POWER LIN2.X STEPPER WITH STALL DETECTION

Typical Application Circuit

General Description

This system-in-a-chip IC controls bipolar stepper actuators with current-choppered micro-stepping. The IC is controlled by a LIN2.x interface. It's LIN-address can calculated by the "auto-addressing" feature (called "SNPD" in official LIN-specification). Alternatively the IC can be controlled by a PWM-interface, with diagnosis feedback. The integrated sensor-less "stall-detection" detects mechanical end-positions and stops the motor to re-duce acoustical noise during initialization runs. The calculating heart is an 8-bit controller which is assisted by powerful circuitry. For absolute precise positioning, up to 3 Hall-sensors or potentiometers can read out. The IC can also drive up to 3 DC motors or other loads. ICs with FLASH-memory are programmable via JTAG interface or LIN in normal or high speed mode. The IC is available with standard firmware as well as with a development system for individual firmware.

Ordering Information

Product ID	Features
E523.30B	LIN or PWM-interface, LIN auto-ad- dressing, 8k customer FLASH
E523.31B	LIN with firmware (FLASH)
E523.32B	LIN with firmware (ROM)
E523.33B	LIN or PWM with 8k customer ROM
E523.34B	PWM interface 8k customer FLASH
E523.35B	PWM interface with firmware (FLASH)
E523.36B	PWM interface with firmware (ROM)
E523.37B	LIN or PWM with 8k customer FLASH
E523.38B	LIN, auto-addressing, 8k customer ROM

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

POWER LIN2.X STEPPER WITH STALL DETECTION

Functional Diagram

Pin Configuration

Top View

Note: Not to scale, EP Exposed die pad

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013

Pin Description

Pin	Name	Type ${ }^{1)}$	Description	Power-up state
1	V5V	S	Hall sensor supply	off
2	VDDA	S	Regulator output for analog supply	
3	GNDA	S	Ground for analog supply	
4	TAIO	10	Analog test bus	
5	GNDBUS	S	LIN or PWM ground	
6	$\begin{aligned} & \text { BUS_M } \\ & \text { or } \\ & \text { n.c. } \end{aligned}$	10	LIN bus (master direction) or PWM interface, not connected at versions without auto-addressing	Transmitter off
7	$\begin{aligned} & \text { BUS S or } \\ & \text { BUS }^{-} \end{aligned}$	10	LIN bus interface (sensing toward slave direction) or not connected	BUS pull-up off (OEM requirements) Receiver Wake-up threshold enabled
8	n.c.	-	Not connected	
9	GNDPB	S	Ground for half bridges B	
10	B0	0	Motor coil driver B output 0	
11	B1	0	Motor coil driver B output 1	Driver off
12	VSPB	S	Power supply for driver B	Driver off
13	VSPA	S	Power supply for driver A	
14	A1	0	Motor coil driver A output 1	
15	A0	0	Motor coil driver A output 0	Driver off
16	GNDPA	S	Ground for half bridges A	Driver off
17	n.c.	-	not connected	
18	n.c.	-	not connected	
19	TSTRST	I	Test mode reset	
20	TMS	I	Test mode select (JTAG)	
21	TDI	I	Test data in (JTAG)	
22	TCK	I	Test clock (JTAG)	
23	TESTEN	I	Test mode enable	
24	TDO	0	Test data out (JTAG)	
25	n.c.	-	not connected	
26	VDDD	S	Regulator output for digital supply	
27	GNDD	S	Ground for digital supply	
28	D3	10	General purpose I/O, Hall-sensor or potentiometer input	
29	D2	10	General purpose I/O, Hall-sensor or potentiometer input	
30	D1	10	General purpose I/O, Hall-sensor or potentiometer input	
31	NC	-	not connected	
32	VS	S	Battery voltage for internal supplies	
-	EP	S	Exposed Die Pad	

1) $A=$ Analog, $D=$ Digital, $S=$ Supply, $I=$ Input, $O=$ Output, $H V=$ High Voltage

The QFN die pad shall be connected to ground. For ESD details see section "ESD".

1 Absolute Maximum Ratings

Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. These are stress ratings only; operation of the device at these or any other conditions beyond those listed in the operational sections of this document is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltages with respect to ground. Currents flowing into terminals are positive, those drawn out of a terminal are negative.

Description	Condition	Symbol	Min	Max	Unit
Absolute maximum supply voltage		$\mathrm{V}_{\text {VS }}, \mathrm{V}_{\text {VSPA, }}$ $V_{\text {VSPB }}$ LIN2.2A- spec. Param11: $V_{\text {SUP NON_OP }}$	-0.3	40	V
Continuous operating voltage	Half-bridge driv ers activated	$\begin{aligned} & \mathrm{V}_{\text {VS }}, \mathrm{V}_{\text {VSPA }} \\ & \mathrm{V}_{\text {VSPB }} \\ & \hline \end{aligned}$	-0.3	20	V
Jump start operating voltage	$\mathrm{T} \leq 60 \mathrm{~s}$	$\begin{array}{\|l} \hline V_{\text {VS }}, V_{\text {VSPA, }} \\ \mathrm{V}_{\text {VSPB }} \\ \hline \end{array}$	-0.3	28	V
Load dump operating voltage	$\mathrm{T} \leq 0.5 \mathrm{~s}$	$\begin{array}{\|l} \hline \mathrm{V}_{\text {VS }}, \mathrm{V}_{\text {VSPA }} \\ \mathrm{V}_{\text {VSPB }} \\ \hline \end{array}$	-0.3	42	V
Reverse polarity supply voltage	$\begin{array}{\|l\|} \hline \mathrm{T}<0.5 \mathrm{~s} \\ \mathrm{I}_{\mathrm{vs}}>-1.0 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\text {VS }}, \mathrm{V}_{\text {VSPA, }} \\ & \mathrm{V}_{\text {VSPB }} \\ & \hline \end{aligned}$	-1		V
Voltage difference between any two pins out of GNDA, GNDD and exposed pad		$V_{\text {GND1 }}$	-0.3	0.3	V
Voltage difference between GNDA and any pin out of GNDPA, GNDPB, GNDBUS		$V_{\text {GND2 }}$	-0.8	0.8	V
Junction temperature		T,	-40	150	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {ST }}$	-45	150	${ }^{\circ} \mathrm{C}$
Thermal resistance (Junction to ambient)	OFN32L6	$\mathrm{R}_{\mathrm{TH}, \mathrm{J}, \mathrm{A}}$	18	20	K/W
Voltage at pin V5V		$\mathrm{V}_{\mathrm{V} 5 \mathrm{~V}}$	-0.3	5.5	V
Voltage at pins VDDA and VDDD		$V_{\text {vDD }}$	-0.3	3.6	V
Voltage at pins A0, A1, B0, B1		$V_{\text {BrIDGE }}$	-1	43	V
Voltage at test pins (TDI, TCK, TMS, TDO, TSTEN, TSTRST, TAIO)	1)	$V_{\text {TEST }}$	-0.3	$\begin{aligned} & 3.6 \text { or } \\ & \text { VDDD }+0.3 \end{aligned}$	V
Voltage at D1, D2, D3 (digital IOs)	D1, D2, D3 programmed as digital $\mathrm{IOs}{ }^{1)}$	$V_{\text {DxD }}$	-0.3	$\begin{array}{\|l\|} 5.5 \mathrm{or} \\ \mathrm{~V} 5 \mathrm{~V}+0.3 \end{array}$	V
Voltage at D1, D2, D3 (analog ADC input)	D1, D2, D3 programmed as analog ADC input ${ }^{1)}$	$V_{\text {DXA }}$	-0.3	$\begin{aligned} & 3.6 \text { or } \\ & \text { VDDA }+0.3 \end{aligned}$	V
Current into D1, D2, D3		I_{DX}	-10	10	mA
Current into pins A0, A1, B0, B1		$\mathrm{I}_{\text {BRIDCE }}$	-900	900	mA
External load current drawn from pin V 5 V		I LOADV5V	-45	0	mA
External load current drawn from pin VDDA		$\mathrm{I}_{\text {LOADVDDA }}$	-5	0	mA
Current into test pins (TDI, TCK, TMS, TDO, TSTEN, TSTRST, TAIO)		$I_{\text {TEST }}$	-10	10	mA
Voltage at pin BUS_S, BUS_M		$V_{\text {BUS }}$	-12	40	V
Voltage at pin BUS_S, BUS_M, load dump	t<0.5s	$\mathrm{V}_{\text {BUS }}$		42	V

1) Whichever is smaller.

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

2 Recommended Operating Conditions

Description	Condition	Symbol	Min	Typ	Max	Unit
Supply voltage ${ }^{1}$	LIN Bus operating	$\mathrm{V}_{\mathrm{v},}, \mathrm{~V}_{\mathrm{vSP}}$ LIN2.2A- spec. Param10: $\mathrm{V}_{\text {sup }}$	7		18	V
Supply voltage ${ }^{(1}$	PWM interface operating and ECU running	$\mathrm{V}_{\mathrm{V},}, \mathrm{~V}_{\mathrm{VSP}}$ LIN2.2A- spec. Param9: $\mathrm{V}_{\text {BAT }}:>8 \mathrm{~V}$	5.5		18	V
Supply voltage ${ }^{(1}$	FLASH programming	$\mathrm{V}_{\text {VSFL }}$	11		15	V
Operating junction temperature range		T_{J}	-40		150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature		$\mathrm{T}_{\text {amb }}$	-40		125	${ }^{\circ} \mathrm{C}$
Ambient temperature for FLASHing		$\mathrm{T}_{\text {amb }}$	0		50	${ }^{\circ} \mathrm{C}$
Blocking capacitor for supply voltage		$\mathrm{C}_{\text {vs }}$		100		nF
Blocking capacitor for Hall supply voltage		$\mathrm{C}_{\mathrm{v} 5 \mathrm{~V}}$		1		$\mu \mathrm{F}$
Blocking capacitor for analog supply voltage		$C_{\text {vDDA }}$		1		$\mu \mathrm{F}$
Blocking capacitor for digital supply voltage		$C_{\text {vDDD }}$		1		$\mu \mathrm{F}$
External load current drawn from pin V5V		$\mathrm{I}_{\text {LOADV5V }}$	-40		0	mA
External load current drawn from pin VDDA		$\mathrm{I}_{\text {LOADVDDA }}$	-4		0	mA
Number of LIN slaves capable of auto-addressing		$\mathrm{N}_{\text {SL, AA }}$			15	
Ferrite RF attenuator proposal (optional for increasing performance at pin BUS, BUS_M, BUS_S)	High attenuation of RF Disturbances	$L_{M, L S}$		TDK MMZ201- 2Y202B or equivalent		
Source impedance at GPIO pins D1, D2, D3	Pin Dx configured as 3.3V analog input	R_{Dx}			10	k Ω
Input voltage on D1, D2 and D3 in analog mode	configured as analog input	$V_{D 1}, V_{D 2}, V_{D 3}$	OV		$V_{\text {vDDA }}$	
Input voltage on D1, D2 and D3 in digital mode	configured as digital input	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D} 3}$	OV		$\mathrm{V}_{\mathrm{V} 5 \mathrm{~V}}$	

3 ESD Protection

Description	Condition	Symbol	Min	Max	Unit
ESD HBM Protection at all Pins	${ }^{1)}$	$\mathrm{V}_{\text {ESD(HBM) }}$	-2	2	kV
ESD HBM Protection at Pin BUS/ BUS_M/BUS_S to system ground	${ }^{1)}$	$\mathrm{V}_{\text {ESD(HBM) }}$	-6	6	kV
ESD HBM Protection at Pin VS/VSPA/ VSPB to system ground	$1)$	$\mathrm{V}_{\text {ESD(HBM) }}$	-4	4	kV
ESD CDM Protection at all Pins	${ }^{1)}$	$\mathrm{V}_{\text {ESD(CDM) }}$	-500	500	V
ESD CDM Protection at Edge Pins	$\mathrm{V}^{2)}$	$\mathrm{V}_{\text {ESD(CDM)C }}$	-750	750	V
ESD Machine Model	$\mathrm{V}_{\text {ESD(MM) }}$	-100	100	V	

1) According to AEC-Q100-002 (HBM) chip level test
2) According to AEC-O100-011 (CDM) chip level test
3) According to AEC-Q100-003 (MM) chip level test

4 Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
Supply Voltages						
Supply current	All motor drivers off, $\begin{aligned} & I_{\mathrm{BUS}=0,} \\ & I_{\mathrm{VS5}}=0 \\ & \mathrm{~V}_{\mathrm{Vs}}<18 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {sup }}$		8	15	mA
Sleep mode current	$\begin{aligned} & \mathrm{V}_{\mathrm{vs}}<14 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}<50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$I_{\text {Vs_sleep }}$		30	50	$\mu \mathrm{A}$
Power-on reset low threshold	$V_{\text {VDDx }}$ falling ${ }^{1)}$	$\mathrm{V}_{\text {TL,POR }}$	0.77	0.82	0.87	$\mathrm{V}_{\text {VDDx }}$
Power-on reset high threshold	$\mathrm{V}_{\text {VDDx }}$ rising ${ }^{1)}$	$\mathrm{V}_{\text {TH,POR }}$	0.85	0.90	0.95	$\mathrm{V}_{\text {VDDx }}$
Power-on reset hysteresis		$\mathrm{V}_{\text {HYST,POR }}$	200			mV
V5V hall sensor supply during ON	$\begin{aligned} & \mathrm{V}_{\mathrm{vs}} \geq 7 \mathrm{~V}, \mathrm{~T}_{\text {anb }}<85^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{V} 5 \mathrm{v}} \leq 40 \mathrm{~mA} \\ & \mathrm{or} \\ & \mathrm{~V}_{\mathrm{vs}} \geq 7 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}<150^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{V} 5 \mathrm{~V}} \leq 10 \mathrm{~mA} ; \end{aligned}$	$\mathrm{V}_{\mathrm{V} 5 \mathrm{~V}}$	4.75	5	5.25	V
V5V current limitation		$\mathrm{I}_{\mathrm{V} 5 \mathrm{~V} \text { lim }}$	41	82	160	mA
Internal analog supply voltage	external $\mathrm{C}_{\text {vopa }}$ connected, no sleep mode	$V_{\text {vDDA }}$	3.13	3.3	3.47	V
Internal digital supply voltage	external $\mathrm{C}_{\text {vDPD }}$ connected, no sleep mode	$V_{\text {vDDD }}$	3.0	3.3	3.6	V
Power-on reset on threshold referred to V_{vs}	V_{vs} falling	$V_{\text {TL,PoR,VS }}$			3.8	
Power-on reset off threshold referred to V_{vs}	V_{vs} rising	$V_{\text {TH,POR,VS }}$			4.1	
Temperature Control						
High temperature threshold	$\mathrm{T}_{\text {, rising }}{ }^{2)}$	$\mathrm{T}_{\text {OFF }}$	155	165	175	${ }^{\circ} \mathrm{C}$
Low temperature threshold	T, falling ${ }^{2)}$	$\mathrm{T}_{\text {ON }}$	135	145	155	${ }^{\circ} \mathrm{C}$
Oscillator						
Output frequency		$\mathrm{f}_{\text {osc }}$	31	32	33	MHz
Clock frequency for digital part		$\mathrm{f}_{\text {CLK }}$		0.25		$\mathrm{f}_{\text {osc }}$
Clock period for digital part		$\mathrm{t}_{\text {cık }}$		1/f CLK		

1) VDDx means VDDD or VDDA, whichever reaches the threshold first.
2) Functionality of over-temperature shutoff is tested. Temperature thresholds are not tested in production.

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

In sleep mode the pull-up is deactivated.

1) The IC is conform to the parameter limitations of the "IIN Physical Layer Spec. Revision 1.3 " up to "IIN Physical Layer Spec. Revision 2.2A". In some parameters the IC provides better performance to meet the enhanced requirements of leading European OEMs.
2) $V_{B U S_{-} C E N T E R}=\frac{V_{\text {BUS_THRES }_{+}}+V_{\text {BUS_THRES- }}}{2}$

where $V_{\text {BUS_THRES }}$: receiver threshold of the recessive to dominant bus edge and
$V_{\text {BUS_THRES }}$: receiver threshold of the dominant to recessive bus edge.
3) In sleep or unpowered mode the pull-up is deactivated, due to special OEM requirements.
4) max.-limit valid for $\mathrm{Tj}_{\mathrm{j}} \leq 85^{\circ} \mathrm{C}$, for $\mathrm{Tj} \leq 25^{\circ} \mathrm{C}$ the limit is $10 \mu \mathrm{~A}$, for $\mathrm{Tj} \geq 85^{\circ} \mathrm{C}$ the limit is $40 \mu \mathrm{~A}$
5) max.-limit valid for $\mathrm{Tj} \leq 85^{\circ} \mathrm{C}$, for $\mathrm{Tj} \leq 85^{\circ} \mathrm{C}$ the limit is $100 \mu \mathrm{~A}$

Elmos Semiconductor $A G$ reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {Vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
Recessive output voltage with active pullup	$\begin{aligned} & I_{\text {BUS }}=0 \mathrm{~mA} \\ & \text { Bus recessive } \end{aligned}$	$V_{\text {bUS_REC }}$	$\mathrm{V}_{\mathrm{vs}}-1 \mathrm{~V}$		V_{vs}	
Dominant output voltage	Bus dominant, $\begin{aligned} & \mathrm{V}_{\mathrm{VS}}=7.0 \mathrm{~V}, \mathrm{R}_{\text {BUS }}=0.5 \mathrm{k} \Omega \\ & \text { to } V_{\mathrm{S}} \end{aligned}$	$V_{\text {busdom }}$		0.7	1.2	V
Dominant output voltage	Bus dominant, $\begin{aligned} & \mathrm{V}_{\mathrm{VS}}=18 \mathrm{~V}, \mathrm{R}_{\text {BUS }}=0.5 \mathrm{k} \Omega \\ & \text { to } \mathrm{V}_{\mathrm{VS}} \end{aligned}$	$V_{\text {busdom }}$		1.1	2.0	V
Leakage current, supply disconnected	$\begin{aligned} & \mathrm{V}(\mathrm{LIN})=12 \mathrm{~V}, \mathrm{VS}=0 \mathrm{~V}, \\ & \text { Tjunct }<50^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {Bus, } 50}$		1	2	$\mu \mathrm{A}$
Clamping voltage, not production tested	$\mathrm{V}_{\mathrm{VS}}=0 \mathrm{~V}, \mathrm{I}_{\text {BUS }}=1 \mathrm{~mA}$	$V_{\text {BUS,CLAMP }}$	42			V
LIN2.x Transceiver, AC Characteristics						
Input capacitance	$7 \mathrm{~V}<\mathrm{V}_{5}<18 \mathrm{~V}$	$\mathrm{C}_{\text {LIN,PIN }}$			30	pF
Output slew-rate	$\begin{aligned} & \mathrm{C}_{\text {伿 }}=1-10 \mathrm{nF}, \mathrm{R}_{\mathrm{LIN}}=0.5- \\ & 1 \mathrm{k} \Omega, 1 \mu \mathrm{~s}<\mathrm{t}_{\text {LIN }}<5 \mu \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{VS}}=18 \mathrm{~V} \end{aligned}$	SR ${ }_{\text {Lin,OUT }}$	1		3	$\mathrm{V} / \mu \mathrm{s}$
Output slew-rate	$\begin{aligned} & \mathrm{C}_{\text {LN }}=1-10 \mathrm{nF}, \mathrm{R}_{\text {LII }}=0.5- \\ & 1 \mathrm{k} \Omega, 1 \mu \mathrm{~s}<\mathrm{t}_{\text {LIN }}\langle 5 \mu \mathrm{~s}, \\ & \mathrm{V}_{\mathrm{VS}}=7 \mathrm{~V} \end{aligned}$	$S \mathrm{~S}_{\text {LIN,OUT }}$	0.5		3	$\mathrm{V} / \mu \mathrm{s}$
Symmetry of rising and falling edge	$\mathrm{V}_{\mathrm{vs}}=18 \mathrm{~V} \quad{ }^{\text {b }}$	$\mathrm{t}_{\text {LIN,SYM }}$	-5		5	$\mu \mathrm{s}$
Transmit propagation delay	$\left.{ }^{6}\right)$	$t_{\text {tx_pdr }}, t_{\text {tx_pdf }}$			4	$\mu \mathrm{s}$
Transmit propagation delay symmetry	$\mathrm{t}_{\text {tx__ym }}=\mathrm{t}_{\text {tx_pdf }}-\mathrm{t}_{\text {tx_pdr }}{ }^{\text {6) }}$	$t_{\text {tx_sym }}$	-2		2	$\mu \mathrm{s}$
Propagation delay BUS to RXD		$t_{\text {rx_pdr }}, t_{\text {rx_pdf }}$			6	$\mu \mathrm{s}$
Propagation delay symmetry receiver	$\mathrm{t}_{\text {rx_sym }}=\mathrm{t}_{\text {rx_pdf }}-\mathrm{t}_{\text {rx_pdr }}$	$\mathrm{t}_{\text {r__ }}$ sym	-2		2	$\mu \mathrm{s}$
LIN bus pulse receiver debounce time		$\mathrm{t}_{\text {LIN,DB }}$	0.3		6	$\mu \mathrm{s}$
Wake-up debounce time		$\mathrm{t}_{\text {un, Wu }}$	70		150	$\mu \mathrm{s}$
Duty cycle 1		D1	0.396			

1) $D 1=\frac{t_{B U S _R E C(M I N)}}{2^{*} t_{B i t}}$
2) $D 2=\frac{t_{B U S _R E C(M A X)}}{2^{*} t_{\text {Bit }}}$
3) $D 3=\frac{t_{B U S _R E C(M I N)}}{2^{*} t_{\text {Bit }}}$
4) $D 4=\frac{t_{\text {BUS_REC(MAX) }}}{2^{*} t_{\text {Bit }}}$
5) LIN driver, bus load conditions (CBUS; RBUS): $1 \mathrm{nF} ; 1 \mathrm{k} \Omega / 6.8 \mathrm{nF} ; 660 \Omega / 10 \mathrm{nF} ; 500 \Omega$
6) This parameters are a documentation of LIN1.3 specification only and not valid for this product. Referring to the LIN2.2Aspecification (extract see below) LIN2.2A transceivers are compatible to LIN1.3 without being confirm to this parameter limits.
LIN Specification Package Revision 2.2A December 31, 2010; Page 15

1.1.7.1 Compatibility with LIN 1.3

LIN 2.2 is a superset of LIN 1.3. \qquad .The LIN 2.2 physical layer is backwards compatible with the LIN1.3 physical layer. But not the other way around. The LIN 2.2 physical layer sets harder requirement, i.e. a node using the LIN 2.2 physical layer can operate in a LIN 1.3 cluster.

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
Duty cycle 2		D2			0.581	
Duty cycle 3	$\begin{aligned} & \text { 5) } 7 \text {) } \\ & \mathrm{TH}_{\text {Rec(max) }}=0.778 * \mathrm{~V}_{\mathrm{VS}} \\ & \mathrm{TH}_{\text {Dom }} \\ & 7 \mathrm{~V}^{2} \leq 0.61 \mathrm{~V}_{\mathrm{s}} \leq 18 \mathrm{~V} \mathrm{~V}_{\text {vs }} \\ & \mathrm{t}_{\text {Bit }}=96 \mu \mathrm{~S} \end{aligned}$	D3	0.417			
Duty cycle 4	6) 7) $\begin{aligned} & \mathrm{TH}_{\text {Rec }(\text { min })}=0.389 * \mathrm{~V}_{\mathrm{vs}} \\ & \mathrm{TH}_{\text {Dom(min) }}=0.251 * \mathrm{~V}_{\mathrm{vs}} \\ & 7.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{vs}} \leq 18 \mathrm{~V} \\ & \mathrm{t}_{\text {Bit }}=96 \mu \mathrm{~s} \end{aligned}$	D4			0.590	
Additional LIN Parameters						
Timeout for LIN dominant clamping failure (deactivated for PWM version)		$\mathrm{t}_{\text {IIN,BUS,Dom }}$		12		ms
Baud rate for FLASH memory update via BUS	special mode to be activated via register, in send and receive mode	R		125		kB
LIN auto-addressing (only valid for products including this function)						
Bus pull-up current source for au-to-addressing	$\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{1}<50^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {BUS }}=0 \mathrm{OV} \end{aligned}$	$I_{\text {PD }}$	1.84	2.050	2.26	mA
Bus shunt resistor ${ }^{2)}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{\text {, }}<50^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {SHUNT }}$	0.75	1.00	1.25	Ω
Temperature coefficient of bus shunt resistor ${ }^{1)}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{1}<50^{\circ} \mathrm{C}$	TK ${ }_{\text {shunt }}$		0.4		\%/K
Differential amplifier differential input voltage range ${ }^{3)}$	$0^{\circ} \mathrm{C}<\mathrm{T},<50^{\circ} \mathrm{C}$	$V_{\text {DIFF_AMP }}$	-10		30	mV
Differential amplifier common mode input voltage range ${ }^{3)}$	$0^{\circ} \mathrm{C}<\mathrm{T},<50^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {COM_AMP }}$	0.00		2.50	V
Differential amplifier gain ${ }^{2 /}$	$\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{1}<50^{\circ} \mathrm{C} \\ & 0 \mathrm{~V}<\mathrm{V}_{\text {BUS }}<2.5 \mathrm{~V} \\ & \hline \end{aligned}$	$A_{\text {diFF }}$	65	70	74	1

Note) The auto-addressing parameters are valid only under the following conditions:
Ground shift: $D C \leq 0.45 \mathrm{~V}, \mathrm{AC} \leq 100 \mathrm{mV}$ for $f<1 \mathrm{kHz}$
Noise $\leq 250 \mu V$ for a bandwidth less than $f<1 \mathrm{kHz}$
$V_{\text {BUSDOM_MASTER_MIN }}=0.60 \mathrm{~V}$ therefore $V_{\text {BUS_INPUT_SLAAE }}$ is always positive: $0.60 \mathrm{~V}-0.45 \mathrm{~V}$ (max. ground shift) $=0.15 \mathrm{~V}$

1) Not tested in production.
2) Total gain of auto-addressing path is tested through digital ADC output.
3) Operation outside of common mode and/or differential input voltage range will not result in damage, but will produce invalid results on the differential amplifier's output.
4) $D 2=\frac{t_{\left.B U S _R E C M A X\right)}}{2^{*} t_{\text {Bit }}}$
5) $D 3=\frac{t_{B U S _R E C(M I N)}}{2^{*} t_{\text {Bit }}}$
6) $D 4=\frac{t_{B U S _R E C(M A X)}}{2^{*} t_{B i t}}$
7) LIN driver, bus load conditions (CBUS; RBUS): $1 \mathrm{nF} ; 1 \mathrm{k} \Omega / 6.8 \mathrm{nF} ; 660 \Omega / 10 \mathrm{nF} ; 500 \Omega$
[^0]
POWER LIN2.X STEPPER WITH STALL DETECTION

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
Hall Sensor or Potentiometer Input						
Low level input threshold D1, D2, D3		$\mathrm{V}_{\text {TL,DIG }}$	0.7		-	V
High level input threshold D1, D2, D3		$V_{\text {TH,DIG }}$	-		2.1	V
Hysteresis D1, D2, D3		$\mathrm{V}_{\text {HYS, DIG }}$	0.2		1.4	V
Low output level D1, D2, D3	$\mathrm{I}_{\mathrm{Dx}}=+3.0 \mathrm{~mA}^{1)}$	$\mathrm{V}_{\text {OL,DIG }}$			0.8	V
High output level D1, D2, D3	$\mathrm{I}_{\text {Dx }}=-3.0 \mathrm{~mA}^{1)}$	$\mathrm{V}_{\text {OH,DIG }}$	4.2			V
Pull-up current D1, D2, D3	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {TH,DIG }}{ }^{2)}$	I_{PU}	-50		-25	$\mu \mathrm{A}$
Pull-down current D1, D2, D3	$\mathrm{V}_{\text {V5V }}>\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {TL,DIG }}{ }^{2)}$	$\mathrm{I}_{\text {PD }}$	25		50	$\mu \mathrm{A}$
ADC and Input Multiplexer						
Supply voltage division factor		$G_{\text {vs }}^{\text {a }}$ AD	11.75	12	12.25	
Temperature zero point		K_{0}		107.2		LSB
Temperature coefficient		G_{T}		-3.16		$\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} / \\ \mathrm{LSB} \end{array}$
On-chip temperature measurement error		$\mathrm{T}_{\text {ERR }}$	-15		15	${ }^{\circ} \mathrm{C}$
Reference Low voltage		$\mathrm{V}_{\text {REFL }}$		$\mathrm{V}_{\text {GNDA }}$		V
Reference High voltage		$\mathrm{V}_{\text {REFH }}$		$\mathrm{V}_{\text {VIDA }}$		V
Resolution		N		8		bit
Conversion time		$\mathrm{t}_{\text {conv }}$		21		$\mathrm{t}_{\text {cIK }}$
Conversion time during LIN autoaddressing		$\mathrm{t}_{\text {conv, AA }}$		171		$\mathrm{t}_{\text {сıк }}$
Differential non-linearity		DNL		0.9		LSB
Integral non-linearity		INL		0.9		LSB
Missing codes		MC		0		LSB
Offset error		ERROR $_{\text {ofFSET }}$	-0.5		0.5	LSB
Gain error		$\mathrm{ERROR}_{\text {GAIN }}$	-0.5		0.5	LSB
Total unadjusted error		$E^{\text {EROR }}$ TOTAL	-2		2	LSB
Half Bridge Drivers						
High leakage current of both half bridges together	Half bridge off $I_{\text {PD }}$ switched off	$\mathrm{I}_{\text {LEAKH }}$	-10		10	$\mu \mathrm{A}$
Low leakage current of both half bridges together	Half bridge off $I_{\text {po }}$ switched off	$\mathrm{I}_{\text {LEAKL }}$	-10		10	$\mu \mathrm{A}$

1) Dx means D1, D2 or D3. Dx is configured as digital output.
2) Pull-up, pull-down or high resistive is configurable by software. Dx is configured as digital output.

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
A/B coil current threshold range 1	IDACx $=0 \times F F$	$\mathrm{I}_{\text {TH,MAX1 }}$	720	800	880	mA
A/B coil current threshold range 2	IDACx $=0 \times F F$	$\mathrm{I}_{\text {TH,MAX2 }}$	540	600	660	mA
A/B coil current threshold range 3	IDACx $=0 \times F F$	$\mathrm{I}_{\text {TH,MAX3 }}$	270	300	330	mA
Chopper current error	$\mathrm{T}_{\text {amb }}<85^{\circ} \mathrm{C}$	$\Delta I_{\text {nom }}$	-10		10	\%
A/B coil current mismatch range 1	IDACx $=0 \times F F$	$\mathrm{I}_{\text {THDIIFFAB1 }}$	-6		+6	\%
A/B coil current mismatch range 1	IDACx $=0 \times F F$	$\mathrm{I}_{\text {THDIIFFAB2 }}$	-6		+6	\%
A/B coil current mismatch range 1	IDACx $=0 \times F F$	$\mathrm{I}_{\text {THDIIFFAB3 }}$	-6		+6	\%
A/B coil current mismatch range 1	$\begin{aligned} & \text { IDACx }=0 x F F \\ & 12 V<V_{v s}<14 V \end{aligned}$ $-20^{\circ} \mathrm{C}<\mathrm{T}_{j}<85^{\circ} \mathrm{C}$	$I_{\text {THDIFAB,R1 }}$	-5\%		+5\%	\%
A/B coil current mismatch range 2	$\begin{aligned} & \text { IDACx }=0 x F F \\ & 12 V<V_{v s}<14 \mathrm{~V} \\ & -20^{\circ} \mathrm{C}<\mathrm{T}_{j}<85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {THDIFAAB,R2 }}$	-5\%		+5\%	\%
A/B coil current mismatch range 3	$\begin{aligned} & \text { IDAC } x=0 \times F F \\ & 12 V<V^{2}<14 \mathrm{~V} \\ & -20^{\circ} \mathrm{C}<\mathrm{T}_{j}<85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {THDIFAAB,R3 }}$	-5\%		+5\%	\%
Chopper current comparator propagation delay		$\mathrm{t}_{\text {CC-DEL }}$		250		ns
Half bridge high side on resistance	$\begin{aligned} & I_{\text {LOAD }}=-600 \mathrm{~mA} \\ & V^{\text {VSA }} \\ & \mathrm{T}_{\mathrm{JS}}, 5 \mathrm{~V}_{\text {VSx }}=13.5 \mathrm{~V} \end{aligned}$	$\mathrm{R}_{\text {ONH13RT }}$		450	550	$m \Omega$
Half bridge high side on resistance	$\begin{aligned} & \mathrm{I}_{\text {IOAD }}=-600 \mathrm{~mA} \\ & V^{O L}, V_{\text {VSEx }}=13.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{JS}}=150 \mathrm{~V}^{2} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\text {ONH13HT }}$		650	750	$m \Omega$
Half bridge high side on resistance		$\mathrm{R}_{\text {ONH8RT }}$		500	600	$\mathrm{m} \Omega$
Half bridge high side on resistance	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=-600 \mathrm{~mA} \\ & V_{\mathrm{AA}}, V_{\text {VSb }}=8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=150 \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{R}_{\text {ONH8HT }}$		800	950	$\mathrm{m} \Omega$
Half bridge low side on resistance		$\mathrm{R}_{\text {OnL13RT }}$		550	650	$\mathrm{m} \Omega$
Half bridge low side on resistance	$\begin{aligned} & I_{\text {LOAD }}=600 \mathrm{~mA} \\ & V^{\text {vs }}, V_{\text {VSx }}=13.5 \mathrm{~V} \\ & T_{J}=150 \mathrm{C} \end{aligned}$	$\mathrm{R}_{\text {ONL13HT }}$		950	1050	$\mathrm{m} \Omega$
Half bridge low side on resistance	$\begin{aligned} & I_{\text {OAA }}=600 \mathrm{~mA} \\ & V_{0}, V_{V S B}=8 \mathrm{~V} \\ & T_{J}=50^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\text {ONL8RT }}$		700	800	$\mathrm{m} \Omega$
Half bridge low side on resistance		$\mathrm{R}_{\text {ONL8HT }}$		1150	1250	$\mathrm{m} \Omega$
Reverse diode voltage	$\begin{aligned} & \mathrm{I}_{\text {PIODE }}=600 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {DIODE }}$		0.9		V

1) Not tested in production.

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
Half bridge pull-down current	Half bridge off $V_{A / B x}=V_{V S}=V_{V S P x}$	$I_{\text {PD }}$	20	60	100	$\mu \mathrm{A}$
Slew-rate of driver	Rising edge $\mathrm{I}_{\text {DAD }}>0$ SLEW[1:0] $=10_{b}$	$\mathrm{SR}_{\mathrm{R} 10}$		70		$\mathrm{V} / \mu \mathrm{s}$
Slew-rate of driver	Falling edge $\mathrm{I}_{\mathrm{O}}>0$ SLEW[1:0]=10b	SR F 10		-70		$\mathrm{V} / \mu \mathrm{s}$
Slew-rate of driver	Rising edge $\mathrm{I}_{\text {DOAD }}>0$ SLEW[1:0]=11.	$\mathrm{SR}_{\mathrm{R} 11}$		110		$\mathrm{V} / \mu \mathrm{s}$
Slew-rate of driver	$\begin{array}{\|l\|} \hline \text { Falling edge } \\ \text { l } \\ \text { SLAD }>0 \end{array}$	$S \mathrm{~F}_{\mathrm{F} 11}$		-110		$\mathrm{V} / \mu \mathrm{s}$
Propagation delay digital signal to driver pin		$\mathrm{t}_{\mathrm{DEL}}$		1		$\mu \mathrm{s}$
Zero Crossing Comparator Offset Voltage		$\mathrm{V}_{\text {ZC_OFF }}$	-150		150	mV
Zero Crossing Comparator common mode range		$\mathrm{V}_{\text {z__cm }}$	-0.1		2.5	V
Zero Crossing Comparator propagation delay		$\mathrm{t}_{\text {zC-dEL }}$	-	410	-	ns
Motor Control						
PWM frequency		$\mathrm{f}_{\text {PWM }}$	20	23.8		kHz
PWM period		$\mathrm{t}_{\text {pWM }}$		$1 / \mathrm{f}_{\text {PWM }}$		
PWM step resolution		$\mathrm{t}_{\text {PWM, RES }}$		2/f flK		
Current comparator mask	adjustable	$\mathrm{t}_{\text {MASK }}$	5		24	$\mathrm{t}_{\text {cık }}$
JTAG Interface						
Pull-down resistance at pins TSTEN, TCK, TDI, TMS and TSTRST		R_{PD}	90	125	160	k Ω
Output voltage at TDO for 'low' logic level	$\begin{aligned} & I_{\text {TO }}=1.5 \mathrm{~mA} \\ & \text { JTA access } \end{aligned}$	$V_{\text {TDO,Low }}$	0		0.8	V
Output voltage at TDO for 'high' logic level	$\begin{aligned} & I_{\text {TOD }}=-1.5 \mathrm{~mA} \\ & \text { JTAG access } \end{aligned}$	$\mathrm{V}_{\text {TDO,HIGH }}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {vDDD }} \\ -0.8 \\ \hline \end{array}$		$V_{\text {vDDD }}$	V
EEPROM						
Memory size		$\mathrm{N}_{\text {EEPROM }}$		64		Byte
Data retention time (1)	$\mathrm{T}_{\mathrm{j}}<85^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {RET }}$	10			a
Data retention time 1)	$\mathrm{T}_{\mathrm{j}}<150^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {RET }}$	1			a
Programming cycles 1)	T, <85 ${ }^{\circ}$	$\mathrm{N}_{\text {END }}$	10^{5}			
Programming cycles 1)	T, <125 ${ }^{\circ}$	$\mathrm{N}_{\text {END }}$	10^{4}			
Wake-up time		$\mathrm{t}_{\text {WAKEUP,EE }}$		50		$\mu \mathrm{s}$

POWER LIN2.X STEPPER WITH STALL DETECTION

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{vs}}=+5.5 \mathrm{~V}\right.$ to $+18 \mathrm{~V}, \mathrm{~T}_{j}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted. Slew rate at pin $\mathrm{VS}<1 \mathrm{~V} / \mu \mathrm{s}$. Typical values are at $\mathrm{V}_{\text {vs }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$. Positive currents flow into the device pins.)

Description	Condition	Symbol	Min	Typ	Max	Unit
FLASH (only in products with FLASH memory)						
Memory size for E523.30 FLASH version		$\mathrm{N}_{\text {FLASH_8k }}$		8		k Byte
Data retention biased: operating life (IC powered up, operating mode)	$\begin{aligned} & \mathrm{T}_{\boldsymbol{N}}=-40 . .150^{\circ} \mathrm{C} \\ & \mathrm{~N}_{\mathrm{cYC}}=1 \end{aligned}$	$t_{\text {op }}$	10000			h
Data retention biased: operating life (IC powered up, operating mode)	$\begin{aligned} & \mathrm{T}_{1}=-40 . .150^{\circ} \mathrm{C} \\ & \mathrm{~N}_{\text {cYC }}=100 \end{aligned}$	$t_{\text {op }}$	5500			h
Data retention unbiased, unpowered or sleep mode	$\mathrm{T}_{\mathrm{J}}=-40 . .85^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {STOR }}$	87600			h
Data retention unbiased, unpowered or sleep mode	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {STOR }}$	10800			h
Data retention unbiased, unpowered or sleep mode	$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {STOR }}$	1000			h
Programming cycles	$\begin{aligned} & \mathrm{T}_{\mathrm{T}}<85^{\circ} \mathrm{C} \\ & \mathrm{t}_{\mathrm{Op}}<120 \mathrm{~h} \\ & \hline \end{aligned}$	$\mathrm{N}_{\text {END }}$	10000			
Wake-up time		$\mathrm{t}_{\text {WAKEUP.FL }}$		20		$\mu \mathrm{s}$

5 Typical Operating Characteristics

6 Functional Description

6.1 Chip Control

6.2 Internal Supply Voltage for Analog and Digital Parts

The analog and digital 3.3 V regulators are supplied by the external supply voltage VS. An internal short circuit protection prevents the device from damage. Each internal supply voltage requires an external blocking capacitor. It is recommended to place the external capacitors as close as possible to the related pins. During sleep mode the regulators are deactivated.
The analog regulator is not intended to supply any external components, except for potentiometers at the input pins D1..D3 if the analog capability of the GPIO interface is selected.
The digital regulator is not intended to supply any external components.
An internal pre-regulator provides the supply voltage for the LIN receiver and the wake-up logic during sleep mode.

6.3 Hall-Sensor Supply

The Hall-sensor supply voltage requires an external blocking capacitor. An internal short circuit protection prevents the device from damage. During sleep mode V5V is deactivated. When leaving the sleep mode, the Hall-sensor supply pin V5V is inactive and has to be turned on explicitly by writing into the $\mu \mathrm{C}$ register GPIO Control Register during running mode.

6.4 Power-On Reset

The power-on reset depends on the internal 3.3 V supply voltages $\mathrm{V}_{\text {VDDD }}, \mathrm{V}_{\text {VDDA }}$ and the pre-regulator resets. The internal reset signal is set when at least one of these 3.3 V supply voltages reaches the corresponding threshold level and is cleared, if all internal voltages are available. After power-on-reset the device is in active mode (μ controller supply on) and all drivers off.
There is no hardware supply monitoring for the supply voltage VVS in the case of its under-voltage or overvoltage. If under-voltage or over-voltage at VS occurs, necessary actions (e.g. disabling the H 4 half bridges) have to be conducted by software. In case of an un-der-voltage event at the 3.3 V supplies the CPU is shut down and the device goes in sleep mode, so no software counter measure can be taken. The device is in sleep mode until a LIN-wake-up or a power-on reset takes place. In this case the drivers are set to high-impedance state by hardware. The thresholds for poweron reset and an example of software driver shutdown are shown at the figure below. In case of a power-up or after an under-voltage situation with a reset condition, the device wakes up.

Figure 1. Under-voltage/Over-voltage Detection and POR Timing Diagram

6.5 Wake-up

The IC will automatically wake-up after power-up or after under-voltage conditions and features a remote wake-up from sleep-mode via the LIN interface. A falling edge at the LIN bus followed by a dominant bus level maintained for a time period $\mathrm{t}_{\mathrm{LIN}, \mathrm{wu}}$ and a rising edge on the LIN bus results in a remote wake-up. After wakeup it is possible to evaluate the reason for the last sleep situation, by examining the RESSTAT register. The following events affect the RESSTAT register.

- Power-up:
- all bits cleared, except for the under-voltage
identifier, which can be read out via $\mu \mathrm{C}$..
- VDDA or VDDD under-voltage:
- digital part is reset,
- none of the identifiers is modified
- Watchdog or LIN timeout:
- digital part is reset,
- watchdog identifier can be read out via $\mu \mathrm{C}$.
- Over-temperature:
- no reset or sleep mode initialized,
- IC remains alive, only drivers are disabled,
- over-temperature identifier can be read out via $\mu \mathrm{C}$.
- $\mu \mathrm{C}$ sleep mode:
- $\mu \mathrm{C}$ sleep mode identifier can be read out via $\mu \mathrm{C}$.

Note: To detect a reset at VDDA/VDDD the precondition is, that the software has to clear the UV bit. After a new reset the UV bit displays '1' if the reset was forced by pre-regulator undervoltage (i.e. VS power-on). If the reset was forced by VDDA/VDDD undervoltage, then no change occurs in the status bits.

Table 1. Reset Status Register Table

Register Name	Address	Description
RESSTAT	0×0408	Reset Status Register

Table 2. Reset Status Register

RESSTAT	MSB							LSB
Content	CLR	-	-	-	WD	SLP	OT	UV
Reset value	0	0	0	0	0	0	0	1
Internal access								
External access	R/W	R	R	R	R	R	R	R
Bit Description	CLR $: 1_{b}:$ Clears the reset status bits WDD $: 1_{b}:$ Watchdog or LIN timeout forced reset SLP $: 1_{b}: \mu C$ sleep mode forced reset OT $: 1_{b}:$ Overtemperature event occurred UVN $: 1_{b}:$ Preregulator undervoltage event (VS power-on) forced reset							

Figure 2. Wake-up via BUS Timing Diagram

[^1]
6.6 Sleep Mode

The sleep mode may be initialized via software register (Table 3 General Configuration Register Table) access or during an under-voltage situation with a reset condition. When entering the sleep mode the following actions are applied:

- deactivating all driver outputs,
- resetting of registers,
- deactivating all circuit parts not needed in sleep mode to minimize sleep current consumption,
- deactivating the V 5 V regulator (Hall-sensor supply),
- deactivating LIN pullup

The sleep mode current of the device will not rise even in the case of slowly floating bus levels.
The following test criteria according to the "Klima-Arbeitskreis" are met:

1. $\mathrm{V}_{\text {BUS }}=13 \mathrm{~V}$; wait for 1 min ; check sleep mode current
2. step down $\mathrm{V}_{\text {bus }}$ by 1 V ; wait for 1 min; check sleep mode current
3. do 2. until $\mathrm{V}_{\text {Bus }}=0 \mathrm{~V}$
4. step up $\mathrm{V}_{\text {bus }}$ by 1 V ; wait for 1 min ; check sleep mode current
5. do 4. until $\mathrm{V}_{\text {BUS }}=13 \mathrm{~V}$

General configurations of the processor periphery have to be made by setting up the GENCFG register. The sleep mode is also activated via GENCFG. As a result of the sleep mode activation, the processor is reset, the control hardware is reset and the supplies are set in power down. A restart is only possible with a wake-up pulse on the BUS pin.

The IC has an on-chip temperature sensing. The temperature value can be read out by the integrated $\mu \mathrm{C}$ via the integrated ADC. Additionally to this feature, the voltage threshold of the over-temperature detection can be read out via ADC, too. It is possible to implement a temperature warning threshold
at system level to reduce the power dissipation, if necessary. Furthermore the IC generates an over-temperature signal to shut off the half bridge driver and Hall-supply. For the reaction to over-temperature please refer to the following status table.

Table 3. General Configuration Register Table

Register Name	Address	Description
GENCFG	0×0401	General Configuration Register

Table 4. General Configuration Register

GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R	R	R	R	R	R/W	R/W
External access	-	-	-	-	-	-	-	-
	SLEEP $: 1_{b}:$ activates sleep mode LOWEMC $: 1_{b}:$ activates spread-spectrum clock (least-significant oscillator adjust bit is tog- gled with driver PWM frame frequency, that is approx. 150kHz FSK with 12kHz modulation frequency) BSWT $: 0_{b}:$ LIN2.1 mode $1_{b}:$ PWM interface mode							

6.7 Temperature Control

6.8 Status Table

Hardware reaction is defined for the following cases:
Table 5. Status Table

Event	Reset	Active or Sleep mode	V5V supply	Motor drivers
Power-on	Yes	Active-Mode	Off	Off
Wake-up	Yes	Active-Mode	Off	Off
Over-temperature	No	Active-Mode	Off	Off
Watchdog or LIN timeout	Yes	Active-Mode	Off	Off
Half bridge short circuit	No	Active-Mode	No change	System-level action only
μ P initiates sleep mode	Yes	Sleep-Mode	Off	Off

6.9 Oscillator

The IC has an on-chip 32Mhz oscillator. The digital circuitry is clocked with 8 MHz . For the motor - PWM generation a frequency jitter is selectable via register LOWEMC.

It is possible to activate a spread-spectrum clock (leastsignificant oscillator adjust bit is toggled with driver PWM frame frequency, that is approx. 150kHz FSK with 24 kHz modulation frequency)

Table 6. General Configuration Register Table

Register Name	Address	Description
GENCFG	0×0401	General Configuration Register

Table 7. General Configuration Register

GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
	SLEEP $:$ see chapter Sleep-mode LOWEMC $: 1_{b}:$ activates spread-spectrum clock (least-significant oscillator adjust bit is toggled with driver PWM frame frequency, that is approx. 150kHz FSK with 24kHz modulation frequency) BSWT $:$ see chapters LIN and PWM interface							

6.10 PWM interface (Receiving PWM Data)

The bus PWM interface can be used to receive position or speed requirements from an external PWM interface master. The bus PWM interface uses an internal frequency with 8 bit resolution. The PWM Input Interface can be configured by setting the PWMFREQ status bit in then PWMCFG Register (Table 13 BUS PWM Configuration Register Table) with a sampling clock of 500 kHz . Otherwise the sampling clock is set to 250 kHz (with a processor clock of 8 MHz).
The registers are updated after equidistant time steps: $250 \mathrm{kHz} \cdot 256=1.024 \mathrm{~ms}$ or
$500 \mathrm{kHz} \cdot 256=0.512 \mathrm{~ms}$
These PWMLH and PWMHL registers contain the relative time values of edge events at BUS / RXD of the
previous sample period. The value " 255 " means, that no proper edge was found. To signalize the availability of new register values, an interrupt is generated. If the controller does not read the register values within the given time slot, the old values will be overwritten by the new ones.
The sampling clock is not depending on the PWM frequency of the interface. So, with slow PWM interfaces it may take a number of readouts by the IC to be able to calculate the information, which is transferred by the PWM interface. The advantage of this "open" solution is, that the controller is able to analyze even special PWM codings with additional information hidden inside the cycle.

POWER LIN2.X STEPPER WITH STALL DETECTION PRODUCTION DATA - DEC 18, 2013

Figure 3. PWM Flow
Table 8. BUS PWM Control Register Table

Register Name	Address	Description
PWMCTRL	0x000C	PWM Control Register

Table 9. PWM Control Register

PWMCTRL	MSB							LSB
Content	-	-			IRQ_EN	IRQ_CLR	IRQ	TXD
Reset value	0	0	0	0	0	0	0	1
Internal access	R	R	R	R	R/W	R/W	R	R/W
External access	-	-			-	-	-	-
Bit Description	```IRO EN : IRQ Mask Bit 1 : ITRO is unmasked \(0:\) IRŌ is masked IRQ_C̄LR : IRO_ Clear Bit(is automatically reset to '0') 1 : cTears the actually pending IRQ (Note: should be set in ISR and before iret) 0 : <none> IRQ : IRQ Pending Bit 1 : An IRŌ is pending 0 : No IRŌ is pending TXD : CPU access to BUS: 0 : bus dominant 1 : bus recessive```							

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

Table 10. BUS PWM Position Register Table

Register Name	Address	Description
PWMLH	$0 \times 000 \mathrm{~A}$	BUS PWM Rising Edge Position Register
PWMHL	$0 \times 000 \mathrm{~B}$	PWM Falling Edge Position Register

Table 11. BUS PWM Rising Edge Position Register

PWMLH	MSB							LSB
Content	PWM- LH[7..0]							
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-

Table 12. PWM Falling Edge Position Register

PWMHL	MSB							LSB
Content	PWM-							
	HL[7..0]							
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-

Table 13. BUS PWM Configuration Register Table

Register Name	Address	Description
PWMCFG	0×0402	BUS PWM Configuration Register

Table 14. BUS PWM Configuration Register

PWMCTRL	MSB							LSB
Content	-	-	-	-	-	-	-	PWMFREQ
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	PWMFREQ : PWMCFG[0] $0:$ sample frequency $=250 \mathrm{kHz}$ $1:$ sample frequency $=500 \mathrm{kHz}$							

Transmitting Data

By writing the TXD register bit, the pin BUS can be directly activated by the controller. The "LIN TXD Time Out" functionality is deactivated when the pin BUS is set to PWM interface mode.

6.11 LIN interface (only for products with LIN interface)

The bus interface can be either set to LIN mode or to PWM interface-mode by configuring the bit BSWT of GENCFG register (Table 16 General Configuration Register). This setup should be done directly after $\mu \mathrm{C}$ start (after power-up or reset condition). The LIN pull-up re-
sistor can be activated or deactivated by setting of the bit ON30K in the LINAA register (Table 30 LIN Auto-addressing Register). In sleep mode the pull-up is deactivated. The pullup is activated automatically after wakeup.

Table 15. General Configuration Register Table

Register Name	Address	Description
GENCFG	0x0401	General Configuration Register

Table 16. General Configuration Register

GENCFG	MSB							LSB
Content	SLEEP	-	-	-	-	-	LOWEMC	BSWT
Reset value	0	0	0	0	0	0	0	O
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
	SLEEP $:$ see chapter Sleep-mode Bit Description LOWEMC $:$ see chapter oscillator BSWT $: 0_{b}:$ LIN mode $1_{b}:$ PWM mode							

The LIN communication module consists of:

- LIN receiver with a capability of speed up to $125 \mathrm{kbit} / \mathrm{s}$,
- LIN transmitter with a capability of speed up to $125 \mathrm{kbit} / \mathrm{s}$,
- LIN-UART : SCI interface (Serial Communication Interface)
- Auto-addressing.

Figure 4. Block diagram of LIN SCI

The parameters of the following bus timing diagram are specified in section LIN Transceiver.

Figure 5. LIN Timing

6.12 LIN Receiver

The LIN transceiver consists of a receiver and a transmitter. The figure below shows a block diagram of the receiver.

Figure 6. Block Diagram of the LIN Receiver

The low-pass filter at the input filters out high frequency components and assures faultless communication even under severe RF conditions. The reference voltage of the comparator is derived from the supply voltage. This way a duty cycle close to 50% is achieved under all supply conditions. The debounce filter is cho-
sen so, that the digital SCl receives a signal without any spikes. This ensures a good decoding of the received data even in a harsh automotive environment. The debounce filter is bypassed in 125kbit/s highspeed LIN mode.

6.13 LIN Transmitter

The transmitter is slew-rate controlled through the feedback capacitor C1 to minimize electrical noise on the bus line. Both negative and positive edges are regulated. Due to the construction, a positive edge is only controlled by the device when the slew-rate is higher that the time constant on the bus pin (capacitance and wiring of all nodes connected to the bus).

The output stage is protected against short circuit to VVS with a current limiting circuit. To protect the device against loss of ground the diode D2 is included. This minimizes the disturbing current on the bus lines when the ground line is broken. The recessive output voltage is defined by the diode D1 and the pull up resistance. The dominant voltage is generated through M1 and D2.

A block diagram of the transmitter circuit is shown in figure below.

Figure 7. Block Diagram of the LIN Transmitter

TXD Timeout Functionality

If the TXD signal is dominant for the time $t>t_{\text {IIN,BUS,DOM }}$ the device gets an internal reset. This implies that the TXD signal switches to a recessive level and further this prevents the LIN bus being blocked by a dominant
level. In the initial state of the device the TXD Timeout Functionality is enabled. But it can be disabled anytime by setting the TXD_TO_DIS-Bit in the LIN_MODE register (Table 18 LIN Mode Configuration Register)

Figure 8. TXD Timeout

6.14 LIN-UART / LIN- SCI Controlling the LIN-Interface

Features of LIN SCI:

- Full duplex operation
- 8N1 data format, standard mark/space NRZ format
- extended baud rate selection options
- Interrupt-driven operation with four flags:

1. receiver full
2. transmitter empty
3. measurement finished
4. break character received

Special LIN support:

- 13 bit break generation
- 11 bit break detection threshold
- A fractional-divide baud rate pre-scaler that allows fine adjustment of the baud rate
- Measurement counter which has 16 bits and can be used as a mini-timer to measure break and bit times (baud rate recovery).
- Baud measurement results can directly be fed into the baud register to adjust the baud rate (baud selfsynchronization with SYNC byte)
- A special high-speed LIN mode allows an increasing of receiver bit transfer up to $125 \mathrm{kbit} / \mathrm{s}$.
The LIN SCl uses a clock whose frequency is 16 times $1 / \mathrm{t}_{\text {Bit }}$. The detection of the start bit takes place at S 1 in figure below. The sampling of the received signal occurs in the middle of the bit with three samples. The majority of the samples defines the bit level. This way the LIN requirements $t_{\text {BFS }}, \mathrm{t}_{\text {EBS }}$ and $\mathrm{t}_{\text {LBS }}$ are fulfilled.

Figure 9. LIN SCI Operations

The LIN_MODE register is used to select between the normal and high speed LIN mode. The high speed LIN mode allows data transmission rates of up to 125
kbit/s. Additionally, the SCI module can be disabled in order to control the LIN transceiver directly by CPU. This can be used to set up a custom specific protocol.

Table 17. LIN Mode Configuration, Status and Data Register Table

Register Name	Address	Description
SCIBRH	0×0010	SCI Baud Rate Register High Byte
SCIBRL	0×0011	SCI Baud Rate Register Low Byte
SCICTRL	0×0013	SCI Control Register
SCISTATH	0×0014	SCI Status Register High Byte
SCISTATL	0×0015	SCI Status Register Low Byte
SCIDATA	0×0017	SCI Data Register
SCIMEASCTRH	0×0018	SCI Measurement Control Register High Byte
SCIMEASCTRL	0×0019	SCI Measurement Control Register Low Byte
SCIMEASDATH	$0 \times 001 \mathrm{~A}$	SCI Measurement Data Register High Byte
SCIMEASDATL	$0 \times 001 \mathrm{~B}$	SCI Measurement Data Register Low Byte
LIN_MODE	$0 \times 001 \mathrm{E}$	LIN Mode Configuration Register

[^2]POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 18. LIN Mode Configuration Register

LIN_MODE	MSB							LSB
Content	$\begin{aligned} & \hline \text { TXD_TO_ } \\ & \text { DIS_ } \end{aligned}$	$\begin{aligned} & \text { RXD_F_ } \\ & \text { IRQ_ } \end{aligned}$	$\begin{aligned} & \text { RXD_R_ } \\ & \text { IRQ } \end{aligned}$	$\begin{aligned} & \hline \text { RXD_E } \\ & \text { IRQ_EN } \end{aligned}$	HS_EN	SCI_DIS	TXD	RXD
Reset value	0	0	0	0	0	0	1	
Internal access								
External access	R/W	R						
Bit Description	TXD_TO_DIS : disable TXD timeout functionality: 1_{b} : functionality disabled 0_{0} : functionality enabled RXD_FIRO : RXD falling edge interrupt 1_{b} : indicates a falling edge on the bus input Write '0' to clear this bit. RXD_R_IRQ : RXD rising edge interrupt 1_{b} : indicates a rising edge on the bus input Write ' 0 ' to clear this bit. RXD_IRO_EN : RXD edge interrupt enable 0_{b} : interrupt disabled 1_{b}^{b} : interrupt enabled HS_EN : enable high speed receiver: 0_{b} : normal LIN mode 1_{b}^{b} : high speed receiver enabled SCI_DIS : disable internal SCI module: 0_{b} : $\overline{\mathrm{SCl}}$ module active $1_{\mathrm{b}}^{\mathrm{b}}$: SCI module disabled, LIN transmitter controlled by bit number 1 'TXD' TXD : CPU access to BUS (only if SCI_DIS=1): 0_{b} : bus dominant 1_{b}^{b} : bus recessive RXD : read current bus state							

Table 19. SCI Baud Rate Register High Byte

SCIBRH	MSB							LSB
Content	BD[15]	BD[14]	BD[13]	BD[12]	BD[11]	BD[10]	BD[9]	BD[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	BD[15] : MSB of SCI baud rate divisor select high byte BD[8] : LSB of SCl baud rate divisor select low byte							

Table 20. SCI Baud Rate Register Low Byte

SCIBRL	MSB							LSB
Content	BD[7]	BD[6]	BD[5]	BD[4]	BD[3]	BD[2]	BD[1]	BD[0]
Reset value	0	O	1	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-			
Bit Description	BD[7] : MSB of SCI baud rate divisor select low byte BD[0] : LSB of SCI baud rate divisor select low byte Divisor: $\mathrm{BD}[15: 0]=\frac{2 \cdot f_{\mathrm{CLK}}}{\text { Baudrate }}$ Set BD[15:0] as follows: BD[15:0]=0x0080 for 125kbit/s BD[15:0] $=0 \times 0341$ for $19.2 \mathrm{kbit} / \mathrm{s}$ BD [15:0] $=0 \times 0683$ for $9.6 \mathrm{kbit} / \mathrm{s}$ $\mathrm{BD}[15: 0]=0 \times 0000$ means bypassing the baud rate divisor							

Table 21. SCI Control Register

SCICTRL	MSB							LSB
Content	TIE	LIN	RIE	BIE	TE	RE	MFIE	SBK
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access								
Bit Description	TIE : TxD Interrupt Enable (generates SCI_TIE_IRQ interrupt when TDRE is set) LIN : Lin Mode: LIN break transmit enable (13 bit break symbol instead of 10 bit), LIN break receive detection enable (detects a 11 bit break symbol instead of 10 bit) RIE : RxD Interrupt Enable (generates SCI_RIE IRO interrupt when RDRF is set) BIE : Break detection Interrupt Enable (generates SCI_BIE_IRQ interrupt when BRF is set) TE : Transmitter Enable If software clears TE while a transmission is in progress ($T C=0$), the frame in the transmit shift register continues to shift out. To avoid accidentally cutting off the last frame in a message, always wait for TDRE to go high after the last frame before clearing TE. RE : Receiver Enable RE set to '0' suppresses start bit recognition. Setting RE to '1' during an ongoing transfer can cause erroneous data reception and interrupt generation (RDRF). Setting RE to ' 0 ' during an ongoing transfer can cause erroneous data reception and interrupt generation (RDRF), received data should be ignored. MFIE : Measurement Finish Interrupt Enable (generates SCI_MFIE_IRQ interrupt when MF is set) SBK : Send BreaK bit Toggling SBK sends one break character (10 logic zeros, respectively 13 logic zeros if LIN is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10 bits respectively 13 bits).							

Table 22. SCI Status Register High Byte

SCISTATH	MSB							LSB
Content	-	-	-	-	-	-	ABT	AMT
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
	ABT : Auto Baud Triggered Set when new baud value was copied automatically to baud configuration register after a valid SNYC byte measurement. Cleared when reading the MSB of the status word. AMT : Auto Meas Triggered Set when measurement was started automatically after reception of a valid break. Cleared when reading the MSB of the status word.							

Table 23. SCI Baud Rate Register Low Byte

SCISTATL	MSB							LSB
Content	TDRE	TC	RDRF	BRF	OV	MRUN	MF	FE
Reset value	1	1	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-				-	-
Bit Description	TDRE : Transmit Data Register Empty Clear TDRE by writing to SCI data register. Write will be ignored when transmit register is not empty, so check if TDRE $=1$ before writing to transmit register. TC : Transmit Complete flag TC is set to ' 0 ' while a transmission is in progress RDRF : Receive Data Register Full flag Clear RDRF by reading SCl status with RDRF set and then reading SCI data register. NOTE: RDRF will be set: a) in case of data reception: $1 / 8$ nominal bit length after the recognized stop bit. Since the bits are sampled in the middle of a nominal bit length, the flags and the interrupt will be set after the estimated end of the active stop bit. b) in case of break reception: see BRF description below BRF : Break Received Flag (LIN mode dependent) Clear BRF by reading SCl status with BRF set and then reading SCl data register. The BR flag will be set when the start bit is followed by 8 (respectively 9 when LIN mode is set) logic 0 data bits and a logic 0 where the stop bit should be. When BRF is set FE and RDRF will be set, too. The SCI data register will be cleared. Note: flag generation (incl. BRF) will be suppressed when AAM is set. OV : receiver overrun detected Clear OV by reading SCl status with OV set and then reading SCl data register. OV will be set when a received data byte is not read before the data byte of the next frame or a break character arrives. The second data byte will be ignored. MRUN : Measurement Running MF : Measurement Finish flag Clear MF by read accessing the measurement counter. FE : Framing Error flag FE is set when the logic does not detect a logic 1 where the stop bit should be. FE will be updated at the same time as RDRF.							

Table 24. SCI Data Register

SCIDATA	MSB							LSB
Content	SCIDATA[7]	$\begin{aligned} & \text { SCIDA- } \\ & \text { TA[6] } \end{aligned}$	$\begin{array}{\|l} \hline \text { SCIDA- } \\ \text { TA[5] } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SCIDA } \\ & \text { TA[4] } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SCIDA- } \\ \text { TA[3] } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SCIDA- } \\ \text { TA[2] } \\ \hline \end{array}$	$\begin{aligned} & \text { SCIDA- } \\ & \text { TA[1] } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SCIDA- } \\ \text { TA[0] } \\ \hline \end{array}$
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	SCIDATA[7] : MSB of SCI data register SCIDATA[0] : LSB of SCI data register write SCIDATA[7:0] for transmitting a byte, read it for a received byte							

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 25. SCI Measurement Control Register High Byte

SCIMEASCTRH	MSB							LSB
Content	-	-	DBC[6]	DBC[5]	DBC[4]	DBC[3]	DBC[2]	DBC[1]
Reset value	0	0	0	1	0	1	0	0
Internal access	R	R	R/W	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	DBC[6] : MSB of debouncing filter value DBC[1] : DBC[6:1] - debouncing filter threshold for baud rate measurement (MMODE=0) $\operatorname{DBC}[0]$ is always set to logic 1. DBC[6:0] set the debouncing time as follows: $\mathrm{t}_{\text {debounce }}=\mathrm{DBC}[6: 0] \cdot \mathrm{t}_{\text {CIK }}$ The rese value is decimal 41 (nominally 5125 ns).							

Table 26. SCI Measurement Control Register Low Byte

SCIMEASCTRL	MSB							LSB
Content	-				AB	AM	MMODE	MEN
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W
External access	-							
Bit Description	AB : AutoBaud Automatically copy baud measurement result to baud config register after a valid baud measurement (expecting SYNC byte). The ABT flag will be set. NOTE: During baud measurement the receiver is disabled an therefore no data will be received, only the measurement logic is active which will set the MF flag (configurable as interrupt). AM : Auto Meas Automatically start a baud rate measurement after reception of a valid break. The AMT flag will be set. NOTE: AUTO_MEAS mode suppresses the flag specific flag generation (see SCI_status -> BRF). MMODE : Measurement Mode Select 0 : Baud rate measurement, counter runs with system clock and measures time between 4 falling edges (8 bit times are measured), debouncer is enabled. NOTE: The baud measurement expects a 0×55 data byte to measure, this is the SYNC byte in the LIN protocol. 1 : break time measurement, counter runs with 16 -fold baud rate, measures time when RxD line is zero. NOTE: only applicable together with MEN control bit. MEN : Measurement Enable Set to '1' to start a measurement. After the measurement is finished, the MEN bit will be cleared automatically. NOTE: When the AM bit is set, MEN must not be used. NOTE: Writing a '0' to MEN resets the measurement logic and allows a safe restart.							

Table 27. SCI Measurement Data Register High Byte

SCIMEASDATH	MSB							LSB
Content	$M C[15]$	$M C[14]$	$M C[13]$	$M C[12]$	$M C[11]$	$M C[10]$	$M C[9]$	$M C[8]$
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	MC[15] : MSB of Measurement Counter high byte MC[8]: MSB of Measurement Counter high byte							

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 28. SCI Measurement Data Register Low Byte

SCIMEASDATL	MSB							LSB
Content	MC[7]	MC[6]	MC[5]	MC[4]	MC[3]	MC[2]	MC[1]	MC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	MC[7] : MSB of Measurement Counter low byte MC[0] : LSB of Measurement Counter low byte The counter is cleared by every start of a new measurement. When the measurement counter overflows, the counter value is saturated to 0xFFFF and the measurement will be stopped (MF flag set). The measurement should be repeated with an adapted baud rate setting. Note: in baud measurement mode the resulting 16 bit value $M C[15: 0]$ can be fed into the baud rate register to adjust the baud rate BD [15:0].							

The following diagram shows the automatic baud rate measurement process with $A M=1$. The measurement run (MRUN) starts automatically after lin break detection and ends after sync-field measurement. The up-
date_baud signal indicates the baud rate register update time, if $A B=1$. During the baud rate measurement the flags in the SCISTATL register are not updated.

Figure 10. Timing Diagram of Autobaud Measurement

6.15 LIN Auto-addressing (only in products with LIN Auto-addressing)

Called "SNPD" in official LIN-specification
Table 29. LIN Auto-addressing Register Table

Register Name	Address	Description
LINAA	$0 \times 001 \mathrm{~F}$	LIN Auto-addressing Register

Table 30. LIN Auto-addressing Register

LINAA	MSB							LSB
Content	-	REF_ON	REF_SEL	I2MEN	ON30K	AAEN		-
Reset value	0	0	0	0	1	0	0	0
Internal access	R	R/W	R/W	R/W	R/W	R/W	R	R
External access	-	-	-	-	-	-	-	-
Bit Description								

[^3]
Auto-addressing Mechanism

The auto-addressing feature added to the normal LIN bus functionality allows that slaves to detect their relative position within a bus system. The hardware extensions needed for that purpose are a shunt resistor between the BUS_M and BUS_S nodes of the slave, a pull-up current source of typically 2 mA and a circuitry
that allows to measure the differential voltage across the bus shunt. The measurement is performed via the internal ADC. The slaves within such a bus system have to be connected as a displayed below. The following diagram shows such a bus architecture:

Figure 11. LIN Bus Auto-addressing Architecture

Figure 12. LIN Auto-addressing Reference Threshold Generation

On the left side of the schematic the ECU is terminating the LIN bus. Next there is a group of addressable slaves, each of them having its own auto-addressing circuitry. Finally, shown on the right side of the schematic, there may be some standard LIN bus transceivers without au-to-addressing capability. As well they may be mixed up with the addressable slaves in any possible position.
The start of the addressing sequence is initialized by the ECU, with a command sent to the slaves telling them that the addressing sequence starts with the next sync break. After receiving this message, the slave performs a self-calibration. The $100 \mu \mathrm{~A}$ reference current source is enabled, the amplifier input is multiplexed to the 10Ω reference resistor and a reference threshold voltage is measured by the ADC, see figure above. During the next sync break each slave starts its auto-address-
ing sequence. The sequence is divided up in measuring the offset current on the bus line, measuring the bus load and, depending on the bus load, switching on the current source for the detection of the last not addressed slave in the line. It is recommended to use a threshold value of 1 mA for the decision in the following flow chart (as derived by the self-calibration measurement). This gives the maximum noise immunity to the low value (0 mA) and the high value (2 mA if only one other slave is behind).
In order to assure that the different steps of the autoaddressing sequence are executed synchronously by all the slaves, a timing scheme for the sync break is defined. The time reference is the bit time $t_{\text {Bit,SLAVE }}$. The following timing diagram shows the requested timing for the different steps to executed during the sync break.

The following flowchart shows the command sequence, that is executed during every synch break within the autoaddressing process.

Figure 14. Flowchart Auto-addressing Process

6.16 Hall Sensor or Potentiometer Input

The pins D1, D2, D3 have two functions:

1. The pins are 3.3 V analog inputs. The input voltage can be measured with the internal ADC. The maximum measurable voltage is equal to the internal ADC reference voltage).
2. The pins are configured as 5 V general purpose inputs or outputs. They can individually be configured as input or as output. In input mode they can interface digital Hall-sensors.
It is possible to set the functionality of each pin D1, D2, D3 individually, e.g. D1 is configured as 3.3V analog input, D2 as 5V digital input and D3 as 5V digital output. If the pins are used, the V 5 V regulator has to be turned
on, regardless of the configuration of the pins.
The pins are equipped with software-controllable pullup and pull-down structures. These can be configured individually for each pin.
It is possible to generate an interrupt, if the state of the input pins is changed. The interrupt is enabled with GPIO_IE in the register GPIOCFG by writing a ' 1 '. A pending interrupt is reset by writing a ' 0 ' at GPIO_IE.
NOTE: The three features analog/digital input, digital output level and pull-up/pull-down can be configured in an arbitrary manner for each pin. For analog input pins care has to be taken, that the reduced analog input voltage range is met by the configuration.

Figure 15. GPIO block diagram

Table 31. GPIO Register Table

Register Name	Address	Description
GPIO	0×0002	GPIO Input Register
GPIOPUD	0×0003	GPIO Pull-up and Pull-down
GPIOCFG	0×0403	GPIO Control Register

Table 32. GPIO Control Register

GPIOCFG	MSB							LSB
Content	EN V5V0	GPIO IE	D3DIG	D2DIG	D1DIG	D3D	D2D	D1D
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description								

Table 33. GPIO Input Register

GPIO	MSB							LSB
Content	-	-	-	-	-	D3	D2	D1
Reset value	0	0	0	0	0	0	0	0
Internal access	-	-	-	-	-	R/W	RW	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	$\begin{aligned} & \text { D3 : State of D3 } \\ & \text { D2 : State of D2 } \\ & \text { D1 : State of D1 } \end{aligned}$							

Table 34. GPIO Pull-up and Pull-down

GPIOPUD	MSB							LSB
Content	-	D3PD	D2PD	D1PD	-	D3PU	D2PU	D1PU
Reset value	-	0	0	0	-	0	0	0
Internal access	-	R/W	R/W	R/W	-	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	D3PD : 1 Enables pull-down resistor on D3 D2PD : 1_{b}^{b} Enables pull-down resistor on D2 D1PD : 1_{b} Enables pull-down resistor on D1 D3PU : 1_{b} Enables pull-up resistor on D3 D2PU : 1 Enables pull-up resistor on D2 D1PU : 1_{b}^{b} Enables pull-up resistor on D1							

[^4]
6.17 ADC and Input Multiplexer

The controller has access to an internal 8-bit ADC. The ADC has different input sources:

1. Potentiometer input D1,
2. Potentiometer input D2,
3. Potentiometer input D3,
4. Resistively divided supply voltage,
5. Temperature monitor,
6. Temperature shutoff threshold.

The ADC source is selectable with SEL[2:0] in the ADCCNTR register.

The pins D1 to D3 are configurable as Hall or potentiometer inputs via the GPIOCNTR register. The measurement principle is ratio-metric, if an external potentiometer of typically $10 \mathrm{k} \Omega$ is connected between VDDA and GNDA, as the internal ADC references are equal to the VDDA/GNDA voltages. Ambient temperature measurements are also possible if an external sensor is used.

Table 35. ADC Register Table

The supply voltage is divided by 12. The input range is $0 . .12^{*} \mathrm{~V}_{\text {vDDA }}$. It is possible to realize over- or under-voltage warning thresholds at system level.
The chip temperature is also monitored. It is possible to program a hot or cold warning function at system level. The measured temperature is scaled in the following way: $\mathrm{T}_{1}\left({ }^{\circ} \mathrm{C}\right)=\left(\mathrm{ADC}-\mathrm{K}_{0}\right)^{*} \mathrm{G}_{\mathrm{T}}$. The temperature shutoff threshold is calculated in the same way.
Following decimal values are typically expected: 120 @ $-40^{\circ} \mathrm{C}$, $99 @ 25^{\circ} \mathrm{C}$, 68 @ $125^{\circ} \mathrm{C}$ and $60 @ 150^{\circ} \mathrm{C}$.
The ADC is a 8 -Bit SAR ADC. The ADC consists of two parts, the analog and the digital ones. The ADC uses a charge redistribution split array DAC and a comparator in a successive-approximation loop to achieve a conversion time of $21 \mathrm{t}_{\text {cIK }}$ clock cycles. The ADC conversion time of the chip is therefore $2.625 \mu \mathrm{~s}$ (4 clk for sampling window). If the channel for the LIN Auto Addressing is set, the conversion time is $171 \mathrm{t}_{\text {cLK }}$ clock cycles ($128 \mathrm{t}_{\text {cLK }}$ for sampling window) or approximately $21.4 \mu \mathrm{~s}$.

Register Name	Address	Description
ADCCNTR	0×0020	ADC Control Register
ADCDAT	0×0021	ADC Data

Table 36. ADC Control Register

ADCCNTR	MSB							LSB
Content	EOC	TADC1	TADC0	SEL[3]	SEL[2]	SEL[1]	SEL[0]	SOC
Reset value	1	0	0	0	0	0	0	0
Internal access	R	R	R	R/W	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-	-	-
Bit Description	EOC : End of conversion TADC1 : Test TADCO : Test SEL[3] : ADC input select 3 SEL[2]: ADC input select 2 SEL[1] : ADC input select 1 SEL[0]: ADC input select 0 0000: D1 voltage 0001 ${ }^{\text {b }}$: D2 voltage 0010 : D3 voltage $0011_{b}: V_{\text {vs }} / 12$ $0100{ }^{\mathrm{b}}: \mathrm{T}$, 0101_{b}^{b} : $T_{\text {sh }}$ $0110_{\mathrm{b}}^{\mathrm{b}}$: LLNutoffthr Auto Addressing 0111 ${ }^{\text {b }}$: 1000_{b} : TDAIO 1001_{b}^{b} : Zero SOC : Start of conversion							

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 37. ADC Data

ADCDAT	MSB							LSB
Content	ADC[7]	ADC[6]	ADC[5]	ADC[4]	ADC[3]	ADC[2]	ADC[1]	ADC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description								

7 Half Bridge Drivers

7.1 Output Drivers and Control

The output drivers A0/A1 and B0/B1 are composed of two H -bridges. Each driver of the H -bridge is accessible separately through a control register. If an over-temper-
ature condition is detected, the drivers are switched off by hardware. The following diagram shows the structure of one full bridge.

Figure 16. Current Control Loop

7.2 Chopper Current Control Loop

A chopper control is for torque control and micro-stepping implemented. The IC provides a fixed frequency PWM to allow a more precise supply filtering for EMI reduction. The chopper $t_{\text {ON }}$ phase starts with the base frequency. The $t_{\text {on }}$ phase ends if the comparator indicates that the current level is reached. Due to the fact that there may be short current peaks at the beginning
of each tON phase caused by capacitive loads on A0/1 or BO/1, the current measurement hardware will be masked for a defined time $t_{\text {mask }}$ after the beginning of any $t_{\text {ON }}$ phase. The off-time will not be present if the peak current is not attained during the PWM on-time. The current level for coils A and B are set up with the values of registers IDACA and IDACB.

Figure 17. Simplified schematic of the current control loop of one full bridge

The driver currents $I_{A 0}$ and $I_{A 1}$ are mirrored into the current measurement hardware by splitting the related power transistors into two sections. The driver and sense transistors of each half bridge share common gate and source nodes, the drain nodes of both sense transistors belonging to one full bridge are tied together. Due to the fact that only one of the full bridge's low-side drivers may be enabled at a time, these two drain nodes may be connected without any additional switch.
In order to make the driver current and the sensed current match the width relation of driver and sense transistor, the drain voltage has to be controlled by an operation amplifier. The reference voltage of this control loop is one of the half bridge output voltages $V_{A O}$ or $V_{A 1}$, depending on the state of the full bridge. If the full bridge is disabled or in its tOFF phase, the input voltage of the operation amplifier has to be tied to a defined bias voltage.

The output signal of the circuitry around the low side driver transistors equals the coil current divided by a special mirror factor, that was defined by the driver/ sense transistor width relation. This internal sense current will be mirrored a second time and then will be compared to a reference current $I_{D A C}$.
Due to the fact that there may be short current peaks at the beginning of each $t_{\text {on }}$ phase caused by capacitive loads on A0 or A1, the current measurement hardware will be masked for a defined time $t_{\text {MASK }}$ after the beginning of any tON phase. During this phase the current measurement hardware is held in a safe state (COMP $=0_{b}$). After the end of the mask time the current measurement hardware will settle from this initial state to the normal operating condition. For setting the masking time, refer to register HBCTRL (Table 43 Half Bridge Control Register).
The following table shows the setup of the current control loop for the different configurations of the half bridge A.

Table 38. Current Control and Half Bridge State Table

Phase	AOH	AOL	A1H	A1L	SO	S1	$A_{\text {INT }}$	$I_{A, I N T}$
$t_{\text {ON }}$	-	ON	ON	-	$O N$	-	$V_{A 0}$	$I_{A 0} / M$
$t_{\text {ON }}$, reversed direction	ON	-	-	$O N$	-	$O N$	$V_{A 1}$	$I_{A 1} / M$
$t_{\text {OFF }}$	ON	-	ON	-	-	-	$I d l e$	0
Drivers disabled	-	-		-	-	-	Idle	0

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

7.3 Motor Register Control

The half bridge drivers get their control signals from the motor control logic. The rotational position of the motor and the torque of the motor is controlled by the current of coils A and B. The control logic includes the PWM
generation, the current control and the stall detection. Waveform Control to be done by software with minimum 10 kHz refresh rate.

Table 39. Motor Control Register Table

Register Name	Address	Description
STLDTHR	0×0000	Motor Configuration Register 1 (please contact supplier for optimized values)
CNTFBC	$0 \times 000 \mathrm{D}$	Motor Configuration Register (read only, not needed for application
STLFINC	$0 \times 000 \mathrm{E}$	Motor Configuration Register 2 (please contact supplier for optimized values)
STLFLVL	$0 \times 000 \mathrm{~F}$	Motor Configuration Register 3 (please contact supplier for optimized values)
HBCTRL	0×0028	Half Bridge Control Register
HBDATA	0×0029	Half Bridge Data Register
HBSTATUS	$0 \times 002 \mathrm{~A}$	Half Bridge Status Register
IDACA	$0 \times 002 \mathrm{~B}$	Chopper Current Register of Half Bridge A
IDACB	$0 \times 002 \mathrm{C}$	Chopper Current Register of Half Bridge B
DECCTRL	$0 \times 002 \mathrm{D}$	Decay Control Register
ONTIME	$0 \times 002 \mathrm{E}$	On-Time Register
MOTSTA	$0 \times 002 \mathrm{~F}$	Motor Status Register
STLFTHR	$0 x 0411$	Motor Configuration Register 4 (please contact supplier for optimized values)

Table 40. Motor Configuration Register 1

STLDTHR (0x0000)	MSB							LSB
Content	-	DTHR[6]	DTHR[5]	DTHR[4]	DTHR[3]	DTHR[2]	DTHR[1]	DTHR[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R/W						
External access	-	-	-	-	-	-	-	-
Bit Description						DTHR[6:0]Motor Configuration Register 1 (please contact supplier for optimized values)		

Table 41. Motor Configuration Register 2

STLFINC (0x000E)	MSB							LSB
Content	FINC[5]	FINC[4]	FINC[3]	FINC[2]	FINC[1]	FINC[0]	MOTP- WM_IE	MOTP- WM_IRO_
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	FINC[5:0] Motor configuration Parameter Set 2 (please contact supplier for optimized val- ues) MOTPWM_IE : 1_{b} enables the MOTPWM Interrupt MOTPWM_IRO: Indicates the beginning of a new PWM cycle, Setting 1_{b} resets the bit							

Table 42. Motor Configuration Register 3

STLFLVL (0x000F)	MSB							LSB
Content	FLVL[7]	FLVL[6]	FLVL[5]	FLVL[4]	FLVL[3]	FLVL[2]	FLVL[1]	FLVL[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	FLVL[7:0] : Motor Configuration Parameter Set 3 (please contact supplier for optimized val- ues)							

[^5]POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 43. Half Bridge Control Register

HBCTRL (0x0028)	MSB							LSB
Content	MASK[1:0]	MASK[1:0]		SLEW	FDECA	FDECB	RNG[1:0]	RNG[1:0]
Reset value	0	1	0	1	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
External access	-	-						-
Bit Description	MASK[1:0] masks current comparator signal at the leading edge for a defined time t^{n} $00_{b}: 750 \mathrm{~ns}$ 01_{b} : 1500ns 10_{b} : 2250ns 11_{b} : 3000ns SLEW : SLEW[1:0] sets the slew rate control $0_{b}: 70 \mathrm{~V} / \mu \mathrm{s}$ mode $1_{b}: 110 \mathrm{~V} / \mu \mathrm{s}$ mode FDECA : Enable Fast Decay on Coil A FDECB : Enable Fast Decay on Coil B Note: No simultaneous setting of FDECA and FDECB allowed. In such a case only FDECA gets effective. RNG[1:0] : sets the motor current range $00_{\mathrm{b}}: 300 \mathrm{~mA}$ $10_{\mathrm{b}}: 600 \mathrm{~mA}$ $11_{\mathrm{b}}^{\mathrm{b}}: 800 \mathrm{~mA}$							

Table 44. Half Bridge Data Register

HBDATA (0x0029)	MSB							LSB
Content	ENAO	ENA1	ENB0	ENB1	SETA0	SETA1	SETB0	SETB1
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access		-	-	-			-	
Bit Description	ENAO : 1_{b} : Enables half bridge A0 (not tri-state) ENA1 : 1_{b} : Enables half bridge A1 (not tri-state) ENBO : 1_{b} : Enables half bridge B0 (not tri-state) ENB1 : 1_{b} : Enables half bridge B1 (not tri-state) SETAO : 1 b : Switches half bridge A0 to High, otherwise to Low SETA1 : 1_{b} : Switches half bridge A1 to High, otherwise to Low SETB0 : 1_{b} : Switches half bridge B0 to High, otherwise to Low SETB1 : 1_{b} : Switches half bridge B1 to High, otherwise to Low Note, that HBDATA values get effective at the beginning of the next PWM frame and the bridge output is also affected by the chopper logic.							

Table 45. Half Bridge Status Register

$\begin{aligned} & \begin{array}{l} \text { HBSTATUS } \\ (0 \times 002 A) \end{array} \\ & \hline \end{aligned}$	MSB							LSB
Content	ZCCA	ZCCB	CCA	CCB	X	x	x	X
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	ZCCA : Zero crossing comparator A (transparent) ZCCB : Zero crossing comparator B (transparent) CCA : Chopper Current comparator A (transparent) CCB : Chopper Current comparator B (transparent)							

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 46. Chopper Current Register of Half Bridge A

IDACA (0x002B)	MSB							LSB
Content	IDACA[7]	IDACA[6]	IDACA[5]	IDACA[4]	IDACA[3]	IDACA[2]	IDACA[1]	IDACA[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
	IDACA[7.0] : Chopper threshold for current in coil A Bit Description Note, that IDACA values get effective at the beginning of the next PWM frame. When the register is read, the actual IDACA value is returned, that may differ from the last written value due to the aforementioned.							

Table 47. Chopper Current Register of Half Bridge B

IDACB (0x002C)	MSB							LSB
Content	IDACB[7]	IDACB[6]	IDACB[5]	IDACB[4]	IDACB[3]	IDACB[2]	IDACB[1]	IDACB[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
	IDACB[7.0]: Chopper threshold for current in coil B. Bit Description Note, that IDACB values get effective at the beginning of the next PWM frame. When the register is read, the actual IDACB value is returned, that may differ from the last written value due to the aforementioned.							

Table 48. Decay Control Register

DECCTRL (0x002D)	MSB							LSB
Content	DECCTRL[7]	DECCTRL[6]	$\begin{aligned} & \hline \text { DEC- } \\ & \text { CTRL[5] } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { DEC- } \\ \text { CTRL[4] } \end{array}$	DECCTRL[3]	$\begin{array}{\|l\|} \hline \text { DEC- } \\ \text { CTRL[2] } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DEC- } \\ \text { CTRL[1] } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DEC- } \\ & \text { CTRL[0] } \end{aligned}$
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	DECCTRL[7..0] : Length of fast decay (1LSB means $\mathrm{t}_{\text {PwM }}$ (${ }^{\text {d }}$)							

Table 49. On-Time Register

ONTIME (0x002E)	MSB							LSB
Content	ONT[7]	ONT[6]	ONT[5]	ONT[4]	ONT[3]	ONT[2]	ONT[1]	ONT[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	ONT[7..0] : shows on-time of the last PWM frame (1LSB means $t_{\text {pWMRES }}$) of the phase, where fast decay was set. If neither FDECA nor FDECB was set, then ONT[7:0] is set to 0×00.							

[^6]POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 50. Motor Status Register

MOTSTA (0x002F)	MSB							LSB
Content	STOP	STEN	ZCC IE	ICAP	ESEL	CSEL	STE	STW
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R	R
External access								
Bit Description	STOP : Motor behavior in case of stall detected STEN : Stall detection enable ZCC IE : Zero crossing interrupt enable ICAㄷ: Zero crossing input capture, 1_{b} when zero crossing has been detected, if writing 1_{b} the zero crossing interrupt is reset ESEL: Edge selection for zero crossing, 1_{b} rising edge is selected CSEL: Comparator selection for zero crossing, 1_{b} comparator A is selected STE : Stall detection error, 1_{b} indicates a confirmed stall detection STW : Stall detection warning, 1_{b} indicates a possible stall detection							

Table 51. Motor Configuration Register 4

STLFTHR (0x0411)	MSB							LSB
Content	FTHR[7]	FTHR[6]	FTHR[5]	FTHR[4]	FTHR[3]	FTHR[2]	FTHR[1]	FTHR[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access								
Bit Description	FTHR[7:0] : Motor Configuration Register 4 (please contact supplier for optimized values)							

7.4 Chopper Control

A chopper control is for torque control and microstepping implemented. The IC provides a fixed frequency PWM to allow a more precise supply filtering for EMI reduction. The chopper $t_{\text {ON }}$ phase starts with the base frequency. The $t_{\text {on }}$ phase ends if the comparator indicates that the current level is reached. Due to the fact that there may be short current peaks at the beginning
of each $t_{o n}$ phase caused by capacitive loads on $\mathrm{A} 0 / 1$ or B0/1, the current measurement hardware will be masked for a defined time $t_{\text {mask }}$ after the beginning of any $t_{\text {on }}$ phase. The off-time will not be present if the peak current is not attained during the PWM on-time. The current level for coils A and B are set up with the values of registers IDACA and IDACB.

7.5 Current Decay

The IC offers the possibility to select between fast, slow and mixed decay mode.

- Slow decay is favorable when the current is rising from step to step. This occurs when the phase winding is shorted by switching on both high side FETs in the full bridge.
- Fast decay is most effective when the current is falling from step to step. This occurs when the voltage on the phase is reversed. To activate Fast or Mixed Decay Mode the corresponding bit in the register HBCTRL (Table 43 Half Bridge Control Register) has to be set. It is only possible to set the fast decay mode for one coil.
The setting of FDECA and FDECB simultaneously is not allowed.
One disadvantage of fast decay is the increased current ripple in the phase winding. To reduce the current rip-
ple, the fast decay is used only a short time followed by the slow decay for the remainder PWM off-time. This technique is called mixed decay.

The decay behavior is selectable by software via the DECCTRL register and. A value of 0x00 means slow decay for the entire $t_{\text {off }}$ phase is selected. A value of $0 x f f$ means that fast decay is selected. Mixed decay means that the fast decay period starts with the beginning of the $t_{\text {off }}$ phase. The decay mode is switched to slow after a time of DECCTRL* $t_{\text {pwm,RES }}$. Automatic decay is feasible by software.

The length of the $t_{\text {oN }}$ phase gives an indication of the current ripple. Therefore it may be helpful to know the $\mathrm{t}_{\text {on }}$ time. It is measured in every cycle for the coil which is in Fast or Mixed Decay mode and is readable in the ONTIME register.

Figure 18. Current Decay Waveform

7.6 Waveform Control

Waveform Control shall be done by software with minimum 10 kHz refresh rate.

7.7 Stall Detection

For proper stall detection functionality
the following motor configuration registers have to be set .(please contact supplier for optimized values)
Table 52. Motor Configuration Register Table

Register Name	Address	Description
STLDTHR	0×0000	Motor Configuration Register 1
STLFINC	$0 \times 000 E$	Motor Configuration Register 2
STLFLVL	$0 \times 000 \mathrm{~F}$	Motor Configuration Register 3
STLFTHR	0×0411	Motor Configuration Register 4

It has to be guaranteed by the software, that the stepping frequency is not jittering more than $+/-2 \%$. Long term stepping frequency change, due to slow speed changes or oscillator temperature dependency, is tolerated by the stall detection logic. Further configurations recommended for stepper motor with stall detection are:
a) In the last step before reaching zero current in coil A or B

- check register 0x00D. If it's "zero" clear register bit STW of register Register MOTSTAT (0x002F) (see below) - activate the stall detection by setting bit "STEN" of register "MOTSTA" (please also refer to chapter "Controlling the motor functions")
b) Set the half-bridge on the concerning coil, which is high, to low and the other which is low, to high impedance.

The stall detection analysis starts automatically, when STEN is set and the HBDATA value is transferred to the half bridge.
The stall detection logic will generate two status signal bits in register MOTSTA.
The first signal indicates a potential stall condition and sets the referred stall warning flag STW. If STW is 1_{b}, it is recommended that the controller saves the current motor position for later use.
The second signal called stall error flag STE indicates a confirmed stall condition. If STE is 1_{b}, the pre-
viously saved position should be considered as the actual mechanical position by the controller. This procedure allows to minimize the mismatch between mechanical stop and the position where STE is set, which is caused by the stall detection filters. When a confirmed stall condition has been indicated by the STE flag, the controller is in charge to stop the motor movement, in order to prevent from noise or too high mechanical load.
If a stall condition has been confirmed and the related flag bit STE is set, the behavior of the circuit depends on the configuration of the STOP control bit. If the STOP bit is 0_{b}, a confirmed stall condition does not have any effects on the motor drivers. The integrated controller is in charge to stop the motor movement.
Depending on the stepper motor type or mechanical characteristics of gearbox or bearing it may be necessary to perform an additional filtering of the STE flag in the external controller. If a stall warning or a confirmed stall condition disappears, the related flags STW or STE will be automatically cleared by the logic without further acknowledgment by the micro-controller. If the STOP bit is 1_{b}, the confirmed stall condition information can be used by the controller to lead in a stop scenario, which may be "driver off" or "all drivers to GND" or "apply hold PWM" to increase the motors hold torque. In order to recover from this stall condition, the controller has first to stop and then to start the continuous motor stepping.

Note: For using "stall detection" there is no need to handle register bits regarding "zero crossing". ZCC_IE can be off.
Table 53. Motor Status Register

MOTSTA (0x002F)	MSB							LSB
Content	STOP	STEN	ZCC_IE	ICAP	ESEL	CSEL	STE	STW
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R	R/W	R/W	R/W	R	R
External access								
Bit Description	STOP : Motor behavior in case of stall detected STEN : Stall detection enable ZCC IE : Zero crossing interrupt enable ICAP : Zero crossing input capture, 1_{b} when zero crossing has been detected, if writing 1_{b} the zero crossing interrupt is reset ESEL : Edge selection for zero crossing, $\mathbf{1}_{b}$ rising edge is selected CSEL: Comparator selection for zero crossing, $\mathbf{1}_{\mathrm{b}}$ comparator A is selected STE : Stall detection error, 1_{b} indicates a confirmed stall detection STW : Stall detection warning, 1_{h} indicates a possible stall detection							

7.8 Zero Crossing Detection

Figure 19. Zero Crossing Comparator

In "1 phase ON" mode it is possible to determine the point in time when the BEMF crosses through zero by observing the non-supplied coil. This signal may be used for an auto commutation application. The figure demonstrates the principle of the measurement. After the micro-controller writes into the ZCTL register, the zero crossing detection starts. After the detection
of the selected edge, the flag ICAP is set by the hardware and an interrupt is generated. The interrupt can be disabled by setting the bit ZCCS_I_EN. For using the zero crossing comparator please also refer to chapter "Controlling the motor functions", register MOTSTA. For using "zero crossing" there is no need to handle register bits regarding "stall detection". STEN can be off.

7.9 Watchdog

The watchdog timer is implemented as a window watchdog. It starts after the first write to the window mode bits (WDCFG = 1) and can not be stopped any more. It triggers a reset pulse for the micro-controller system when software operation does not write the signature of 0×55 to the watchdog register within a configured watchdog window. The watchdog timer is clocked with $\mathrm{f}_{\text {cIK }}$, so its resolution is 125 ns .
The watchdog unit can be configured as simple time-
out watchdog (means: open time window) or window watchdog (means: closed time window). Configuration is done by writing a specified value to Watchdog Register.
NOTE: A (re-)configuration of the watchdog unit does not influence the watchdog timer! For resetting the watchdog timer the signature 0x55 must be written to the watchdog register in the configured time window. That means within the configured open/closed watchdog timing range.

Table 54. Watchdog Register Table

Register Name	Address	Description
WDREG	0×0001	Watchdog Register

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 55. Watchdog Register

WDREG (0x0001)	MSB							LSB
Content	WDCFG	WDM[1]	WDM[0]	WDPRE				
Reset value	0	0	0	0	0	0	0	0
Internal access	W	R/W	R/W	R/W	R	R	R	R
External access	-	-	-					-
Bit Description	WDCFG: Configure Watchdog 1_{b} : Current write access is used to configure the watchdog mode 0_{h} : Watchdog is triggered if the value being written is 0×55 WDM $[1,0]$ if watchdog config. is (WDCFG=1) then WDREG[6:5] contains the selected Mode: 00_{b} : Simple Time-Out Watchdog 01_{b}^{b} : Window Watchdog1 10 : Window Watchdog2 11_{b}^{b} : Window Watchdog3 WDPRE : Watchdog clock pre-divider							

Table 56. Watchdog Window Settings Description WDPRE $=0$

WDM[1:0]	Start window (number of clocks)	Start window (number of clocks)	Time for $\mathrm{f}_{\text {BUS }}=8 \mathrm{MHz} / \mu \mathrm{s}$
00	0	2048	$0-256$
01	256	2048	$32-256$
10	256	1024	$32-128$
11	512	2048	$64-256$

Table 57. Watchdog Window Settings Description WDPRE $=1$

WDM[1:0]	Start window (number of clocks)	Start window (number of clocks)	Time for $\mathrm{f}_{\text {Bus }}=8 \mathrm{MHz} / \mu \mathrm{s}$
00	0	65536	$0-8192$
01	8192	65536	$1024-8192$
10	8192	32786	$1024-4096$
11	16384	65536	$2048-8192$

7.10 Counter

The timer is implemented as a 16 bit free running counter. To ensure the readout of consistent timer values the timer low byte is latched if the timer high byte is read. The compare register can be used to generated defined timer compare interrupts.

- Counter overflow flag (OTF) is cleared by writing a logical ' 1 ' into bit TOF of counter status register CNTSTAT.
- Compare overflow flag (OCF) is cleared by reading register CNTCMPL.
- Interrupts may be enabled by setting bit INTD to a logical '0' and bits OCIE/TFOI of control register CNTCTRL.
- In order to use interrupts an interrupt enable command CLI should be performed.
- Interrupts are disabled by STI command.

Table 58. Counter Register Table

Register Name	Address	Description
CNTH	0×0022	Counter High Byte Register
CNTL	0×0023	Counter Low Byte Register
CNTCMPH	0×0024	Counter Compare High Byte Register
CNTCMPL	0×0025	Counter Compare Low Byte Register
CNTCTRL	0×0026	Counter Control Register
CNTSTAT	0×0027	Counter Status Register

[^7]
POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013
Table 59. Counter high byte register

CNTH (0x0022)	MSB							LSB
Content	TR[15]	TR[14]	TR[13]	TR[12]	TR[11]	TR[10]	TR[9]	TR[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	TR[15:8] : high byte of timer register, access latches TIM1RL							

Table 60. Counter low byte register

CNTL (0x0023)	MSB							LSB
Content	TR[7]	TR[6]	TR[5]	TR[4]	TR[3]	TR[2]	TR[1]	TR[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	TR[7:0] : low byte of timer register							

Table 61. Counter compare high byte register

CNTCMPH (0x0024)	MSB							LSB
Content	TCMP[15]	TCMP[14]	TCMP[13]	TCMP[12]	TCMP[11]	TCMP[10]	TCMP[9]	TCMP[8]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	TCMP[15:8] : high byte of timer compare register							

Table 62. Counter compare low byte register

CNTCMPL (0x0025)	MSB							LSB
Content	TCMP[7]	TCMP[6]	TCMP[5]	TCMP[4]	TCMP[3]	TCMP[2]	TCMP[1]	TCMP[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
Bit Description	TCMP[7:0] : low byte of timer compare register							

Table 63. Counter control register

CNTCTRL (0x0026)	MSB							LSB
Content	-	OCIE	TOFIE	INTD		PRE[1]	PRE[0]	-
Reset value	0	0	0	1	0	0	0	0
Internal access	R	R/W	R/W	R/W	R	R/W	R/W	R
External access	-	-	-	-		-	-	-
Bit Description	OCIE : interrupt enable for output compare TOFIE : interrupt enable for counter overflow INTD : interrupt disable for all counter interrupts 1 : disables all PRE[1:0] : selects the pre-scaler for the timer register 00 : counter incremented with $\mathrm{f}_{\mathrm{osc}} / 2$ 01 : counter incremented with $f_{\text {osc }}^{\text {osc }} / 4$ 10 : counter incremented with $\mathrm{f}_{\mathrm{osc}}^{\mathrm{Osc}} / 8$ 11 : counter incremented with $\mathrm{f}_{\mathrm{osc}}^{\mathrm{Osc}} / 16$							

[^8]POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 64. Counter status register

CNTSTAT (0x0027)	MSB							LSB
Content	-	OCF	TOF	-	-	-		-
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R/W	R	R	R	R	R
External access	-	-	-	-	-	-	-	-
Bit Description	OCF : flag for output compare : - set by timer hardware when values of CNTH/CNTL and of CNTCMPH/CNTCMPL register match. No further comparison is made until the OCF bit is cleared by reading of the CNTCMPL register. TOF : flag for counter overflow : - set by counter hardware - cleared by writing a '1' to TOF bit							

7.11 Integrated $\mu \mathrm{C}$ (CPU) with RAM, ROM, FLASH , EEPROM

7.12 Central Processing Unit (CPU)

The range of CPU functions is:

- Control of peripherals such as LIN transceiver, PWM interface,
- Hall and potentiometer analysis,
- Stepper motor control.

The CPU may be reset by any of these sources:

- Power-on,
- Under-voltage at VDDD or VDDA,
- Internal watchdog timeout.

The CPU may be interrupted by any of these sources:

- Software interrupt instruction (SWI),
- SCI interface,
- EEPROM,
- GPIO pins,
- Timer.
- Motor controller.

Two different versions are available. The first one has 8KByte FLASH memory for application programs and 4KByte ROM for system routines (SysROM). The second version has 8KByte ROM for application software and

4KByte SysROM.

Device Operation Modes

The CPU provides two different device operation modes:

Configuration mode

1. Self test mode2. Production test support
2. Adjustment setting
3. Programming of customer memory area via LIN protocol

Operational mode

1. LIN or PWM protocol processing
2. Stepper motor control
3. Error detection and handling

After power-on reset the IC is in the configuration mode. It may be switched to operation mode by writing the value 0xA5 to the CPU Mode Register.

Table 65. CPU Mode Register Table

Register Name	Address	Description
CPUMOD	0×0400	CPU Mode Register

Table 66. CPU Mode Register

CPUMOD (0x0400)	MSB							LSB
Content	MODCFG[7]	MOD- CFG[6]	MOD- CFG[5]	MOD- CFG[4]	MOD- CFG[3]	MOD- CFG[2]	MOD- CFG[1]	MOD- CFG[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	W	W	W	W	W	W	W
External access	-	-	-	-	-	-	-	-
Bit Description	MODCFG[7] : current device state 0:configuration mode, 1:operational mode MODECFG[7:0]: write 0xA5 to switch from configuration to operational mode							

[^9]
Memory Map - Base Address Table

The memory map is designed to provide both configuration and operational modes. It is achieved by switching of memory addresses as shown in (Figure 20 Memory Map of 8KByte FLASH Version).

Wake-up:

The μ C always starts in configuration mode after wakeup (Boot Manager Module is started). In this mode the FLASH firmware memory (only the FLASH version of the IC) or EEPROM cells can be erased/programmed via LIN2.1. After power-on reset the memory map for con-
figuration mode is valid.
Switching to operational mode:
The device changes to operational mode either after a timeout or after receiving a bmmcommand_CLOSE message. In operational mode only the highest 16 bytes of EEPROM are erasable/programmable. FLASH access is read-only in this mode.
According to this mode switching, the memory spaces of the customer programmable FLASH firmware memory/ROM and the SysROM are modified as shown in (Figure 20 Memory Map of 8KByte FLASH Version).

Figure 20. Memory Map of 8KByte FLASH Version
Table 67. Base Address Table of Operational Mode for 8KByte FLASH Version

Base Address	Size	Module Name
$0 \times E 000$	0×2000	FLASH 8K X 8 or AppROM
0×3000	$0 \times B 000$	unused
0×2000	0×1000	SysROM 4K X 8
0×0420	0×1 BE0	unused
0×0400	0×0020	SSFR 32x8
0×0340	$0 \times 00 C 0$	unused
0×0300	0×0040	EEPROM 64 X 8
0×0130	$0 \times 01 D 0$	unused
0×0030	0×0100	RAM 256 X 8
0×0000	0×0030	FSFR 48 X 8

[^10]
POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

Table 68. Base Address Table of Configuration Mode for 8KByte FLASH Version

Base Address	Size	Module Name
$0 \times F 000$	0×1000	SysROM 4K X 8
0×6000	0×9000	unused
0×4000	0×2000	FLASH 8K X 8 or AppROM
0×3000	0×1000	unused
0×2000	0×1000	SysROM 4K X 8
0×0420	0×1 BE0	unused
0×0400	0×0020	SSFR 32x8
0×0340	$0 \times 00 C 0$	unused
0×0300	0×0040	EEPROM 64 X 8
0×0130	$0 \times 01 D 0$	unused
0×0030	0×0100	RAM 256 X 8
0×0000	0×0030	FSFR 48 X 8

Table 69. SFR Address Table

Base Address	Size	Module Name
0x0411	STLFTHR	Motor Control
0×0410	FLASH_KEY4	FLASH
0x040f	FLASH_KEY3	FLASH
0x040e	FLASH_KEY2	FLASH
0x040d	FLASH_KEY1	FLASH
0x040c	FLASH_KEY_OK	FLASH
0×0408	RESSTAT	DIGITAL
0x0404	EE64IRQ	EEPROM
0×0403	GPIOCFG	GPIO Interface
0×0402	PWMCFG	PWM Interface
0×0401	GENCFG	Periphery
0×0400	CPUMOD	CPU
0×0402	PWMCFG	PWM Interface
0×0401	GENCFG	Periphery
0x0400	CPUMOD	CPU
0x002F	MOTSTAT	Motor Control
0x002E	ONTIME	Motor Control
0x002D	DECCTRL	Motor Control
0x002C	IDACB	Motor Control
0x002B	IDACA	Motor Control
0x002A	HBSTATUS	Motor Control
0x0029	HBDATA	Motor Control
0×0028	HBCTRL	Motor Control
0×0027	CNTSTAT	Counter
0×0026	CNTCTRL	Counter
0×0025	CNTCMPL	Counter
0×0024	CNTCMPH	Counter
0×0023	CNTL	Counter
0×0022	CNTH	Counter
0×0021	ADCDAT	ADC
0x0020	ADCCNTR	ADC
0x001F	LINAA	BUS Interface
0x001E	LIN_MODE	SCI
0x001B	SCIMEASDATL	SCl

[^11]
POWER LIN2.X STEPPER WITH STALL DETECTION

Interrupt vector

The following table shows a summary of all interrupt sources and their vector addresses. The interrupt number represents the priority, the highest number has the highest priority.

Table 70. Reset and Interrupt Vectors List

Number	Block	Vector Address	Source
15	POR/WD	0xFFFE - 0xFFFF	Power-on reset watchdog
14	CPU	0xFFFC - 0xFFFD	Software interrupt (SWI)
13	EEPROM EE ERR IRQ	0xFFFA - 0xFFFB	Wrong write sequence detected
12	EEPROM EE READY IRO	0xFFF8-0xFFF9	Erase/programming finished
11	EEPROM EE ECCERR IRO	0xFFF6-0xFFF7	ECC error detected
10	Counter Counter_OC_IRQ	0xFFF4-0xFFF5	Counter output compare
9	Counter Counter OF IRO	0xFFF2-0xFFF3	Counter overflow
8	$\begin{aligned} & \hline \mathrm{SCl} \\ & \mathrm{SCl} B I E _I R Q \\ & \mathrm{PWM} \\ & \mathrm{PWM} \text { _EIE_IRO } \\ & \hline \end{aligned}$	0xFFF0-0xFFF1	LIN Break detected PWM Edge detected
7	$\begin{aligned} & \text { SCI } \\ & \text { SCI_MFIE_IRO } \\ & \hline \end{aligned}$	0xFFEE - 0xFFEF	LIN Measurement finished
6	$\begin{aligned} & \text { SCI } \\ & \text { SCI_RIE_IRO } \end{aligned}$	0xFFEC - 0xFFED	LIN Receive register full

[^12]POWER LIN2.X STEPPER WITH STALL DETECTION

Number	Block	Vector Address	Source
5	SCI SCI_TIE_IRQ	0xFFEA - 0xFFEB	LIN Transmit register empty
4	GPIO GPIO_IRQ	0xFFE8 - 0xFFE9	GPIO edge event on D1-D3
3	Motor Control ZC_IRQ	0xFFE6 - 0xFFE7	Zero Crossing comparator
2	Motor Control MOTPWM_- IRQ	0xFFE4-0xFFE5	Start of new PWM frame
1	-	0xFFE2 - 0xFFE3	Reserved
0	-	0xFFE0 - 0xFFE1	Reserved

Software interrupt (SWI):

A jump of the program counter to an unused ROM/ FLASH address has to lead to a software interrupt. So it is strongly recommended to fill all unused storage with the interrupt vector address of the software interrupt (see above).

CPU EL3.5 Core

1. 6805 instruction set compatible including 8 by 8 multiplication
2. 2.15 interrupt vectors
3. 1 reset vector
4. 16 bit address bus width
5. 64 KByte data/program address space (0x0000-0xFFFF)
6. Clock frequency 8 MHz
7. 6 bit stack pointer
8. 16 bit extended program counter

Figure 21. Programming Model

The EL3.5 CPU can be reset in variable ways:

- by an initial power-on reset,
- by a watchdog reset,
- by a switching from configuration mode to operational mode.

Any of these resets will bring:

- the program counter to its starting address,
- all registers to their reset values,
- the interrupt mask bit set to interrupt disable,
- the stack pointer to 0x00FF.

Elmos Semiconductor $A G$ reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
Elmos Semiconductor AG
Data Sheet

POWER LIN2.X STEPPER WITH STALL DETECTION

Debug Interface

The IC supports debugging of the EL3.5 CPU. To access the debug structures of the EL3.5 CPU a 4-wire standard JTAG interface is used while the TESTEN pin is set to high level. Resetting TESTEN to low level resets all test and debug structures and the IC operates in normal mode.

CPU Registers

The accumulator A is used for general calculations. The X register is used for indirect and indexed addressing. The stack pointer SP is used internally by the CPU. The first 2 bits of the SP register are fixed to one. This is to protect the rest of the RAM in case of a stack overflow. The program counter is 16 bit long. So the maximum addressable code area is 64KByte.

Table 71. CPU Register Table

Name	Size	Description
CCR	5 bits	Condition Code Register
PC	16 bits	Program Counter
SP	6 bits	Stack Pointer
X	8 bits	Index Register
A	8 bits	Accumulator
STACK	64 bytes	Stack 64 byte LIFO (last-in first-out)

Table 72. Condition Code Register

Bit	Name	Description
4	H	Half-Carry (from bit 3)
3	I	Interrupt mask
2	N	Negative flag
1	Z	Zero flag
0	C	Carry bit

POWER LIN2.X STEPPER WITH STALL DETECTION

7.13 Instruction Set

Source Form	Operation	Description	Effect on CCR						$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 핑 } \\ & \text { 응 } \end{aligned}$	
			H	I	N	Z	C				
ADC \#opr ADC opr ADC opr ADC opr, X ADC opr, X ADC, X	Add with Carry	$A \leftarrow(A)+(M)+(C)$	\downarrow		\downarrow	\downarrow	\downarrow	IMM DIR EXT IX2 IX1 IX	A9 B9 C9 D9 E9 F9	ii dd hh II ee ff ff	2 3 4 4 4 3
ADD \#opr ADD opr ADD opr ADD opr, X ADD opr, X ADD , X	Add without Carry	$A \leftarrow(A)+(M)$	\downarrow		\downarrow	\downarrow		$\begin{gathered} \hline \text { IMM } \\ \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{BB} \\ & \mathrm{CB} \\ & \mathrm{DB} \\ & \mathrm{~EB} \\ & \mathrm{FB} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { ii } \\ \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{array}$	2 3 4 4 4 3
AND \#opr AND opr AND opr AND opr, X AND opr, X AND , X	Logical AND	$A \leftarrow(A) \wedge(M)$			\downarrow	\downarrow	-	$\begin{gathered} \hline \text { IMM } \\ \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & \text { A4 } \\ & \text { B4 } \\ & \text { C4 } \\ & \text { D4 } \\ & \text { E4 } \\ & \text { F4 } \end{aligned}$	ii dd hh II ee ff ff	2 3 4 4 4 3
$\begin{array}{\|l} \hline \text { ASL opr } \\ \text { ASLA } \\ \text { ASLX } \\ \text { ASL opr,X } \\ \text { ASL ,X } \\ \hline \end{array}$	Arithmetic Shift Left (Same as LSL)		-		\downarrow	\downarrow			38 48 58 68 78	dd ff	5 3 3 6 5
ASR opr ASRA ASRX ASR opr, X ASR , X	Arithmetic Shift Right			-	\downarrow	\downarrow		DIR INH \uparrow INH IX1 IX	37 47 57 67 77	dd ff	5 3 3 6 5
BCC rel	Branch if Carry Bit Clear	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel} ? \mathrm{C}=0$		-		-	-	REL	24	rr	3
BCLR n opr	Clear Bit n	$\mathrm{Mn} \leftarrow 0$						$\begin{array}{\|l\|} \hline \operatorname{DIR~(b0)~} \\ \operatorname{DIR~(b1)~} \\ \operatorname{DIR~(b2)~} \\ \operatorname{DIR~(b3)~} \\ \operatorname{DIR~(b4)~} \\ \operatorname{DIR~(b5)~} \\ \operatorname{DIR~(b6)~} \\ \operatorname{DIR~(b7)~} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ 13 \\ 15 \\ 17 \\ 19 \\ 1 B \\ 1 D \\ 1 F \\ \hline \end{array}$	dd dd	5 5
BCS rel	Branch if Carry Bit Set (Same as BLO)	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{C}=1$		-	-	-	-	REL	25	rr	3
BEQ rel	Branch if Equal	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{Z}=1$		-	-		-	REL	27	rr	3
BHCC rel	Branch if Half-Carry Bit Clear	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{H}=0$		-	-	-	-	REL	28	rr	3
BHCS rel	Branch if Half-Carry Bit Set	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{H}=1$		-	-	-	-	REL	29	rr	3
BHI rel	Branch if Higher	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel} ? \mathrm{C} \mathrm{V}_{\mathrm{Z}}=0$		-	-	-	-	REL	22	rr	3
BHS rel	Branch if Higher or Same	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{C}=0$	-	-	-	-	-	REL	24	rr	3

Figure 22. Instruction Set Summary (Sheet 1 of 6)

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013

Source Form	Operation	Description	Effect on CCR						$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		ddU
			H	1	N	Z	C				
BIT \#opr BIT opr BIT opr BIT opr,X BIT opr,X BIT, X	Bit Test Accumulator with Memory Byte	(A) $\wedge(M)$		-	\downarrow	\downarrow		$\begin{gathered} \hline \text { IMM } \\ \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} 5 \\ & \mathrm{~B} 5 \\ & \mathrm{C} 5 \\ & \mathrm{D} 5 \\ & \mathrm{E} 5 \\ & \mathrm{~F} 5 \\ & \hline \end{aligned}$	ii dd hh II ee ff ff	2 3 4 4 4 3
BLO rel	Branch if Lower (Same as BCS)	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel $? ~ \mathrm{C}=1$	-	-	-	-		REL	25	rr	3
BLS rel	Branch ifLower orSame	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel}$? $\mathrm{C} \mathrm{V}_{\mathrm{Z}}=1$		-	-	-		REL	23	rr	3
BMC rel	Branch if Interrupt Mask Clear	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel}$? $\mathrm{I}=0$	-		-	-		REL	2 C	rr	3
BMI rel	Branch if Minus	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $\mathrm{N}=1$			-	-		REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel} ? \mathrm{I}=1$	-	-	-	-	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel}$? $\mathrm{Z}=0$	-	-	-	-		REL	26	rr	3
BPL rel	Branch if Plus	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+$ rel $? \mathrm{~N}=0$	-			-		REL	2A	rr	3
BRA rel	Branch Always	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+$ rel ? $1=1$	-	-	-	-		REL	20	rr	3
BRCLR n opr rel	Branch if Bit n Clear	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel} ? \mathrm{Mn}=0$	-	-	-	-	\downarrow	$\begin{array}{\|l\|} \hline \text { DIR (b0) } \\ \text { DIR (b1) } \\ \text { DIR (b2) } \\ \text { DIR (b3) } \\ \text { DIR (b4) } \\ \text { DIR (b5) } \\ \text { DIR (b6) } \\ \text { DIR (b7) } \\ \hline \end{array}$	01 03 03 05 07 09 $0 B$ $0 D$ $0 F$	dd rr	5 5
BRN rel	Branch Never	$\mathrm{PC} \leftarrow(\mathrm{PC})+2$ +rel ? $1=0$	-			-		REL	21	rr	3
BRSET n opr rel	Branch if Bit n Set	$\mathrm{PC} \leftarrow(\mathrm{PC})+2+\mathrm{rel} ? \mathrm{Mn}=1$	-	-	-	-	\uparrow	$\begin{array}{\|l\|} \hline \text { DIR (b0) } \\ \text { DIR (b1) } \\ \text { DIR (b2) } \\ \text { DIR (b3) } \\ \text { DIR (b4) } \\ \text { DIR (b5) } \\ \text { DIR (b6) } \\ \text { DIR (b7) } \\ \hline \end{array}$	21 00 02 04 06 08 $0 A$ $0 C$ $0 E$	$\begin{aligned} & \mathrm{dd} \mathrm{rr} \\ & \mathrm{dd} \mathrm{rr} \end{aligned}$	5 5
BSET n opr	Set Bit n	$\mathrm{Mn} \leftarrow 1$						$\begin{array}{\|l\|} \hline \text { DIR (b0) } \\ \text { DIR (b1) } \\ \text { DIR (b2) } \\ \text { DIR (b3) } \\ \text { DIR (b4) } \\ \text { DIR (b5) } \\ \text { DIR (b6) } \\ \text { DIR (b7) } \\ \hline \end{array}$	10 12 14 16 18 $1 A$ $1 C$ $1 E$	dd dd	5 5
BSR rel	Branch to Subroutine	$\begin{gathered} \hline \mathrm{PC} \leftarrow(\mathrm{PC})+2 ; \text { push }(\mathrm{PCL}) \\ \mathrm{SP} \leftarrow(\mathrm{SP})-1 ; \text { push }(\mathrm{PCH}) \\ \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ \mathrm{PC} \leftarrow(\mathrm{PC})+\text { rel } \end{gathered}$						REL	AD	rr	6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-		-	0	INH	98		2
CLI	Clear Interrupt Mask	$1 \leftarrow 0$	-	0	-	-	-	INH	9A		2

Figure 23. Instruction Set Summary (Sheet 2 of 6)

POWER LIN2.X STEPPER WITH STALL DETECTION

Source Form	Operation	Description	Effect on CCR					$\begin{aligned} & \text { O } \\ & \text { D } \\ & \text { O} \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & \mathbf{O} \\ & \text { 증 } \\ & \text { 응 } \end{aligned}$	d $\substack{\text { d } \\ \text { U }}$
			H	I N	N Z	Z C				
CLR opr CLRA CLRX CLR opr, X CLR,X	Clear Byte	$\begin{aligned} & M \leftarrow \$ 00 \\ & A \leftarrow \$ 00 \\ & X \leftarrow \$ 00 \\ & M \leftarrow \$ 00 \\ & M \leftarrow \$ 00 \\ & \hline \end{aligned}$	-	- 0	01	1 -	$\begin{gathered} \hline \text { DIR } \\ \text { INH } \\ \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & 3 \mathrm{~F} \\ & 4 \mathrm{~F} \\ & 5 \mathrm{~F} \\ & 6 \mathrm{~F} \\ & 7 \mathrm{~F} \end{aligned}$	dd ff	5 3 3 6 5
CMP \#opr CMP opr CMP opr CMP opr, X CMP opr, X CMP , X	Compare Accumulator with Memory Byte	(A) - (M)	-		\uparrow	\uparrow		A1 B1 C1 D1 E1 F1	$\begin{array}{\|c\|} \hline \text { ii } \\ \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{array}$	2 3 4 5 4 3
COM opr COMA COMX COM opr, X COM , X	Complement Byte (One's Complement)	$\begin{aligned} & M \leftarrow(\bar{M})=\$ F F-(M) \\ & A \leftarrow(\bar{A})=\$ F F-(A) \\ & X \leftarrow(X)=\$ F F-(X) \\ & M \leftarrow(M)=\$ F F-(M) \\ & M \leftarrow(\bar{M})=\$ F F-(M) \end{aligned}$	-	- \downarrow	$\downarrow \downarrow$	\uparrow	DIR INH INH IX1 IX	$\begin{aligned} & 33 \\ & 43 \\ & 53 \\ & 63 \\ & 73 \\ & \hline \end{aligned}$	dd ff	5 3 3 6 5
CPX \#opr CPX opr CPX opr CPX opr, X CPX opr,X CPX, X	Compare Index Register with Memory Byte	(X) - (M)	-	- \downarrow	$\downarrow \downarrow$	\uparrow	IMM DIR EXT IX2 IX1 IX	A3 B3 C3 D3 E3 F3	$\begin{gathered} \hline \mathrm{ii} \\ \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{gathered}$	2 3 4 5 4 3
DEC opr DECA DECX DEC opr, X DEC, X	Decrement Byte	$\begin{aligned} & M \leftarrow(M)-1 \\ & A \leftarrow(A)-1 \\ & X \leftarrow(X)-1 \\ & M \leftarrow(M)-1 \\ & M \leftarrow(M)-1 \end{aligned}$	-	- \downarrow	$\downarrow \uparrow$	\uparrow	$\begin{gathered} \hline \text { DIR } \\ \text { INH } \\ \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 6 \mathrm{~A} \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	dd ff	5 3 3 6 5
EOR \#opr EOR opr EOR opr EOR opr, X EOR opr,X EOR ,X	EXCLUSIVE OR Accumulator with Memory Byte	$A \leftarrow(A) \oplus(M)$		-	\uparrow	\uparrow	IMM DIR EXT IX2 IX1 IX	$\begin{aligned} & \text { A8 } \\ & \text { B8 } \\ & \text { C8 } \\ & \text { D8 } \\ & \text { E8 } \\ & \text { F8 } \\ & \hline \end{aligned}$	ii dd hh II ee ff ff	2 3 3 4 5 4 3
INC opr INCA INCX INC opr,X INC , X	Increment Byte	$\begin{aligned} & M \leftarrow(M)+1 \\ & A \leftarrow(A)+1 \\ & X \leftarrow(X)+1 \\ & M \leftarrow(M)+1 \\ & M \leftarrow(M)+1 \end{aligned}$	-	- \downarrow	$\uparrow \uparrow$	$\uparrow-$	$\begin{gathered} \hline \text { DIR } \\ \text { INH } \\ \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & 3 C \\ & 4 C \\ & 4 C \\ & 6 C \\ & 7 C \\ & \hline \end{aligned}$	dd ff	5 3 3 6 5
JMP opr JMP opr JMP opr, X JMP opr, X JMP , X	Unconditional Jump	$\mathrm{PC} \leftarrow$ Jump Address	-	-		- -	$\begin{gathered} \hline \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	BC	$\begin{array}{\|c\|} \hline \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \\ \hline \end{array}$	2 3 4 3 2

Figure 24. Instruction Set Summary (Sheet 3 of 6)

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013

| Source Form | Operation | Description | Effect on CCR | | | | | | $\begin{aligned} & \text { O } \\ & \text { O } \\ & 0 \\ & 0 . \\ & 0 \end{aligned}$ | 즌픙응 | \|l| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | H | I N | N Z | Z | C | | | | |
| JSR opr JSR opr JSR opr,X JSR opr,X JSR , X | Jump to Subroutine | $\begin{gathered} \mathrm{PC} \leftarrow(\mathrm{PC})+\mathrm{n}(\mathrm{n}=1,2, \text { or } 3) \\ \text { Push }(\mathrm{PCL}) ; \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ \text { Push }(\mathrm{PCH}) ; \mathrm{SP} \leftarrow(\mathrm{SP})-1 \\ \mathrm{PC} \leftarrow \text { Effective Address } \end{gathered}$ | - | - | - | - | - | $\begin{gathered} \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{BD} \\ & \mathrm{CD} \\ & \mathrm{DD} \\ & \mathrm{ED} \\ & \mathrm{FD} \end{aligned}$ | $\begin{array}{\|c} \mid \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{array}$ | 5 6 6 6 5 |
| LDA \#opr LDA opr LDA opr LDA opr, X LDA opr, X LDA, X | Load Accumulator with Memory Byte | $A \leftarrow(M)$ | - | - \downarrow | \downarrow | \downarrow | - | IMM
 DIR
 EXT
 IX2
 IX1
 IX | $\begin{aligned} & \text { A6 } \\ & \text { B6 } \\ & \text { C6 } \\ & \text { D6 } \\ & \text { E6 } \\ & \text { F6 } \\ & \hline \end{aligned}$ | ii dd hh II ee ff ff | 2
 3
 4
 4
 4
 3 |
| LDX \#opr
 LDX opr
 LDX opr
 LDX opr,X
 LDX opr,X
 LDX,X | Load Index Register with Memory Byte | $\mathrm{X} \leftarrow(\mathrm{M})$ | | - \downarrow | \uparrow | \downarrow | - | IMM
 DIR
 EXT
 IX2
 IX1
 IX | AE
 BE
 CE
 DE
 EE
 FE | ii dd hh II ee ff ff | 2
 3
 4
 4
 4
 3 |
| $\begin{array}{\|l} \hline \text { LSL opr } \\ \text { LSLA } \\ \text { LSLX } \\ \text { LSL opr,X } \\ \text { LSL ,X } \\ \hline \end{array}$ | Logical Shift Left (Same as ASL) | | - | - \downarrow | \downarrow | \downarrow | | $\begin{array}{r} \text { DIR } \\ \text { INH } \\ \uparrow \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{array}$ | $\begin{aligned} & 38 \\ & 48 \\ & 58 \\ & 68 \\ & 78 \\ & \hline \end{aligned}$ | dd
 ff | 5
 3
 3
 6
 5 |
| LSR opr LSRA LSRX LSR opr, X LSR, X | Logical Shift Right | $0 \rightarrow \square \underset{\mathrm{b7}}{\square}$ | - | - 0 | 0 | \downarrow | | $\begin{array}{\|cc\|} \hline \text { DIR } \\ \text { INH } \\ \uparrow & \text { INH } \\ & \text { IX1 } \\ & \text { IX } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 34 \\ 44 \\ 54 \\ 64 \\ 74 \\ \hline \end{array}$ | dd
 ff | 5
 3
 3
 6
 5 |
| MUL | Unsigned Multiply | $X: A \leftarrow(X) \times(A)$ | 0 | - | - - | | 0 | INH | 42 | | 11 |
| NEG opr
 NEGA
 NEGX
 NEG opr,X
 NEG , X | Negate Byte (Two's Complement) | $\begin{aligned} & \mathrm{M} \leftarrow-(\mathrm{M})=\$ 00-(\mathrm{M}) \\ & \mathrm{A} \leftarrow-(\mathrm{A})=\$ 00-(\mathrm{A}) \\ & \mathrm{X} \leftarrow-(\mathrm{X})=\$ 00-(\mathrm{X}) \\ & \mathrm{M} \leftarrow-(\mathrm{M})=\$ 00-(\mathrm{M}) \\ & \mathrm{M} \leftarrow-(\mathrm{M})=\$ 00-(\mathrm{M}) \end{aligned}$ | - | - \downarrow | \uparrow | \downarrow | | $\begin{array}{\|cc\|} \hline \text { DIR } \\ \text { INH } \\ \uparrow & \text { INH } \\ & \text { IX1 } \\ & \text { IX } \end{array}$ | $\begin{array}{\|l} 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ \hline \end{array}$ | dd
 ff | 1 5 3 3 6 5 |
| NOP | No Operation | | - | - | - | - | - | INH | 9D | | 2 |
| ORA \#opr ORA opr ORA opr ORA opr, X ORA opr,X ORA, X | Logical OR Accumulator with Memory | $A \leftarrow(A) \vee(M)$ | | - \downarrow | \downarrow | \downarrow | - | $\begin{gathered} \hline \text { IMM } \\ \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$ | AA
 BA
 CA
 DA
 EA
 FA | ii dd hh II ee ff ff | 2
 3
 4
 4
 4
 3 |
| ROL opr
 ROLA
 ROLX
 ROL opr, X
 ROL , X | Rotate Byte Left through Carry Bit | | - | - \downarrow | \downarrow | \downarrow | | $\begin{array}{\|c} \text { DIR } \\ \text { INH } \\ \text { I INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 39 \\ 49 \\ 59 \\ 69 \\ 79 \\ \hline \end{array}$ | dd ff | 5 3 3 6 5 |

Figure 25. Instruction Set Summary (Sheet 4 of 6)

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013

Source Form	Operation	Description	Effect on CCR						$\begin{aligned} & \text { O } \\ & \text { O} \\ & 0 \\ & 0 . \\ & 0 \end{aligned}$	은Nㅣㅇ응	0 0 0
			H	I	N	Z	C				
ROR opr RORA RORX ROR opr, X ROR , X	Rotate Byte Right through Carry Bit		-	-	\uparrow	\uparrow	\downarrow	$\begin{gathered} \hline \text { DIR } \\ \text { INH } \\ \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 36 \\ 46 \\ 56 \\ 66 \\ 76 \\ \hline \end{array}$	dd ff	5 3 3 6 5
RSP	Reset Stack Pointer	SP \leftarrow \$00FF	-	-	-	-	-	INH	9 C		2
RTI	Return from Interrupt	$\begin{gathered} \text { SP } \leftarrow(S P)+1 \text {; Pull }(C C R) \\ S P \leftarrow(S P)+1 ; \text { Pull }(A) \\ S P \leftarrow(S P)+1 ; \text { Pull }(X) \\ S P \leftarrow(S P)+1 \text {; Pull }(P C H) \\ S P \leftarrow(S P)+1 ; \text { Pull }(P C L) \end{gathered}$	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	INH	80		9
RTS	Return from Subroutine	$\begin{aligned} & S P \leftarrow(S P)+1 ; \text { Pull }(P C H) \\ & S P \leftarrow(S P)+1 ; \text { Pull }(P C L) \end{aligned}$	-	-	-	-	-	INH	81		6
SBC \#opr SBC opr SBC opr SBC opr,X SBC opr, X SBC, X	Subtract Memory Byte and Carry Bit from Accumulator	$A \leftarrow(A)-(M)-(C)$	-	-	\downarrow	\uparrow	\downarrow	IMM DIR EXT IX2 IX1 IX	$\begin{aligned} & \text { A2 } \\ & \text { B2 } \\ & \text { C2 } \\ & \text { D2 } \\ & \text { E2 } \\ & \text { F2 } \end{aligned}$	ii dd hh II ee ff ff	2 3 4 4 4 3
SEC	Set Carry Bit	$C \leftarrow 1$	-	-	-	-	1	INH	99		2
SEI	Set Interrupt Mask	$1 \leftarrow 1$	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA , X	Store Accumulator in Memory	$M \leftarrow(A)$	-	-	\uparrow	\downarrow	-	$\begin{gathered} \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \end{gathered}$	B7 C7 D7 E7 F7	$\begin{gathered} \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{gathered}$	4 5 5 5 4
STX opr STX opr STX opr,X STX opr,X STX,X	Store Index Register In Memory	$\mathrm{M} \leftarrow(\mathrm{X})$	-	-	\uparrow	\uparrow	-	$\begin{gathered} \text { DIR } \\ \text { EXT } \\ \text { IX2 } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	BF CF DF EF FF	$\begin{array}{\|c\|} \hline \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{array}$	3 4 4 4 3
SUB \#opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X	Subtract Memory Byte from Accumulator	$A \leftarrow(A)-(M)$	-	$-$	\downarrow		\downarrow	IMM DIR EXT IX2 IX1 IX	A0	$\begin{gathered} \hline \text { ii } \\ \text { dd } \\ \text { hh II } \\ \text { ee ff } \\ \text { ff } \end{gathered}$	2 3 4 4 4 3

Figure 26. Instruction Set Summary (Sheet 5 of 6)

POWER LIN2.X STEPPER WITH STALL DETECTION

Source Form	Operation	Description	Effect on CCR						$\begin{aligned} & \text { 이 } \\ & 0 \\ & 0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 낑 } \\ & \text { 응 } \end{aligned}$	$\xrightarrow{0}$
			H	1	N	Z	C				
SWI	Software Interrupt	$\begin{gathered} \hline P C \leftarrow(P C)+1 ; \text { Push }(P C L) \\ S P \leftarrow(S P)-1 ; \text { Push }(P C H) \\ S P \leftarrow(S P)-1 ; \text { Push }(X) \\ S P \leftarrow(S P)-1 ; \text { Push }(A) \\ S P \leftarrow(S P)-1 ; \text { Push }(C C R) \\ S P \leftarrow(S P)-1 ; I \leftarrow 1 \end{gathered}$ $\mathrm{PCH} \leftarrow$ Interrupt Vector High Byte PCL \leftarrow Interrupt Vector Low Byte	-	1	-	-	-	INH	83		10
TAX	Transfer Accumulator to Index Register	$\mathrm{X} \leftarrow(\mathrm{A})$			-	-	-	INH	97		2
TSTopr TSTA TSTX TSTopr, X TST ,X TXA	Test Memory Byte for Negative or Zero	(M) - \$00	-	-	\downarrow		\pm	$\begin{gathered} \hline \text { DIR } \\ \text { INH } \\ \text { INH } \\ \text { IX1 } \\ \text { IX } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 D \\ & 4 D \\ & 4 D \\ & 6 D \\ & 7 D \\ & \hline \end{aligned}$	dd ff	4 3 3 5 4
TXA	Transfer Index Register to Accumulator	$\mathrm{A} \leftarrow(\mathrm{X})$	-	-	-	-	-	INH	9 F		2

A	Accumulator	opr	Operand (one or two bytes)
C	Carry/borrow flag	PC	Program counter
CCR	Condition code register		Program counter high byte
dd	Direct address of operand	PCL	Program counter low byte
dd rr	Direct address of operand and relative offset of branch instruction	REL	Relative addressing mode
DIR	Direct addressing mode	rel	Relative program counter offset byte
eeff	High and low bytes of offset in indexed, 16-bit offset addressing	rr	Relative program counter offset byte
EXT	Extended addressing mode	SP	Stack pointer
ff	Offset byte in indexed, 8-bit offset addressing	X	Index register
H	Half-carry flag	Z	Zero flag
hh II	High and low bytes of operand address in extended addressing	\#	Immediate value
1	Interrupt mask	\wedge	Logical AND
ii	Immediate operand byte	\checkmark	Logical OR
IMM	Immediate addressing mode	\oplus	Logical EXCLUSIVE OR
INH	Inherent addressing mode	()	Contents of
IX	Indexed, no offset addressing mode	-()	Negation (two's complement)
IX1	Indexed, 8-bit offset addressing mode	\leftarrow	Loaded with
IX2	Indexed, 16-bit offset addressing mode	?	If
M	Memory location		Concatenated with
N	Negative flag	\downarrow	Set or cleared
n	Any bit	-	Not affected

Figure 27. Instruction Set Summary (Sheet 6 of 6)

$$
\begin{array}{ll}
\text { INH = Inherent } & \text { REL }=\text { Relative } \\
\text { IMM = Immediate } & \text { IX }=\text { Indexed, No Offset } \\
\text { DIR }=\text { Direct } & \text { IX1 }=\text { Indexed, 8-Bit Offset } \\
\text { EXT = Extended } & \text { IX2 }=\text { Indexed, 16-Bit Offset }
\end{array}
$$

Figure 28. Instruction Set Op-code Map

7.14 RAM

This Random Access Memory (RAM) module is a static volatile memory block. The module contains a 256 word by 8 bit RAM array. The RAM block has a synchronous read and write interface.

7.15 EEPROM

Characteristics of EEPROM:

- a nonvolatile reprogrammable memory,
- 64 word EEPROM with a word length of 12 bits (8 data bits + 4 ECC bits),
- erase/program access is limited to the upper 16 bytes in operational mode,
- single byte mode and all-in-one/two step mode for erase/programming,
- internal slew rate control of the programming pulses,
- internal voltage regulator for the programming/ erase voltage VPP.

The application has to guarantee safe operating conditions (e.g. temperature) for the duration of the erasing and programming.
For enhanced data integrity, the EEPROM is equipped with an error checking and correction hardware.
It is capable of correcting a single bit error and to detect a double bit error and can't be disabled. If the ECC code which is automatically calculated from the read data does not match the ECC code stored in the EEPROM cell, then the ECCERR bit in the EE64CSR register will be set and the interrupt EE_ECCERR_IRQ will be triggered (if not masked).

The access to the EEPROM adds 4 additional wait cycles for a read operation of the EL3.5.

For information regarding the number writing cycles, reliability and condition parameters please refer to the parameter table.

The EEPROM array is intended for customer configuration data, motor parameter and customer adjustment data. An additional array is available for chip adjustments. This array is protected in the normal operational mode.
There are two ways for programming of EEPROM, a single byte or all-in-one programming mode. There are auxiliary routines in SysROM space that provide both procedures. The writing of data can only be achieved to empty cells. So it is indispensable to erase the EEPROM space before writing to it.
The EEPROM erasing/programming voltage is generated internally. The EEPROM is secured from unintentional erasing/programming by a predetermined sequence of conditions.
Analog to its programming, the EEPROM may be erased in two ways, byte-wise or all at once. The erasing operations are available as SysROM routines.

Table 73. EEPROM Control and Status Register Table

Register Name	Address	Description
EE64CSR	0×0005	EEPROM Control and Status Register
EE64LKR	0×0006	EEPROM Lock Register
EE64ECC	0×0007	EEPROM Error Correction Code Register
EE64IRQ	0×0404	EEPROM Interrupt Configuration Register

POWER LIN2.X STEPPER WITH STALL DETECTION
PRODUCTION DATA - DEC 18, 2013
Table 74. EEPROM Control and Status Register

EE64CSR (0x0005)	MSB							LSB
Content	AL	PGM	ER	VHI	VLO	INFO	LOCK	ECCERR
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W	R/W	R/W	R/W	R/W	R/W	R	R
External access	-	-	-	-	-	-	-	-
	AL: enables block write/erase PGM : selects writing of memory during programming ER : selects erasing of memory during programming							
VHI : enables verify mode with high read voltage reference VLO : enables verify mode with low read voltage reference INFO : always write Ob LOCK : status bit indicating, that erase/programming is in progress, bit is set/reset by hardware, EE READY IRO is cleared by writing 1b. ECCERR : indicates, that the last EEPROM read-access contains an ECC error, bit and EE_ECCERR_IRQ are cleared by writing 1b.								

Table 75. EEPROM Lock Register

EE64LKR (0x0006)	MSB							LSB
Content	S[3]	S[2]	S[1]	S[0]	CNT[3:0]	CNT[3:0]	CNT[3:0]	CNT[3:0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R/W	R/W	R/W	R/W
External access	-	-	-	-	-	-		-
Bit Description	S[3] : counter parity S3 = CNT1 xor CNT3 $\mathrm{S}[2]: \mathrm{S} 2=\mathrm{CNTO}$ xor CNT2 S[1]: S1 = CNT2 xor CNT3 S[0]: S0 = CNTO xor CNT1 CNT[3:0] : CNT[3:0] : lock counter The EE64LKR register cannot be accessed via the JTAG interface.							

Table 76. EEPROM Error Correction Code Register

EE64ECC (0x0007)	MSB							LSB
Content	-	-	-	-	ECC[3]	ECC[2]	ECC[1]	ECC[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R						
External access	-	-	-	-	-	-	-	-
Bit Description	ECC[3:0] : ECC[3:0] : single bit failure correction ECC The ECC bits can be written by setting the bit ECC_OFF=1. Read access is available at any time. The EE64ECC register cannot be accessed in the JTAG mode.							

Table 77. EEPROM Interrupt Configuration Register

EE64IRO (0x0404)	MSB							LSB
Content	-						-	$\begin{aligned} & \text { EEIRO_ } \\ & \text { EN } \end{aligned}$
Reset value	0	0	0	0	0	0	0	0
Internal access	R	R	R	R	R	R	R	R/W
External access	-	-	-	-	-		-	-
Bit Description	EEIRQ_EN : enable bit for EEPROM interrupts EE_ERR_IRO, EE_READY_IRO and EE_ECCERR_ IRO 1 : interrupts enabled 0 : interrupts disabled							

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Figure 29. Flow of EEPROM Erasing/Programming

7.16 FLASH (only available in IC types with included FLASH memory)

The device contains customer programmable FLASH firmware memory. For information regarding the number writing cycles, reliability and condition parameters please refer to the memory parameter table.
Characteristics of customer programmable FLASH firmware memory:

- nonvolatile memory,
- customer programmable FLASH firmware memory, in configuration mode or via JTAG interface
- read-only access in operational mode,
- programming up to 64 Bytes at once,
- mass erase mode,
- data verification for erased and programmed states.

Safe environment conditions must be guaranteed (especially supply voltage, programming time and temperature). Re-flashing is not allowed under automotive ambient conditions variations. Supply voltage and temperature should be in very controlled production limits. Re-flashing under (even temporarily) uncontrolled conditions can affect the data retention of the FLASH information and may lead to errors during re-flashing.

The supply voltage at the IC pin has to be in the range of $11 . .15 \mathrm{~V}$ and must be free of noise and ripple and must never be interrupted during re-flash procedure. For reflashing the IC temperature has to be between $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. It's recommended to protocol the values for the ambient conditions during re-flashing.
The FLASH memory is programmable at end-of-line via JTAG interface or via LIN interface in configuration mode. The LIN re-flashing procedure is part of the boot manager module, located in the SysROM. Details of the re-flashing procedure can be found in the boot manager description. The re-flashing capability via LIN can be disabled via setting the configuration time to zero. It is strongly recommended to disable the re-flashing capability via LIN if not needed
For enhanced data integrity, the FLASH is equipped with an error checking and correction hardware. It is capable of correcting a single bit error and to detect a double bit error and can't be disabled. If the ECC code which is automatically calculated from the read data does not match the ECC code stored in the FLASH cell, then the ECCERR bit in the FLECR register will be set.

32 bit security key for avoiding unwanted programming/ erasing:

The FLASH memory may be programmed in two ways, via JTAG or via the CPU. A programming via JTAG can only be performed in JTAG flash mode.
The second way of programming via CPU is supported by software routines located in the SysROM area. The FLASH key and the data to be programmed are transmitted over LIN in this case. FLASH cells shall be erased before programming. The FLASH programming/erasing voltage is generated internally. This FLASH programming can be performed in configuration mode only. The flash is secured from unwanted programming/ erasing via CPU by an additional condition. A program-
ming/erasing process is only enabled if a 32 bit key was written and the FLASH_KEY_OK register was read. The key of 0x84913BAC must be written byte-wise in the correct order: FLASH_KEY3=0x91, FLASH_KEY2=0x3B, FLASH_KEY4 $=0 \times 84$ and at last FLASH_KEY1=0xAC (see below). Programming/erasing is then enabled until any byte of the key register is written again. After that the complete process must be done again. Otherwise an internal circuit provides erasing/programming of Flash is locked. It is strongly recommended not to store the key in the FLASH memory itself, it should be transmitted over LIN.

Table 78. Flash programming/ erasing enable register

Register Name	Address	Description
FLASH_KEY_OK	0×040 C	Flash key status
FLASH_KEY1	$0 \times 040 \mathrm{D}$	Flash key register 1
FLASH_KEY2	$0 \times 040 \mathrm{E}$	Flash key register 2
FLASH_KEY3	$0 \times 040 \mathrm{~F}$	Flash key register 3
FLASH_KEY4	0×0410	Flash key register 4

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013
Table 79. Flash key status

FLASH_KEY_OK (0x040C)	MSB							LSB
Content	-	-	-	-	-	-	-	FLASH KEY_OK
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	R	R	R	R	R	R	R	R
Bit Description	FLASH_KEY_OK : 1:The correct key was written in the correct order. Flash programming/erasing is now enabled. $0:$ The key or the sequence of writing was not correct							

Table 80. Flash key register 1

FLASH_KEY1 (0x040D)	MSB							LSB
Content	FLASH_ KEY1	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	W	W	W	W	W	W	W	W
Bit Description	FLASH_KEY1 : bit [7:0] of the 32 bit key -0xAC							

Table 81. Flash key register 2

FLASH_KEY2 $(0 \times 040 \mathrm{E})$	MSB							LSB
Content	FLASH_ KEY2	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	W	W	W	W	W	W	W	W
Bit Description	FLASH_KEY2 $:$ bit [15:8] of the 32 bit key -0x3B							

Table 82. Flash key register 3

FLASH_KEY3 (0x040F)	MSB							LSB
Content	FLASH_ KEY3	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	W	W	W	W	W	W	W	W
Bit Description	FLASH_KEY3 : bit [23:16] of the 32 bit key -0x91							

Table 83. Flash key register 4

FLASH_KEY4 (0x04미)	MSB							LSB
Content	FLASH_ KEY4	-	-	-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	W	W	W	W	W	W	W	W
Bit Description	FLASH_KEY4 : bit [31:24] oft the 32 bit key -0x84							

[^13]Table 84. FLASH Control Register Table

Register Name	Address	Description
FLCR	0×0008	FLASH Control Register
FLECR	0×0009	FLASH ECC Control Register

Table 85. FLASH Control Register

FLCR (0x0008)	MSB							LSB
Content	PGM	MER2	VERIFY	VERIFY1	HVEN	BPGM	MER6	Reserved
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-

Bit Description	PGM : Program control bit configures the memory for program operation. MER2 : Enables mass erase mode for customer 2k-FLASH. Data of the whole array will be cleared with next step. VERIFY : Enables verify read mode for programmed cell state (logical '1'). VERIFY1 : Enables verify read mode for erased cell state (logical '0'). HVEN : Enables high voltages for program/erase operation. HVEN can only be set if either PGM = '1' or MER2 = '1' or MER6 = ' 1 '. BPGM : Enables bulk programming mode MER6 : Enables mass erase mode for customer 6k-FLASH. Data of the whole array will be cleared with next Reserved : Always write logical '0'

Table 86. FLASH ECC Control Register

FLECR (0x0009)	MSB							LSB
Content	ECCERR	BIT[6]	BIT[5]	BIT[4]	BIT[3]	BIT[2]	BIT[1]	BIT[0]
Reset value	0	0	0	0	0	0	0	0
Internal access	R/W							
External access	-	-	-	-	-	-	-	-
	ECCERR : Indicates that a previous FLASH read-access contains an ECC error. Clear this bit Bit Description by writing '1' into it. BIT[6] : MSB of reserved bits. BIT[0] : LSB of reserved bits. Always write BIT[6:0]=000000..							

7.17 Test Controller

The IC can be set in test-mode with TESTEN at high. The tests are for production test purposes. They are not intended for customer usage, that means the test mode must be inactive in the application mode. To ensure proper operation of the IC, always connect the pin TESTEN to GND. When the test mode is active, the chip is controlled by the JTAG test pins. The different test modes are set up via the Instruction Register (IR) of the test controller. In test mode the clock can be controlled external by a special JTAG instruction, too. Two pulses
on TCK are needed for switching internal clock net to the external clock on TCK. While the test mode is active, the chip can be reset with TSTRST at high. There are four additional JTAG pins in use, TCK (clock), TMS (select), TDI (data in) and TDO (data out). Figure below shows the state diagram of the JTAG TAP controller. By setting TMS and clocking TCK different states can be reached. For details on the JTAG test procedure, see IEEE-standard 1149.1.

Figure 31. JTAG Instruction Register Access (8 bit)
JTAG instructions must be sent LSB first. Be aware, that while sending the last instruction bit TCK is active and TMS is already inactive (high).

7.18 Electromagnetic Compatibility

For Electromagnetic Compatibility (EMC) tests the pins GNDA, GNDPA and GNDPB are shorted together. Furthermore, the device pins are classified into global and local pins.

Global pins are:

- VS,
- VSPA, VSPB shorted together,
- depending whether LIN auto-addressing. is included or not: either BUS_M and BUS_S or BUS, respectively.

Local pins are:

- VDDA,
- V5V,
- D1, D2, D3.

Special local pins are the motor driver pins $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~B} 0$, B1. These are not tested for emission, as the external circuitry (i.e. the motor) and the selected slew-rate largely influence the emissions.
In accordance with section 5.3 of Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.2 of 2011-03-25., the pins BUS_S, $D 2, D 3, A 1, B 0$ and $B 1$ are not tested, as their functionality is represented by BUS_M, D1 and A0, respectively.
150 Ω-Method Emission Limits
Emissions are measured according to the 150 2 -method of the IEC 61967-4 standard in the frequency range from 150 kHz to 1 GHz .
The limit lines are defined in Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.3 of 2012.

Figure 32. 150 -Method Limit Lines

DPI Immunity Limits

The Direct Power Injection (DPI) immunity tests are conducted according to IEC 62132-4.

Measurement parameters:

- frequency range: 1 MHz to 1 GHz ,
- modulation: CW and AM 80\% 1kHz (same peak),
- the stepper motor is replaced by an RL-circuit and operated in continuous stepping mode tbd. in detail.

Detailed measurement setup description:

- Global pin BUS/BUS_M without bus capacitor: CW and $A M$,
- Global pins VS, BUS/BUS_M with 3*68pF bus capacitor: only CW,
- Global pins VSPA, VSPB shorted together: only CW. Failure criterion is an increased jitter and/or reduced voltage swing (pass/fail mask) tbd. at the pin AO.

The limit lines are defined in Hardware Requirements for LIN, CAN and Flex-Ray Interfaces in Automotive Applications, v1.3 of 2011-03-25.

8 Application Information

Figure 34. Application circuits

Description	Condition	Symbol	Min	Typ	Max	Unit
Ferrite RF attenuator (optional for EMC optimization)	High attenuation of RF Disturbances	$\mathrm{L}_{\mathrm{M}}, \mathrm{L}_{S}$		TDK MMZ2-012Y202B or equivalent		
Blocking capacitor for supply voltage		$\mathrm{C}_{\text {vs }}$		100		$\mu \mathrm{F}$
Blocking capacitor for Hall supply voltage		$\mathrm{C}_{\mathrm{v} 5 \mathrm{~V}}$		1		$\mu \mathrm{F}$
Blocking capacitor for analog supply voltage		$\mathrm{C}_{\text {vDDA }}$		1		$\mu \mathrm{F}$
Blocking capacitor for digital supply voltage		$\mathrm{C}_{\text {vDDD }}$		1		$\mu \mathrm{F}$

9 Package Information

All devices are available in a Pb free, RoHs compliant OFN32L6 plastic package according to JEDEC MO-220 K, variant VJJC-2. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020 with a soldering peak temperature of $(260+5)^{\circ} \mathrm{C}$.

Description	Symbol	$\mathbf{m m}$			inch		
		$\mathbf{m i n}$	typ	max	min	typ	max
Package height	A	0.80	0.90	1.00	0.031	0.035	0.039
Stand off	A 1	0.00	0.02	0.05	0.000	0.00079	0.002
Thickness of terminal leads, including lead finish	A 3	--	0.20 REF	--	--	0.0079 REF	--
Width of terminal leads	D	0.25	0.30	0.35	0.010	0.012	0.014
Package length / width	$\mathrm{D} \mathrm{/} \mathrm{E}$	--	6.00 BSC	--	--	0.237 BSC	--
Length / width of exposed pad	$\mathrm{D} 2 / \mathrm{E} 2$	4.50	4.65	4.80	0.177	0.183	0.189
Lead pitch	e	--	0.65 BSC	--	--	0.026 BSC	--
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018
Number of terminal positions	N		32			32	

Note: the mm values are valid, the inch values contains rounding errors

10 Marking

10.1 Top Side

- Elmos (Logo)
- 52330B
- $\mathrm{YWW}{ }^{*} \#$
- XXXXU

Signature	Explanation
52330	Elmos project number
B	Elmos project revision code
Y	Year of assembly (e.g. 2013)
WW	Week of assembly
$*$	Mask revision code
$\#$	Elmos internal code
XXXX	Production lot number (1 to 4 digits)
U	Assembler Code

POWER LIN2.X STEPPER WITH STALL DETECTION

PRODUCTION DATA - DEC 18, 2013

11 Record of Revision

Chapter	Revision	Change and Reason for Change	Date	Released Elmos
10.1	.01	Marking, signature and explanation updated	Dec 18, 2013	ROWE/ZOE
11	.01	New chapter	Dec 18, 2013	ROWE/ZOE

WARNING－Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products．Neverthe－ less，semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vul－ nerability to physical stress．It is the responsibility of the buyer，when utilizing Elmos Semiconductor AG products， to observe standards of safety，and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life，body injury or damage to property．In the development of your design， please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications．

General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable．However，no responsibil－ ity is assumed by Elmos Semiconductor AG for its use，nor for any infringements of patents or other rights of third parties，which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG．Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice，to improve performance，reliability，or manufacturability．

Application Disclaimer

Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG，which are included as means of illustrating typical applications．Consequently，complete information sufficient for construction purpos－ es is not necessarily given．The information in the application examples has been carefully checked and is believed to be entirely reliable．However，no responsibility is assumed for inaccuracies．Furthermore，such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos Semiconductor AG or others．

Contact Information

Headquarters

Elmos Semiconductor AG
Heinrich－Hertz－Str．1•D－44227 Dortmund（Germany）
氙：＋492317549100 \boxtimes ：sales－germany＠elmos．com ：www．elmos．com

Sales and Application Support Office North America
Elmos NA．Inc．
32255 Northwestern Highway • Suite 220 Farmington Hills
MI 48334 （USA）
雨：＋12488653200 sales－usa＠elmos．com
Sales and Application Support Office Korea and Japan
B－1007，U－Space 2，\＃670 Daewangpangyo－ro，
Sampyoung－dong，Bunddang－gu，Sungnam－si
Kyounggi－do 463－400 Korea
閌：＋82317141131 \boxtimes ：sales－korea＠elmos．com
Sales and Application Support Office China
Elmos Semiconductor Technology（Shanghai）Co．，Ltd．
Unit London，1BF GC Tower • No． 1088 Yuan Shen Road，
Pudong New District • Shanghai，PR China， 200122
包：＋862151785178 \boxtimes ：sales－china＠elmos．com
Sales and Application Support Office Singapore
Elmos Semiconductor Singapore Pte Ltd．
3A International Business Park
\＃09－13 ICON＠IBP•609935 Singapore 電：＋656908 1261 sales－singapore＠elmos．com
© Elmos Semiconductor AG，2013．Reproduction，in part or whole，without the prior written consent of Elmos Semiconductor AG，is prohibited．

[^0]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^1]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^2]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^3]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^4]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^5]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^6]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^7]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^8]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^9]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^10]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^11]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^12]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

[^13]: Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

