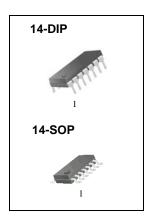


Is Now Part of

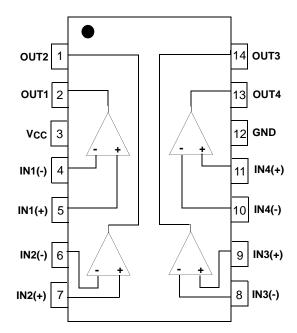
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

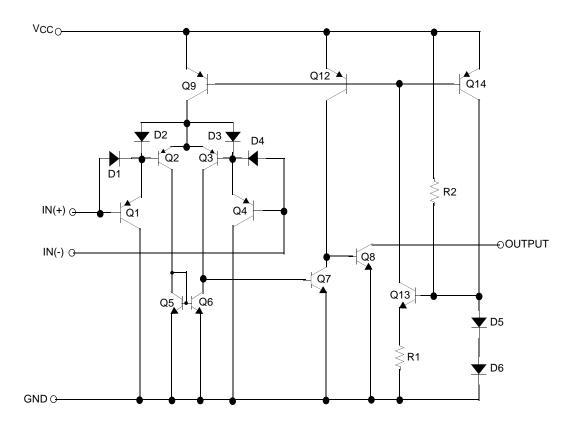
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo


LM339/LM339A, LM239A, LM2901 Quad Comparator

Features


- Single or Dual Supply Operation
- Wide Range of Supply Voltage LM2901, LM339/LM339A, LM239A: 2 ~ 36V (or ±1 ~ ±18V)
- Low Supply Current Drain 800µA Typ.
- Open Collector Outputs for Wired and Connectors
- Low Input Bias Current 25nA Typ.
- Low Input Offset Current ±2.3nA Typ.
- Low Input Offset Voltage ±1.4mV Typ.
- Input Common Mode Voltage Range Includes Ground.
- Low Output Saturation Voltage
- Output Compatible With TTL, DTL and MOS Logic System

Description


The LM339/LM339A ,LM239A, LM2901 consist of four independent voltage comparators designed to operate from single power supply over a wide voltage range.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Supply Voltage	Vcc	±18 or 36	V	
Differential Input Voltage	VI(DIFF)	36	V	
Input Voltage	VI	-0.3 to +36	V	
Output Short Circuit to GND	-	Continuous	-	
Power Dissipation	PD	570	mW	
Operating Temperature LM339/LM339A LM2901 LM239A	TOPR	0 ~ +70 -40 ~ +85 -25 ~ +85	°C	
Storage Temperature	TSTG	-65 ~ +150	°C	

Electrical Characteristics

(VCC = 5V, $T_A = 25$ °C, unless otherwise specified)

Doromotor	Cumab al	l Conditions		LM239A/LM339A			LM339			11:4:4
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset	Vio	$VO(P) = 1.4V$, $RS = 0\Omega$		-	1	2	-	1.4	5	mV
Voltage	VIO		Note1	-	-	4.0	-	-	9.0	
Input Offset IIO		IIN(+) - IIN(-), \	/CM = 0V	ı	2.3	50	-	2.3	50	nA
Current	110		Note1	-	-	150	-	-	150	
Input Bias Current	IDIAO	VCM = 0V		-	57	250	-	57	250	n 1
	IBIAS		Note1	-	-	400	-	-	400	nA
Input Common		Vcc = 30V		0	-	Vcc-1.5	0	-	VCC-1.5	
Mode Voltage Range	VI(R)		Note1	0	-	Vcc-2	0	-	Vcc-2	V
Supply Current	Icc	VCC = 5V, RL = ∞		-	1.1	2.0	-	1.1	2.0	mA
Voltage Gain	Gv	V _{CC} =15V, R _L \ge 15kΩ (for large swing)		50	200	-	50	200	-	V/mV
Large Signal Response Time	T _{LRES}	$V_I = TTL Logic Swing$ $V_REF = 1.4V, V_RL = 5V,$ $R_L = 5.1k\Omega (Note2)$		-	300	-	-	300	-	ns
Response Time	TRES	VRL = 5V, $RL = 5.1kΩ$ (Note2)		-	1.3	-	-	1.3	-	μS
Output Sink Current	ISINK	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V, \ V_{O(P)} \le 1.5V$		6	18	-	6	18	-	mA
Output Saturation Voltage	VSAT	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V$			140	400	-	140	400	mV
		ISINK = 4mA	Note1	-	-	700	-	-	700	IIIV
Output Leakage Current	l _{o(LKG)}	VI(-) = 0V	V _O (P) = 5V	-	0.1	-	-	0.1	-	nA
		$V_{I(+)} = 1V$	V _O (P) = 30V	ı	-	1.0	-	-	1.0	μΑ
Differential Voltage	VI(DIFF)	Note1		ı	-	36	-	-	36	V

Note:

1. LM339/LM339A : $0 \le T_A \le +70^{\circ}C$ LM2901 : $-40 \le T_A \le +85^{\circ}C$ LM239A : $-25 \le T_A \le +85^{\circ}C$

2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5V, $T_A = 25$ °C, unless otherwise specified)

Doromotor	Cumb al	Conditions			11:4			
Parameter	Symbol			Min.	Тур.	Max.	Unit	
Input Offeet Voltage	\/\c	$VO(P) = 1.4V, RS = 0\Omega$		-	2	7	m\/	
Input Offset Voltage	VIO		Note1	-	9	15	mV	
Input Offset Current	lio			-	2.3	50	nA	
			Note1	-	50	200	IIA	
Input Bias Current	Inua			-	57	250	nA	
Input bias Current	IBIAS		Note1	-	200	500		
Input Common		LM2901, V _{CC} =30V		0	-	Vcc-1.5		
Mode Voltage Range	VI(R)		Note1	0	-	Vcc-2	V	
Complex Courses	Icc	RL =∞, VCC=5V		-	1.1	2.0	mA	
Supply Current ICC		R _L =∞,V _{CC} =30V		-	1.6	2.5	IIIA	
Voltage Gain	GV	V_{CC} =15V, R _L ≥ 15kΩ (for large swing)		25	100	-	V/mV	
Large Signal Response Time	TLRES	VI =TTL Logic Swing VREF =1.4V, VRL =5V, RL =5.1kΩ (Note2)		-	300	-	ns	
Response Time	TRES	$V_{RL} = 5V$, $R_{L} = 5.1k\Omega$ (Note2)		-	1.3	-	μS	
Output Sink Current	ISINK	$V_{I(-)} \ge 1V$, $V_{I(+)} = 0V$, $V_{O(P)} \le 1.5V$		6	18	-	mA	
Output Saturation Voltage	VSAT	VI(-) ≥ 1V, VI(+)	$VI(-) \ge 1V, \ VI(+) = 0V$		140	400	mV	
	VSAI	ISINK =4mA	Note1	-	-	700	1117	
Output Leakage	lou ko	\/ ₁ () = 0\/	V _O (P) = 5V	-	0.1	-	nA	
Current	IO(LKG)	$V_{I(+)} = 1V$	VO(P) = 30V	-	-	1.0	μΑ	
Differential Voltage	VI(DIFF)	Note1		-	-	36	V	

Note:

1. LM339/LM339A : $0 \le T_A \le +70^{\circ}C$

$$\begin{split} LM2901 : -40 &\leq T_A \leq +85^{\circ}C \\ LM239A : -25 &\leq T_A \leq +85^{\circ}C \end{split}$$

2. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

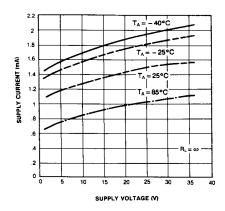


Figure 1. Supply Current vs Supply Voltage

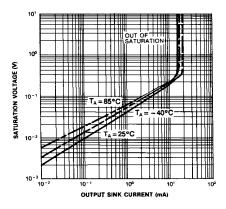


Figure 3. Output Saturation Voltage vs Sink Current

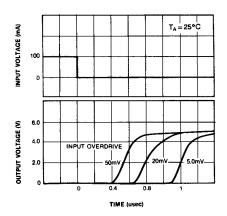


Figure 5. Response Time for Various Input Overdrive-Positive Transition

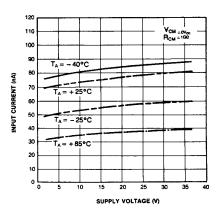


Figure 2. Input Current vs Supply Voltage

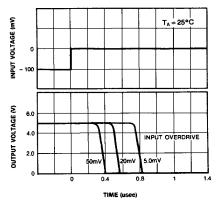


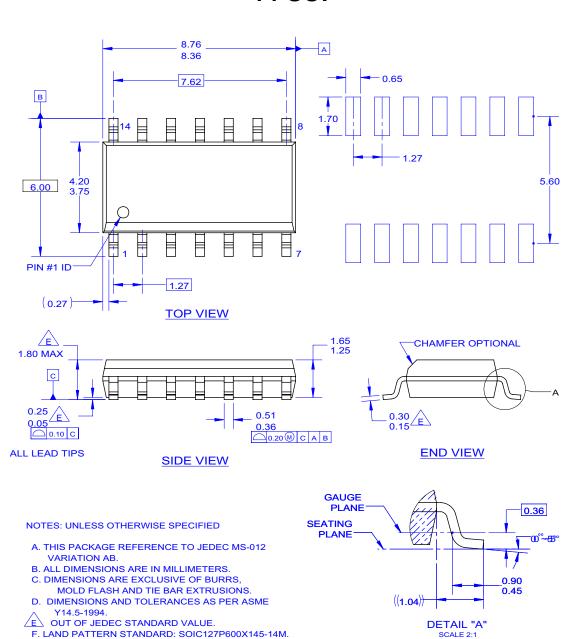
Figure 4. Response Time for Various Input Overdrive-Negative Transition

Mechanical Dimensions

Package

Dimensions in millimeters

14-DIP 6.40 ±0.20 0.252 ±0.008 #14 0.059 ±0.004 0.46 ±0.10 0.018 ±0.004 1.50 ± 0.10 19.80 0.780 MAX 19.40 ±0.20 0.764 ±0.008 $\frac{2.54}{0.100}$ #7 #8 $\frac{7.62}{0.300}$ 3.25 ± 0.20 $\frac{0.20}{0.008}\,\text{MIN}$ 0.128 ±0.008 3.30 ±0.30 $\frac{5.08}{0.200}$ MAX 0.130 ±0.012 $\frac{0.25^{\,+0.10}_{\,-0.05}}{0.010^{\,+0.004}_{\,-0.002}}$ 0~15°


Mechanical Dimensions (Continued)

G. FILE NAME: MKT-M14C REV2

Package

Dimensions in millimeters

14-SOP

Ordering Information

Product Number	Package	Operating Temperature			
LM339N	14-DIP				
LM339AN	14-015	0 ~ +70°C			
LM339M	14-SOP	0~+700			
LM339AM	- 14-30F				
LM2901N	14-DIP	-40 ~ +85°C			
LM2901M	14-SOP	-40 ~ +65 C			
LM239AN	14-DIP	-25 ~ +85°C			
LM239AM	14-SOP	-23 ~ 1 65 C			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com