (X) = $ SFF - (X)			↑	↑	1	INH	53		3
COMonr X	Complement Byte (One's Complement)	$M \leftarrow (M) = \$FF - (M)$		_	+	Ť	'	11/1	63	ff	6
		$M \leftarrow (M) = \$FF - (M)$							72	"	5
COM ,A				-					13		2
CPX #0pi									A3	11 dd	2
CPX opr		(X) – (M)							B3	aa	3
CPX opr	Compare Index Register with Memory Byte		_	_	\$	\$	\$	EXI	03	nn II	4
CPX opr,X								IX2	D3	ee ff	5
CPX opr,X								IX1	E3	Ħ	4
CPX ,X								IX	F3		3
DEC opr		M ← (M) – 1						DIR	3A	dd	5
DECA		A ← (A) – 1			1			INH	4A		3
DECX	Decrement Byte	X ← (X) – 1		-		↓	-	INH	5A		3
DEC opr,X		M ← (M) – 1						IX1	6A	ff	6
DEC ,X		M ← (M) – 1						IX	7A		5
EOR #opr								IMM	A8	ii	2
EOR opr								DIR	B8	dd	3
EOR opr		$\mathbf{A} \leftarrow (\mathbf{A}) \oplus (\mathbf{M})$			↑	↑		EXT	C8	hh ll	4
EOR opr,X	EXCLUSIVE OR Accumulator with Memory Byte	A (A) (M)		1	+	*	_	IX2	D8	ee ff	5
EOR opr,X								IX1	E8	ff	4
EOR ,X								IX	F8		3
INC opr		M ← (M) + 1						DIR	3C	dd	5
INCA		A ← (A) + 1						INH	4C		3
INCX	Increment Byte	X ← (X) + 1		_	¢	¢	_	INH	5C		3
INC opr.X		$M \leftarrow (M) + 1$						IX1	6C	ff	6
INC X		M ← (M) + 1						IX	70		5
JMP opr		\/ .				\top		DIR	BC	dd	2
IMP opr								FXT	CC	hh II	3
		PC ← lumn Address			_			182		۰۰۰۰۱ مم ff	4
				_				1/12	FC	ff	2
									50		2
JIVIF ,A				1		1			ILC		

Figure 24. Instruction Set Summary (Sheet 3 of 6)

Source		_		Eff	ect CC	t oi R	ı	ress de	ode	and	les
Form	Operation	Description	н	I	N	z	с	Addi	Opc	Oper	ပိ
JSR opr JSR opr		PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1						DIR EXT	BD CD	dd hh ll	5 6
JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	Push (PCH); SP ← (SP) – 1 PC ← Effective Address			-	-	_	IX2 IX1 IX	ED FD	ff	6 6 5
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA x	Load Accumulator with Memory Byte	A ← (M)	_		¢	¢		IMM DIR EXT IX2 IX1 IX	A6 B6 C6 D6 E6 F6	ii dd hh II ee ff ff	2 3 4 4 4 3
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX opr,X	Load Index Register with Memory Byte	X ← (M)	_		¢	\$		IMM DIR EXT IX2 IX1 IX	AE BE CE DE EE FE	ii dd hh II ee ff ff	2 3 4 4 4 3
LSL opr LSLA LSLX LSL opr,X LSL ,X	Logical Shift Left (Same as ASL)		_	_	¢	¢		DIR INH ↓INH IX1 IX	38 48 58 68 78	dd ff	5 3 3 6 5
LSR opr LSRA LSRX LSR opr,X LSR ,X	Logical Shift Right	0 → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	_		0	¢		DIR INH ↓ INH IX1 IX	34 44 54 64 74	dd ff	5 3 3 6 5
MUL	Unsigned Multiply	$X : A \leftarrow (X) \times (A)$	0	_	_	_	0	INH	42		11
NEG opr NEGA NEGX NEG opr,X NEG ,X	Negate Byte (Two's Complement)	$M \leftarrow -(M) = \$00 - (M)$ $A \leftarrow -(A) = \$00 - (A)$ $X \leftarrow -(X) = \$00 - (X)$ $M \leftarrow -(M) = \$00 - (M)$ $M \leftarrow -(M) = \$00 - (M)$	_		¢	\$		DIR INH ↓ INH IX1 IX	30 40 50 60 70	dd ff	5 3 3 6 5
NOP	No Operation		_	—	_	—	—	INH	9D		2
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA .X	Logical OR Accumulator with Memory	A ← (A) ^V (M)			\$	\$		IMM DIR EXT IX2 IX1 IX	AA BA CA DA EA FA	ii dd hh II ee ff ff	2 3 4 4 4 3
ROL opr ROLA ROLX ROL opr,X ROL ,X	Rotate Byte Left through Carry Bit	G~ b7 b0	_		¢	¢		DIR INH INH IX1 IX	39 49 59 69 79	dd ff	5 3 3 6 5

Figure 25. Instruction Set Summary (Sheet 4 of 6)

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

57/74

Source				Eff	ect CC	t oi R	n	ess de	ode	and	es
Form	Operation	Description	н	I	N	z	С	Addr	Opc	Oper	U S C
ROR opr								DIR	36	dd	5
RORA								INH	46		3
RORX	Rotate Byte Right through Carry Bit		-		1	\$	\$	INH	56		3
ROR opr,X		b7 b0						IX1	66	ff	6
ROR ,X								IX	76		5
RSP	Reset Stack Pointer	SP ← \$00FF	_	-	—	—	_	INH	9C		2
1		SP ← (SP) + 1; Pull (CCR)									
		SP ← (SP) + 1; Pull (A)									
RTI	Return from Interrupt	SP ← (SP) + 1; Pull (X)	\$	1	1	\$	1	INH	80		9
DTS		SP ← (SP) + 1; Pull (PCH)									
		SP ← (SP) + 1; Pull (PCL)									
	Peturn from Subroutine	SP ← (SP) + 1; Pull (PCH)							81		6
KI3		SP ← (SP) + 1; Pull (PCL)									
SBC #opr								IMM	A2	ii	2
SBC opr								DIR	B2	dd	3
SBC opr	Subtract Memory Byte and Carry Bit from	$\mathbf{A} \leftarrow (\mathbf{A}) (\mathbf{M}) (\mathbf{C})$			↑	↑	↑	EXT	C2	hh II	4
SBC opr,X	Accumulator	A (A) = (M) = (C)	-	_	+	¥	L +	IX2	D2	ee ff	4
SBC opr,X								IX1	E2	ff	4
SBC ,X								IX	F2		3
SEC	Set Carry Bit	<u> </u>	_	-	_	_	1	INH	99		2
SEI	Set Interrupt Mask	I ← 1		1	_	—	—	INH	9B		2
STA opr								DIR	B7	dd	4
STA opr								EXT	C7	hh II	5
STA opr,X	Store Accumulator in Memory	M ← (A)	_		1	\$	_	IX2	D7	ee ff	5
STA opr,X								IX1	E7	ff	5
STA ,X								IX	F7		4
STX opr								DIR	BF	dd	3
STX opr								EXT	CF	hh II	4
STX opr.X	Store Index Register In Memory	M ← (X)	_		1	¢		IX2	DF	ee ff	4
STX opr,X								IX1	EF	ff	4
STX ,X								IX	FF		3
SUB #opr								IMM	A0	ii	2
SUB opr								DIR	B0	dd	3
SUB opr							*	EXT	C0	hh II	4
SUB opr,X	Subtract Memory Byte from Accumulator	(M) - (M)	-	$\left -\right $	↓		↓	IX2	D0	ee ff	4
SUB opr.X								IX1	E0	ff	4
SUB X									E		12

Figure 26. Instruction Set Summary (Sheet 5 of 6)

Source		-		Eff	ec CC	to R	n	'ess de	ode	and	les
Form	Operation	Description	н	I	N	z	c	Addi Mo	Opc	Opei	ပိ
		PC ← (PC) + 1; Push (PCL)									
		SP ← (SP) – 1; Push (PCH)									
SWI		SP ← (SP) – 1; Push (X)									
	Coffusion Internet	SP ← (SP) – 1; Push (A)									10
	Software interrupt	SP ← (SP) – 1; Push (CCR)	-	1	-	-	-		83		10
		SP ← (SP) – 1; I ← 1									
		PCH ← Interrupt Vector High Byte									
		PCL ← Interrupt Vector Low Byte									
TAX	Transfer Accumulator to Index Register	(A) → X	_	_	_	_		INH	97		2
TSTopr								DIR	3D	dd	4
TSTA								INH	4D		3
TSTX	Test Memory Byte for Negative or Zero	(M) – \$00	_	-	1		1	INH	5D		3
TSTopr,X								IX1	6D	ff	5
TST ,X								IX	7D		4
TXA	Transfer Index Register to Accumulator	$A \leftarrow (X)$		_		_	_	INH	9F		2

- Accumulator A
- С Carry/borrow flag
- CCR Condition code register
- Direct address of operand dd
- dd rr Direct address of operand and relative offset of branch instruction
- DIR Direct addressing mode
- High and low bytes of offset in indexed, 16-bit offset addressing ee ff EXT Extended addressing mode
- Offset byte in indexed, 8-bit offset addressing ff
- Half-carry flag Н
- hh ll High and low bytes of operand address in extended addressing Т Interrupt mask ii Immediate operand byte IMM Immediate addressing mode Inherent addressing mode INH
- IX Indexed, no offset addressing mode
- IX1 Indexed, 8-bit offset addressing mode
- IX2 Indexed, 16-bit offset addressing mode
- М Memory location
- Negative flag Ν
- Any bit n

- Operand (one or two bytes) opr
- PC Program counter
- PCHProgram counter high byte PCL Program counter low byte
- REL
- Relative addressing mode
- Relative program counter offset byte rel
- Relative program counter offset byte rr
- SP Stack pointer Х Index register
- Ζ Zero flag
- # ^ Immediate value Logical AND
- V Logical OR
- ⊕ Logical EXCLUSIVE OR
- () Contents of
- Negation (two's complement) -()
- Loaded with
- ? lf
- Concatenated with
- : \$ Set or cleared
- Not affected

Figure 27. Instruction Set Summary (Sheet 6 of 6)

		MSB LSB	0	-	2	3	4	5	9	7	8	6	A	в	υ	۵	ш	ч		
	×	F	sue 3	3 cmP 3	3 SBC 3	3 CPX 3	aND 3	1 BIT 3	1 LDA 3	STA 3	1 EOR	1 ADC 3	3 0RA	3 4DD 3	1 JMP 2	JSR 5	3 1 LDX	stx ³		
	IX1	E	2 SUB 4	4 2 CMP 4	2 SBC 4	2 CPX 4	AND 4	BIT 4	2 LDA 4	STA 4	EOR 4	2 ADC 4	2 ORA 4	ADD 4	3 2 JMP 3	6 2 JSR 6	4 2 LDX 4	2 STX 4	xadecimal	
Memory	IX2	D	3 SUB 4	4 3 CMP 4	3 SBC 4	4 3 CPX 4	3 AND 4	8IT 4	4 3 LDA 4	STA 4	eor 4	3 ADC 4	4 3 ORA 4	4 ADD 4	3 JMP 3	3 JSR 6 3	4 3 LDX 4	3 STX 4	ocode in He	cles nonic tes/Addressing
Register	EXT	С	3 SUB 4	4 3 CMP 4	3 SBC 4	4 3 CPX 4	4 3 AND 4	8IT 4	4 3 LDA 4	STA 4	EOR 4	4 3 ADC 4	4 3 ORA 4	4 ADD 4 3	3 JMP 3	a JSR 8 3	4 3 LDX 4	3 STX 4	MSB of Op	Number of Cy Opcode Mnem Number of By
	DIR	В	3 SUB 3	3 2 CMP 3	2 SBC 3	3 2 CPX 3	2 AND 3	2 BIT 3	2 LDA 3	STA 3	2 EOR 3	2 ADC 3	3 2 ORA	2 ADD 3	2 JMP 2	JSR 5 2	3 LDX 3	3 STX 3	0	BRSET0 ⁵ 3
	IMM	А	2 SUB 2	2 2 CMP 2	2 SBC 2	2 CPX 2	2 AND 2	2 BIT 2	2 LDA 2		2 EOR 2	2 ADC 2	2 2 ORA	2 ADD 2		8 BSR 2 REL	2 LDX ²		MSB	0
trol	HNI	6								TAX 2	1 CLC 2	1 SEC 2	1 CLI 2	1 SEI 2	1 RSP 2	1 NOP 2		1 TXA ²		xadecimal
Con	HNI	8	1 RTI 9	1 RTS 5		1 SWI 10														code in He
	X	7	2 NEG 5			2 COM 5	2 LSR 5		2 ROR 5	2 ASR 5	ASULSL 5	2 ROL 5	2 DEC 5		2 INC 5	2 TST 5		2 CLR 5		LSB of Op
rite	IX1	6	2 NEG 6			2 COM 6	2 LSR 6		ROR	ASR 6	ASL/LSL	2 ROL	DEC 6		2 INC 6	2 TST 6		2 CLR 6		
-Modify-W	HNI	5	I NEGX 2			COMX 2	LSRX 2		RORX 2	ASRX 2	ASLX/LSLX	ROLX 2	DECX 2		I NCX 2	TSTX 2		CLRX 2		
Read	HNI	4	1 NEGA 2		1 MUL 10	coma ²	1 LSRA 2		2 RORA	ASRA 2	ASLA/LSLA	ROLA 2	1 DECA 2		1 INCA 2	1 TSTA 2		1 CLRA	ffset	omset it Offset
	DIR	3	2 NEG 5			2 COM 5	2 LSR 5		2 ROR 5	2 ASR 5	ASL/LSL 5	2 ROL 5	2 DEC 5		2 INC 5	2 TST 5		2 CLR 5	lative exed, No O	exed, 8-bit exed, 16-Bi
Branch	REL	2	2 BRA 3	2 BRN 3	2 BHI 3	2 BLS 3	2 BCC 3	BCS/BLO	2 BNE 3	BEQ 3	2 BHCC 3	2 BHCS 3	2 BPL 3	2 BMI 3	2 BMC 3	2 BMS 3			REL = Re IX = Ind	IX1 = Ind IX2 = Ind
oulation	DIR	1	2 BSETO 5	2 BCLR0 5	BSET1 5	BCLR1 5	BSET2 5	2 BCLR2	BSET3 5	BCLR3 5	BSET4 5	BCLR4 5	BSET5	BCLR5	2 BSET6	2 BCLR6	BSET7 5	BCLR7 5	erent nediate	ect tended
Bit Mani	DIR	0	3 BRSETO 5	BRCLR0 5	BRSET1	BRCLR1 5	BRSET2	BRCLR2	BRSET3	BRCLR3	3 BRSET4 5	BRCLR4	BRSET5	BRCLR5	3 BRSET6 5	BRCLR6	3 BRSET7	BRCLR7 5	INH = Inh MM = Imr	UIK = UI EXT = Ext
		LSB	0	-	2	3	4	5	9	7	8	6	A	8	J	D	ш	н		

Figure 28. Instruction Set Op-code Map

7.14 RAM

This Random Access Memory (RAM) module is a static volatile memory block. The module contains a 256 word by 8 bit RAM array. The RAM block has a synchronous read and write interface.

7.15 EEPROM

Characteristics of EEPROM:

- a nonvolatile reprogrammable memory,
- 64 word EEPROM with a word length of 12 bits (8 data bits + 4 ECC bits),
- erase/program access is limited to the upper 16 bytes in operational mode,
- single byte mode and all-in-one/two step mode for erase/programming,
- internal slew rate control of the programming pulses,
- internal voltage regulator for the programming/ erase voltage VPP.

The application has to guarantee safe operating conditions (e.g. temperature) for the duration of the erasing and programming.

For enhanced data integrity, the EEPROM is equipped with an error checking and correction hardware.

It is capable of correcting a single bit error and to detect a double bit error and can't be disabled. If the ECC code which is automatically calculated from the read data does not match the ECC code stored in the EEPROM cell, then the ECCERR bit in the EE64CSR register will be set and the interrupt EE_ECCERR_IRQ will be triggered (if not masked). The access to the EEPROM adds 4 additional wait cycles for a read operation of the EL3.5.

For information regarding the number writing cycles, reliability and condition parameters please refer to the parameter table.

The EEPROM array is intended for customer configuration data, motor parameter and customer adjustment data. An additional array is available for chip adjustments. This array is protected in the normal operational mode.

There are two ways for programming of EEPROM, a single byte or all-in-one programming mode. There are auxiliary routines in SysROM space that provide both procedures. The writing of data can only be achieved to empty cells. So it is indispensable to erase the EEPROM space before writing to it.

The EEPROM erasing/programming voltage is generated internally. The EEPROM is secured from unintentional erasing/programming by a predetermined sequence of conditions.

Analog to its programming, the EEPROM may be erased in two ways, byte-wise or all at once. The erasing operations are available as SysROM routines.

Register Name	Address	Description
EE64CSR	0x0005	EEPROM Control and Status Register
EE64LKR	0x0006	EEPROM Lock Register
EE64ECC	0x0007	EEPROM Error Correction Code Register
EE64IRQ	0x0404	EEPROM Interrupt Configuration Register

Table 73. EEPROM Control and Status Register Table

Table 74. EEPROM Control and Status Register

EE64CSR (0x0005)	MSB							LSB
Content	AL	PGM	ER	VHI	VLO	INFO	LOCK	ECCERR
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	AL : enables I PGM : selects ER : selects e VHI : enables VLO : enables INFO : alway LOCK : status bit is set/rese ECCERR : indi bit and EE_EC	olock write/ s writing of rasing of m s verify moo s verify moo s write 0b s bit indicat et by hardw cates, that CCERR_IRQ	Yerase memory duri- le with high de with low ing, that era- vare, EE_REA the last EEP are cleared	uring progra ng program read volta read volta ase/prograr ADY_IRQ is o ROM read- by writing	amming ge referenc ge referenc mming is in cleared by v access cont 1b.	e progress, vriting 1b. ains an ECC	error,	

Table 75. EEPROM Lock Register

EE64LKR (0x0006)	MSB							LSB
Content	S[3]	S[2]	S[1]	S[0]	CNT[3:0]	CNT[3:0]	CNT[3:0]	CNT[3:0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	S[3] : counter S3 = CNT1 xo S[2] : S2 = CN S[1] : S1 = CN S[0] : S0 = CN CNT[3:0] : CN The EE64LKR	parity r CNT3 T0 xor CNT T2 xor CNT IT0 xor CNT IT[3:0] : locl register car	2 3 1 < counter nnot be acc	essed via th	ne JTAG inte	rface.		

Table 76. EEPROM Error Correction Code Register

EE64ECC (0x0007)	MSB							LSB
Content	-	-	-	-	ECC[3]	ECC[2]	ECC[1]	ECC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	ECC[3:0] : ECC The ECC bits time. The EE64ECC	C[3:0] : sing can be writ register ca	le bit failure ten by setti nnot be acc	e correction ing the bit E essed in the	ECC ECC_OFF=1. e JTAG mod	Read acces	s is availab	e at any

Table 77. EEPROM Interrupt Configuration Register

Elmos Semiconductor AG

EE64IRQ (0x0404)	MSB							LSB
Content	-	-	-	-	-	-	-	EEIRQ_ EN
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	EEIRQ_EN : e IRQ 1 : interrupts 0 : interrupts	nable bit fo enabled disabled	or EEPROM i	nterrupts E	e_err_irq	, EE_READY	_IRQ and EI	E_ECCERR_

start reset EEPROM counter EE64LKR=0xA0 set EEPROM counter to value 0x0B EE64LKR=0x0A loop +1 yes loop < 11 no write to EEPROM ee_data(ee_addr)=value set EEPROM counter to value 0x0C EE64LKR=0x0A erase/program ves all bytes? no erase/program all bytes EE64CSR(AL)=1 mode? program erase enable program mode enable erase mode EE64CSR(ER)=1 EE64CSR(PGM)=1 wait for erasing/ programming time period EE64CSR(LOCK) no <EE64CSR(LOCK)=0 ves disable erase/ programming mode EE64CSR(PGM)=0 / EE64CSR(ER) =0 / EE64CSR(AL) =0 finish

Figure 29. Flow of EEPROM Erasing/Programming

Elmos Semiconductor AG	Data Sheet	QM-No.: 25DS0115E.01

7.16 FLASH (only available in IC types with included FLASH memory)

The device contains customer programmable FLASH firmware memory. For information regarding the number writing cycles, reliability and condition parameters please refer to the memory parameter table.

Characteristics of customer programmable FLASH firmware memory:

- nonvolatile memory,
- customer programmable FLASH firmware memory, in configuration mode or via JTAG interface
- read-only access in operational mode,
- programming up to 64 Bytes at once,
- mass erase mode,
- data verification for erased and programmed states.

Safe environment conditions must be guaranteed (especially supply voltage, programming time and temperature). Re-flashing is not allowed under automotive ambient conditions variations. Supply voltage and temperature should be in very controlled production limits. Re-flashing under (even temporarily) uncontrolled conditions can affect the data retention of the FLASH information and may lead to errors during re-flashing.

The supply voltage at the IC pin has to be in the range of 11..15V and must be free of noise and ripple and must never be interrupted during re-flash procedure. For re-flashing the IC temperature has to be between 0°C and 50°C. It's recommended to protocol the values for the ambient conditions during re-flashing.

The FLASH memory is programmable at end-of-line via JTAG interface or via LIN interface in configuration mode. The LIN re-flashing procedure is part of the boot manager module, located in the SysROM. Details of the re-flashing procedure can be found in the boot manager description. The re-flashing capability via LIN can be disabled via setting the configuration time to zero. It is strongly recommended to disable the re-flashing capability via LIN if not needed

For enhanced data integrity, the FLASH is equipped with an error checking and correction hardware. It is capable of correcting a single bit error and to detect a double bit error and can't be disabled. If the ECC code which is automatically calculated from the read data does not match the ECC code stored in the FLASH cell, then the ECCERR bit in the FLECR register will be set.

32 bit security key for avoiding unwanted programming/ erasing:

The FLASH memory may be programmed in two ways, via JTAG or via the CPU. A programming via JTAG can only be performed in JTAG flash mode.

The second way of programming via CPU is supported by software routines located in the SysROM area. The FLASH key and the data to be programmed are transmitted over LIN in this case. FLASH cells shall be erased before programming. The FLASH programming/erasing voltage is generated internally. This FLASH programming can be performed in configuration mode only. The flash is secured from unwanted programming/ erasing via CPU by an additional condition. A programming/erasing process is only enabled if a 32 bit key was written and the FLASH_KEY_OK register was read. The key of 0x84913BAC must be written byte-wise in the correct order: FLASH_KEY3=0x91, FLASH_KEY2=0x3B, FLASH_KEY4=0x84 and at last FLASH_KEY1=0xAC (see below). Programming/erasing is then enabled until any byte of the key register is written again. After that the complete process must be done again. Otherwise an internal circuit provides erasing/programming of Flash is locked. It is strongly recommended not to store the key in the FLASH memory itself, it should be transmitted over LIN.

Register Name	Address	Description
FLASH_KEY_OK	0x040C	Flash key status
FLASH_KEY1	0x040D	Flash key register 1
FLASH_KEY2	0x040E	Flash key register 2
FLASH_KEY3	0x040F	Flash key register 3
FLASH_KEY4	0x0410	Flash key register 4

Table 78. Flash programming/ erasing enable register

Table 79. Flash key status

FLASH_KEY_OK (0x040C)	MSB							LSB
Content	-	-	-	-	-	-	-	FLASH KEY_OK
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	R	R	R	R	R	R	R	R
Bit Description	FLASH_KEY_ programming 0: The key or	OK : 1: The g/erasing is the sequen	correct key now enabl ce of writin	was writte ed. Ig was not o	n in the cor correct	rect order. I	Flash	

Table 80. Flash key register 1

FLASH_KEY1 (0x040D)	MSB							LSB
Content	FLASH_ KEY1	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	W	W	W	W	W	W	W	W
Bit Description	FLASH_KEY1	: bit [7:0] o	f the 32 bit	key - 0xAC				

Table 81. Flash key register 2

FLASH_KEY2 (0x040E)	MSB							LSB
Content	FLASH_ KEY2	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	W	W	W	W	W	W	W	W
Bit Description	it Description FLASH_KEY2 : bit [15:8] of the 32 bit key - 0x3B							

Table 82. Flash key register 3

FLASH_KEY3 (0x040F)	MSB							LSB
Content	FLASH_ KEY3	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	W	W	W	W	W	W	W	W
Bit Description FLASH_KEY3 : bit [23:16] of the 32 bit key - 0x91								

Table 83. Flash key register 4

FLASH_KEY4 (0x0410)	MSB							LSB
Content	FLASH_ KEY4	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	W	W	W	W	W	W	W	W
Bit Description	it Description FLASH KEY4 : bit [31:24] oft the 32 bit key - 0x84							

	6	
Register Name	Address	Description
FLCR	0x0008	FLASH Control Register
FLECR	0x0009	FLASH ECC Control Register

Table 84. FLASH Control Register Table

Table 85. FLASH Control Register

FLCR (0x0008)	MSB							LSB
Content	PGM	MER2	VERIFY	VERIFY1	HVEN	BPGM	MER6	Reserved
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	- -						y will be y will be	

Table 86. FLASH ECC Control Register

FLECR (0x0009)	MSB							LSB
Content	ECCERR	BIT[6]	BIT[5]	BIT[4]	BIT[3]	BIT[2]	BIT[1]	BIT[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	 ECCERR : Indicates that a previous FLASH read-access contains an ECC error. Clear this bit by writing '1' into it. BIT[6] : MSB of reserved bits. BIT[0] : LSB of reserved bits. Always write BIT[6:0]=0000000₆. 							r this bit

7.17 Test Controller

The IC can be set in test-mode with TESTEN at high. The tests are for production test purposes. They are not intended for customer usage, that means the test mode must be inactive in the application mode. To ensure proper operation of the IC, always connect the pin TESTEN to GND. When the test mode is active, the chip is controlled by the JTAG test pins. The different test modes are set up via the Instruction Register (IR) of the test controller. In test mode the clock can be controlled external by a special JTAG instruction, too. Two pulses on TCK are needed for switching internal clock net to the external clock on TCK. While the test mode is active, the chip can be reset with TSTRST at high. There are four additional JTAG pins in use, TCK (clock), TMS (select), TDI (data in) and TDO (data out). Figure below shows the state diagram of the JTAG TAP controller. By setting TMS and clocking TCK different states can be reached. For details on the JTAG test procedure, see IEEE-standard 1149.1.

Figure 30. JTAG State Diagram

Figure 31. JTAG Instruction Register Access (8 bit)

JTAG instructions must be sent LSB first. Be aware, that while sending the last instruction bit TCK is active and TMS is already inactive (high).

Data Sheet

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG

67/74

7.18 Electromagnetic Compatibility

For Electromagnetic Compatibility (EMC) tests the pins GNDA, GNDPA and GNDPB are shorted together. Furthermore, the device pins are classified into global and local pins.

Global pins are:

- VS,
- VSPA, VSPB shorted together,
- depending whether LIN auto-addressing. is included or not: either BUS_M and BUS_S or BUS, respectively.

Local pins are:

- VDDA,
- V5V,
- D1, D2, D3.

Special local pins are the motor driver pins A0, A1, B0, B1. These are not tested for emission, as the external circuitry (i.e. the motor) and the selected slew-rate largely influence the emissions.

In accordance with section 5.3 of Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.2 of 2011-03-25., the pins BUS_S, D2, D3, A1, B0 and B1 are not tested, as their functionality is represented by BUS_M, D1 and A0, respectively. **150Ω-Method Emission Limits**

Emissions are measured according to the 150Ω -method of the IEC 61967-4 standard in the frequency range from 150kHz to 1GHz.

The limit lines are defined in Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.3 of 2012.

Figure 32. 150 Ω -Method Limit Lines

DPI Immunity Limits

The Direct Power Injection (DPI) immunity tests are conducted according to IEC 62132-4.

Measurement parameters:

- frequency range: 1MHz to 1GHz,
- modulation: CW and AM 80% 1kHz (same peak),
- the stepper motor is replaced by an RL-circuit and operated in continuous stepping mode tbd. in detail.

Detailed measurement setup description:

- Global pin BUS/BUS_M without bus capacitor: CW and AM,
- Global pins VS, BUS/BUS_M with 3*68pF bus capacitor: only CW,
- Global pins VSPA, VSPB shorted together: only CW. Failure criterion is an increased jitter and/or reduced voltage swing (pass/fail mask) tbd. at the pin A0.

The limit lines are defined in Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.3 of 2011-03-25.

Figure 33. DPI Immunity Limit Lines

E523.30B, E523.31B, E523.32B, E523.33B, E523.34B, E523.35B, E523.36B, E523.37B, E523.38B

8 Application Information

Figure 34. Application circuits

Description	Condition	Symbol	Min	Тур	Max	Unit
Ferrite RF attenuator (optional for EMC optimization)	High attenuation of RF Disturbances	L _M , L _S		TDK MMZ2- 012Y2- 02B or equiva- lent		
Blocking capacitor for supply volt- age		C _{vs}		100		μF
Blocking capacitor for Hall supply voltage		C _{vsv}		1		μF
Blocking capacitor for analog supply voltage		C _{VDDA}		1		μF
Blocking capacitor for digital sup- ply voltage		C _{VDDD}		1		μF

9 Package Information

All devices are available in a Pb free, RoHs compliant QFN32L6 plastic package according to JEDEC MO-220 K, variant VJJC-2. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020 with a soldering peak temperature of (260+5)°C.

Description	Symbol	ibol mm			inch			
		min	typ	max	min	typ	max	
Package height	А	0.80	0.90	1.00	0.031	0.035	0.039	
Stand off	A1	0.00	0.02	0.05	0.000	0.00079	0.002	
Thickness of terminal leads, including lead finish	A3		0.20 REF			0.0079 REF		
Width of terminal leads	b	0.25	0.30	0.35	0.010	0.012	0.014	
Package length / width	D/E		6.00 BSC			0.237 BSC		
Length / width of exposed pad	D2 / E2	4.50	4.65	4.80	0.177	0.183	0.189	
Lead pitch	е		0.65 BSC			0.026 BSC		
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018	
Number of terminal positions	N		32			32		

Note: the mm values are valid, the inch values contains rounding errors

10 Marking

10.1 Top Side

- Elmos (Logo)
- ► 52330B
- ► YWW*#
- XXXXU

Signature	Explanation					
52330	Elmos project number					
В	Elmos project revision code					
Υ	Year of assembly (e.g. 201 <u>3</u>)					
WW	Week of assembly					
*	Mask revision code					
#	Elmos internal code					
XXXX	Production lot number (1 to 4 digits)					
U	Assembler Code					

POWER LIN2.X STEPPER WITH STALL DETECTION PRODUCTION DATA - DEC 18, 2013

11 Record of Revision

Chapter	Revision	Change and Reason for Change	Date	Released Elmos
10.1	.01	Marking, signature and explanation updated	Dec 18, 2013	ROWE/ZOE
11	.01	New chapter	Dec 18, 2013	ROWE/ZOE

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

WARNING - Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Elmos Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life, body injury or damage to property. In the development of your design, please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by Elmos Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG. Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

Application Disclaimer

Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos Semiconductor AG or others.

Contact Information

Elmos Semiconductor AG

Headquarters Elmos Semiconductor AG Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)	啻: +492317549100	⊠: sales-germany@elmos.com	: www.elmos.com
Sales and Application Support Office North America Elmos NA. Inc. 32255 Northwestern Highway • Suite 220 Farmington Hills MI 48334 (USA)	營: +12488653200	⊠: sales-usa@elmos.com	
Sales and Application Support Office Korea and Japan B-1007, U-Space 2, #670 Daewangpangyo-ro, Sampyoung-dong, Bunddang-gu, Sungnam-si Kyounggi-do 463-400 Korea	☞: +82317141131	⊠: sales-korea@elmos.com	
Sales and Application Support Office China Elmos Semiconductor Technology (Shanghai) Co., Ltd. Unit London, 1BF GC Tower • No. 1088 Yuan Shen Road, Pudong New District • Shanghai, PR China, 200122	營: +862151785178	⊠: sales-china@elmos.com	
Sales and Application Support Office Singapore Elmos Semiconductor Singapore Pte Ltd. 3A International Business Park #09-13 ICON@IBP • 609935 Singapore	密: +65 6908 1261	⊠: sales-singapore@elmos.com	

© Elmos Semiconductor AG, 2013. Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

	ES
	37B.
	523.
	36B, I
•	523.3
	5B. E
	E523.3
	4B. I
	23.3
1	8. E5
	3.331
	E52
	.32B.
	E523
	31B.
	E523.
	30B.
	E523.

3.38B

74/74

Data Sheet