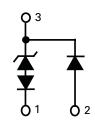

TVS Diode Arrays (SPA[™] Family of Products) Lightning Surge Protection - SPLV2.8 Series


SPLV2.8 Series 2.8V 40A TVS Array

Pinout

Functional Block Diagram

NOT RECOMMENDED FOR NEW DESIGNS

SPLV2.8HTG is eventually going to be replaced by the SLVU2.8HTG TVS Diode Array with identical form, fit, and function. Please use this device for new or future designs and more detail can be found on Littlefuse.com

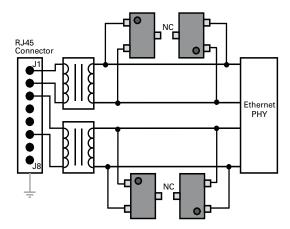
Description

The SPLV2.8 was designed to protect low voltage, CMOS devices from ESD and lightning induced transients. There is a compensating diode in parallel with the low voltage TVS to protect one unidirectional line or a high speed data pair when two devices are paired together. These robust structures can safely absorb repetitive ESD strikes at \pm 30kV (contact discharge) per the IEC61000-4-2 standard and each structure can safely dissipate up to 40A (IEC61000-4-5, t_p=8/20µs) with very low clamping voltages.

SPLV2.8

livered

REEN


Features

- ESD, IEC61000-4-2, ±30kV contact, ±30kV air
- EFT, IEC61000-4-4, 40A (5/50ns)
- Lightning, IEC61000-4-5, 40A (8/20µs)
- Low capacitance of 2pF per line (Pin 2 to 1)
- Low leakage current of 1µA (MAX) at 2.8V
- Small SOT23-3 (JEDEC TO-236) package saves board space

Applications

- 10/100/1000 Ethernet
- WAN/LAN Equipment
- Switching Systems
- Desktops, Servers, and Notebooks

Application Example

See Application Example Detail section on page 135 for more information

- Analog Inputs
- Base Stations

©2012 Littelfuse, Inc. Specifications are subject to change without notice. Please refer to www.littelfuse.com/SPA for current information.

araptoristics /T

2500

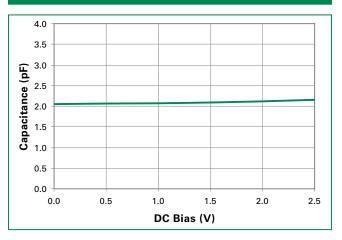
TVS Diode Arrays (SPA^M Fam y of Produ

Lightning Surge Protection - SPLV2.8 Se

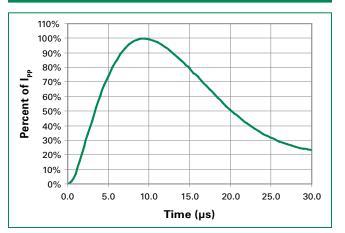
NOT RECOMMENDED FOR NEW DESIGNS

SPLV2.8HTG is eventually going to be replaced by the SLVU2.8HTG TVS Diode Array with identical form, fit, and function. Please use this device for new or future designs and more detail can be found on Littelfuse.com

Electrical Characteristics (1 _{0P} = 25°C)						
Parameter	Symbol Test Conditions		Min	Тур	Max	Units
Reverse Standoff Voltage	V _{RWM}	I _R ≤1μA			2.8	V
Reverse Breakdown Voltage	V _{BR}	Ι _τ =2μΑ	3.0			V
Snap Back Voltage	V _{SB}	I _T =50mA	2.8			V
Reverse Leakage Current	I	V _R =2.8V (Pin 2 or 3 to 1)			1	μA
Clamping Voltage ¹		I_{pp} =5A, t_p =8/20µs (Pin 3 to 1)		5.7	7.0	V
Clamping Voltage ¹		I_{PP} =24A, t _P =8/20µs (Pin 3 to 1)		8.3	12.5	V
Clamping Voltage ¹	V _c	I_{pp} =5A, t _p =8/20µs (Pin 2 to 1)		7.0	8.5	V
Clamping Voltage ¹		I_{PP} =24A, t _P =8/20µs (Pin 2 to 1)		13.9	15.0	V
Dynamic Resistance	R _{DYN}	$({\sf V}_{_{\rm C2}}{\text{-}}{\sf V}_{_{\rm C1}})$ / $({\sf I}_{_{\rm PP2}}{\text{-}}{\sf I}_{_{\rm PP1}})$ (Pin 2 to 1)		0.4		Ω
ESD Withstand Voltage ¹		IEC61000-4-2 (Contact)	±30			kV
	V _{ESD}	IEC61000-4-2 (Air)	±30			kV
Diode Capacitance ¹	C _D	V _R =0V, f=1MHz (Pin 2 to 1)		2.0	2.5	pF


Note: ¹Parameter is guaranteed by design and/or device characterization.

Absolute Maximum Ratings


Parameter	Rating	Units
Peak Pulse Power (t _P =8/20µs)	600	W
Peak Pulse Current (t _P =8/20µs)	40	А
Operating Temperature	-40 to 85	°C
Storage Temperature	-60 to 150	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

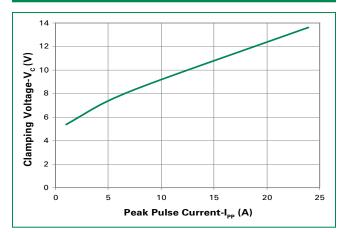
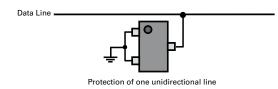
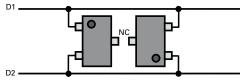

Figure 1: Capacitance vs. Reverse Voltage

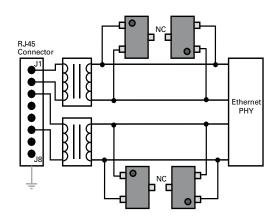
Figure 3: Pulse Waveform


Figure 2: Clamping Voltage vs. I


TVS Diode Arrays (SPA[™] Family of Products)

Lightning Surge Protection - SPLV2.8 Series

Application Example Detail



Protection of one unidirectional data line is realized by connecting pin 3 to the protected line, and pins 1 and 2 to GND. In this configuration, the device presents a maximum loading capacitance of tens of picofarads. During positive transients, the internal TVS diode will conduct and steer current from pin 3 to 1 (GND), clamping the data line at or below the specified voltages for the device (see Electrical Characteristics section). For negative transients, the internal compensating diode is forward biased, steering the current from pin 2 (GND) to 3.

Low capacitance protection of one high speed data pair

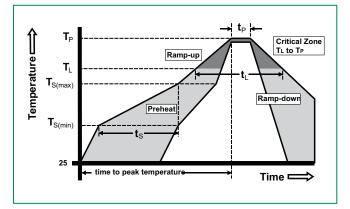
Low capacitance protection of a high-speed data pair is realized by connecting two devices in antiparallel. As shown, pin 1 of the first device is connected to D1 and pin 2 is connected to D2. Additionally, pin 2 of the second device is connected to D1 and pin 1 is connected to D2. Pin 3 must be NC (or not connected) for both devices. When the potential on D1 exceeds the potential on D2 (by the rated standoff voltage), pin 2 on the second device will steer current into pin 1. The compensating diode will conduct in the forward direction steering current into the avalanching TVS diode which is operating in the reverse direction. For the opposite transient, the first device will behave in the same manner. In this two device arrangement, the total loading capacitance is two times the rated capacitance from pin 2 to pin 1 which will typically be much less than 10pF making it suitable for highspeed data pair such as 10/100/1000 Ethernet.

NOT RECOMMENDED FOR NEW DESIGNS

SPLV2.8HTG is eventually going to be replaced by the SLVU2.8HTG TVS Diode Array with identical form, fit, and function. Please use this device for new or future designs and more detail can be found on Littelfuse.com

Lead Plating	Matte Tin
Lead Material	Copper Alloy
Lead Coplanarity	0.0004 inches (0.102mm)
Substitute Material	Silicon
Body Material	Molded Epoxy
Flammability	UL 94 V-0

Notes


All dimensions are in millimeters.

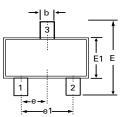
2. Dimensions include solder plating Dimensions are exclusive of mold flash & metal burr.

3. 4. Blo is facing up for mold and facing down for trim/form, i.e. reverse trim/form.
Package surface matte finish VDI 11-13.

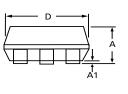
Soldering Parameters

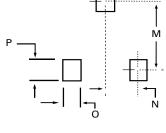
Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (Liquidus) Temp k	3°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	3°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nenow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	perature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		6°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		260°C	

ered


TVS Diode Arrays (SP

Lightning Surge Protection - SPI

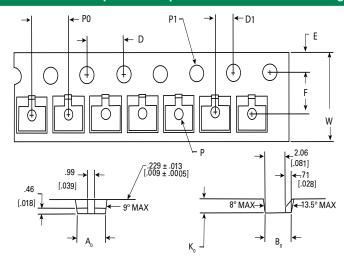

NOT RECOMMENDED FOR NEW DESIGNS


SPLV2.8HTG is eventually going to be replaced by the SLVU2.8HTG TVS Diode Array with identical form, fit, and function. Please use this device for new or future designs and more detail can be found on Littelfuse.com

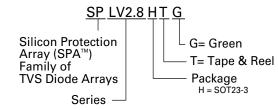
Package Dimensions – SOT-23

Recommended Pad Layout

Package	SOT23-3				
Pins	3				
JEDEC	TO-236				
	Millin	netres	Inches		
	Min Max		Min	Max	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.1	0.0004	0.004	
b	0.3	0.5	0.012	0.020	
С	0.08	0.2	0.003	0.008	
D	2.8	3.04	0.110	0.120	
E	2.1	2.64	0.083	0.104	
E1	1.2	1.4	0.047	0.055	
е	0.95 BSC		0.038	038 BSC	
e1	1.90 BSC		0.075	0.075 BSC	
L1	0.54 REF		0.021 REF		
М		2.29		.90	
N		0.95		0.038	
0		0.78		0.30 TYP	
Р		0.78		0.30 TYP	


Part Marking System

Ordering Information


Part Number	Package	Marking	Min. Order Qty.
SPLV2.8HTG	SOT23-3	U2.8	3000

Embossed Carrier Tape & Reel Specification – SOT23-3 Package

Currents and	Millim	Millimetres		Inches		
Symbol	Min	Max	Min	Max		
A0	3.05	3.25	0.12	0.128		
B0	2.67	2.87	0.105	0.113		
D	3.9	4.1	0.153	0.161		
D1	1.95	2.05	0.788	0.792		
E	1.65	1.85	0.065	0.073		
F	3.45	3.55	0.136	0.14		
К0	1.12	1.32	0.476	0.484		
Р	0.95	1.05	0.037	0.041		
P0	3.9	4.1	0.153	0.161		
P1		1.6		0.063		
w	7.9	8.3	0.311	0.327		

Part Numbering System

