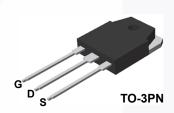


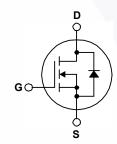
August 2014

FCA20N60 N-Channel SuperFET® MOSFET

600 V, 20 A, 190 mΩ

Features


- 650V @ T_J = 150°C
- Typ. $R_{DS(on)}$ = 150 m Ω
- Ultra Low Gate Charge (Typ. $Q_g = 75 \text{ nC}$)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 165 pF)
- · 100% Avalanche Tested


Applications

- · Solar Inverter
- AC-DC Power Supply

Description

SuperFET® MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCA20N60 / FCA20N60_F109	Unit	
V_{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Gate-Soure voltage			±30	V	
. \	Drain Current	- Continuous (T _C = 25°C)		20		
ID	Drain Current	- Continuous (T _C = 100°C)	- Continuous (T _C = 100°C)		A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	60	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			690	mJ	
I _{AR}	Avalanche Current (Note 1)		20	Α		
E _{AR}	Repetitive Avalanche Ene	rgy	(Note 1)	20.8	mJ	
dv/dt	Peak Diode Recovery dv/d	dt	(Note 3)	4.5	V/ns	
P_{D}	Danier Diagination	$(T_C = 25^{\circ}C)$		208	W	
	Power Dissipation	- Derate Above 25°C		1.67	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperati	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			°C	

Thermal Characteristics

Symbol	Parameter	FCA20N60 / FCA20N60_F109	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	41.7	*C/VV

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCA20N60	FCA20N60	TO-3PN	Tube	N/A	N/A	30 units
FCA20N60_F109	FCA20N60	TO-3PN	Tube	N/A	N/A	30 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
D\/	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ} C$	600	-	-	V
BV _{DSS}	Dialii to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 150^{\circ} C$	-	650	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.6	-	V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 20 A	_	700	-	V
	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	-	1	
IDSS	Zero Gale Vollage Didili Cultelii	$V_{DS} = 480 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	10	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA

On Characteristics

$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu\text{A}$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	-	0.15	0.19	Ω
g _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 10 A	-	17	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	05.777	- \	2370	3080	pF
C _{oss}		V _{DS} = 25 V, V _{GS} = 0 V, = 1 MHz		1280	1665	pF
C _{rss}	Reverse Transfer Capacitance	1 1 WII 12	-	95	-	pF
C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz	-	65	85	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	165	-	pF
Q_g	Total Gate Charge at 10V	V _{DS} = 480 V, I _D = 20 A,	-	75	98	nC
Q_{gs}		V _{GS} = 10 V	- /	13.5	18	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4)	- /	36	ı	nC

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	62	135	ns
t _r	Turn-On Rise Time	V _{DD} = 300 V, I _D = 20 A,	-	140	290	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_G = 25 Ω	-	230	470	ns
t _f	Turn-Off Fall Time	(Note 4)	-	65	140	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Dioc	Maximum Continuous Drain to Source Diode Forward Current			20	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	60	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 20 A		-	-	1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 20 A,	-	530	-	ns
Q _{rr}	Reverse Recovery Charge $dI_F/dt = 100 \text{ A/}\mu\text{s}$		-	10.5	_	μC

Notes:

- 1: Repetitive rating: pulse-width limited by maximum junction temperature.
- 2: I_{AS} = 10 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C.
- 3: I $_{SD}~\leq 20$ A, di/dt ≤ 200 A/µs, V $_{DD} \leq BV _{DSS},$ starting T $_{J}$ = 25°C.
- 4: Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

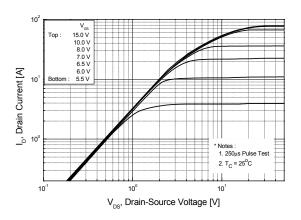


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

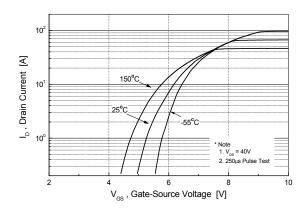
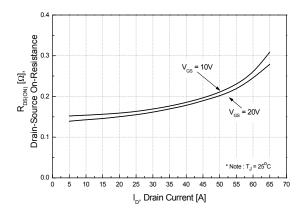



Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

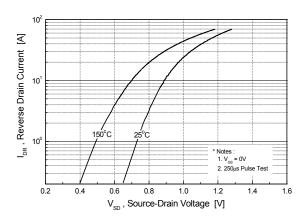
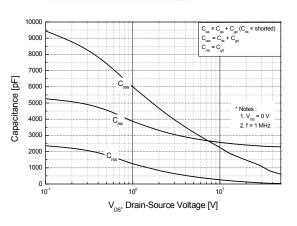
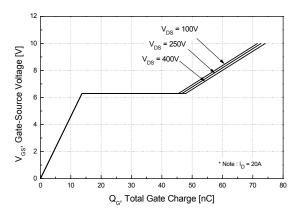




Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

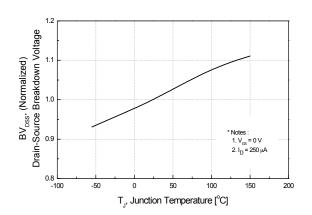


Figure 8. On-Resistance Variation vs. Temperature

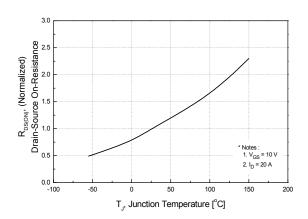


Figure 9. Maximum Safe Operating Area

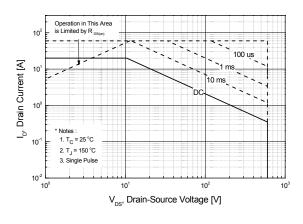


Figure 10. Maximum Drain Current vs. Case Temperature

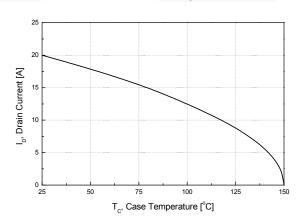
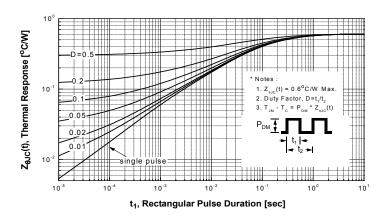



Figure 11. Transient Thermal Response Curve

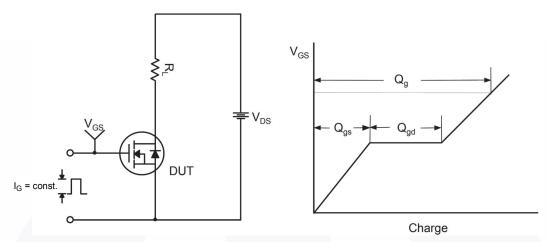


Figure 12. Gate Charge Test Circuit & Waveform

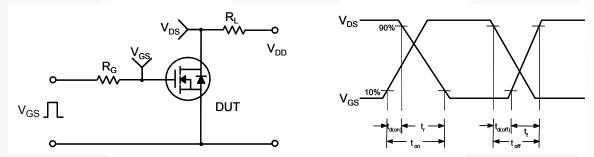


Figure 13. Resistive Switching Test Circuit & Waveforms

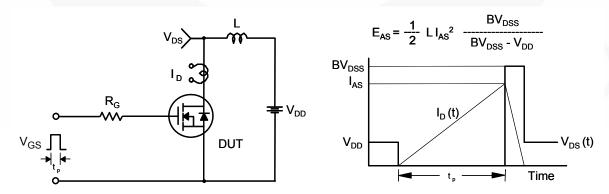


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

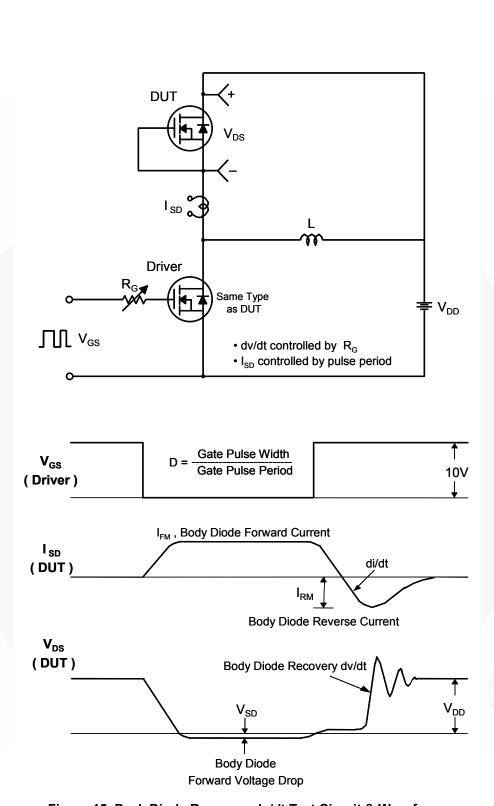
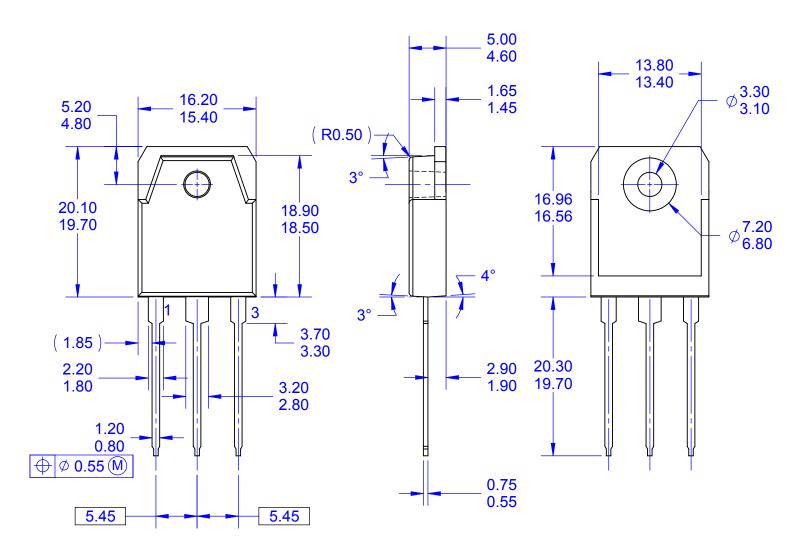
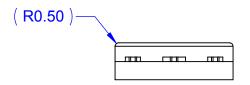




Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO EIAJ SC-65 PACKAGING STANDARD.

 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSION AND TOLERANCING PER
- ASME14.5-2009.
- D) DIMENSIONS ARE EXCLUSSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSSIONS.
 E) DRAWING FILE NAME: TO3PN03AREV1.
 F) FAIRCHILD SEMICONDUCTOR.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ FRFET® Awinda[®]

AX-CAP®* Global Power ResourceSM

BitSiC™ GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ CROSSVOLT™ GTO™ CTL^{TM} IntelliMAX™

Current Transfer Logic™ ISOPLANAR™ **DEUXPEED®** Making Small Speakers Sound Louder

Dual Cool™ and Better™ EcoSPARK® MegaBuck™

EfficientMax™ MIČROCOUPLER™ ESBC™ MicroFET™ MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ MotionGrid® FACT® MTi[®] MTx®

MVN® mWSaver® FPS™ OptoHiT™ OPTOLOGIC®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

QFET OS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* uSerDes™

UHC'

Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童™

DISCLAIMER

FastvCore™

FFTBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms	Definition of Terms					
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 172