DSC2040

Low-Jitter Configurable HCSL Oscillator

www.discera.com

idiscera

General Description

The DSC2040 series of high performance dual output oscillators utilize a proven silicon MEMS technology to provide excellent jitter and stability while incorporating additional device functionality. The two outputs are controlled by separate supply voltages to allow for high output isolation. The frequencies of the outputs can be identical or independently derived from a common PLL frequency source. The DSC2040 has provision for up to eight user-defined preprogrammed, pin-selectable output frequency combinations.

DSC2040 is packaged in a 14-pin 3.2x2.5 mm QFN package and available in temperature grades from Ext. Commercial to Industrial.

Block Diagram

Features

- Low RMS Phase Jitter: <1 ps (typ)
- High Stability: ±10, ±25, ±50 ppm
- Wide Temperature Range

 Industrial: -40° to 85° C
 Ext. commercial: -20° to 70° C
- High Supply Noise Rejection: -50 dBc
- Two Independent HCSL Outputs
- 4 Pin-Selectable Output Frequencies
- Short Lead Times: 2 Weeks
- Wide Freq. Range: • HCSL Output: 2.3 to 460 MHz
- Miniature Footprint of 3.2x2.5mm
- Excellent Shock & Vibration Immunity • Qualified to MIL-STD-883
- High Reliability • 20x better MTF than quartz oscillators
- Supply Range of 2.25 to 3.6 V
- Lead Free & RoHS Compliant

Applications

- Storage Area Networks • SATA, SAS, Fibre Channel
- Passive Optical Networks • EPON, 10G-EPON, GPON, 10G-PON
- Ethernet
 - 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video & Surveillance
- PCI Express

Pin No.	Pin Name	Pin Type	Description
1	Enable	I	Enables outputs when high and disables when low
2	NC	NA	Leave unconnected or grounded
3	NC	NA	Leave unconnected or grounded
4	GND	Power	Ground
5	FS0	Ι	Least significant bit for frequency selection
6	FS1	I	Most significant bit for frequency selection
7	NC	NA	Leave unconnected or grounded
8	Output+	0	Positive HCSL Output
9	Output-	0	Negative HCSL Output
10	NC	NA	Leave unconnected or grounded
11	NC	NA	Leave unconnected or grounded
12	VDD2	Power	Power Supply
13	VDD	Power	Power Supply
14	NC	NA	Leave unconnected or grounded

Pin Description

Operational Description

The DSC2040 is a HCSL oscillator consisting of a MEMS resonator and a support PLL IC. The HCSL output is generated through independent 8-bit programmable dividers from the output of the internal PLL.

The actual frequency output by the DSC2040 is controlled by an internal pre-programmed memory (OTP). This memory stores all coefficients required by the PLL for up to four different frequencies. Two control pins (FS0 – FS1) select the output frequency. Discera supports customer defined versions of the DSC2040. Standard frequency options are described in the following sections.

When Enable (pin 1) is floated or connected to VDD, the DSC2040 is in operational mode. Driving Enable to ground will tri-state output driver (hi-impedance mode).

Output Clock Frequencies

Table 1 lists the standard frequency configurations and the associated ordering information to be used in conjunction with the ordering code. Customer defined combinations are available.

Ordering	Freq	Freq Select Bits [FS1, FS0] – Default is [11]					
Info	(MHz)	00	01	10	11		
D0001	f ouт	125	156.25	200	100		
D000X	f _{out}	Contact factory for additional configurations.					

 Table 1. Pre-programmed pin-selectable output frequency combinations

Frequency select bit are weakly tied high so if left unconnected the default setting will be [11] and the device will output the associated frequency highlighted in **Bold**.

Absolute Maximum Ratings

Item	Min	Max	Unit	Condition
Supply Voltage	-0.3	+4.0	V	
Input Voltage	-0.3	V _{DD} +0.3	V	
Junction Temp	-	+150	°C	
Storage Temp	-55	+150	°C	
Soldering Temp	-	+260	°C	40sec max.
ESD	-		V	
HBM		4000		
MM		400		
CDM		1500		

Ordering Code

Note: 1000+ years of data retention on internal memory

Specifications (Unless specified otherwise: T=25° C)

Parameter		Condition	Min.	Тур.	Max.	Unit
Supply Voltage ¹	V_{DD}		2.25		3.6	V
Supply Current	I_{DD}	EN pin low – outputs are disabled		21	23	mA
Supply Current ²	I_{DD}	EN pin high – outputs are enabled R_L =50 Ω , F_O =156.25 MHz		40	42	mA
Frequency Stability	∆f	Includes frequency variations due to initial tolerance, temp. and power supply voltage			±10 ±25 ±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Startup Time ³	t _{su}	T=25°C			5	ms
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}		0.75xV _{DD} -		- 0.25xV _{DD}	V
Output Disable Time ⁴	t_DA				5	ns
Output Enable Time	t _{EN}				20	ns
Pull-Up Resistor ²		Pull-up exists on all digital IO		40		kΩ
HCSL Outputs						
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	$R_L = 50\Omega$	0.725 -		- 0.1	V
Pk to Pk Output Swing		Single-Ended		750		mV
Output Transition time ⁴ Rise Time Fall Time	t _R t _F	20% to 80% $R_L=50\Omega$, $C_L=2pF$	200		400	ps
Frequency	f ₀	Single Frequency	2.3		460	MHz
Output Duty Cycle	SYM	Differential	48		52	%
Period Jitter ⁵	J _{PER}	F _o =156.25 MHz		2.8		ps _{RMS}
Integrated Phase Noise	J _{PH}	200kHz to 20MHz @156.25MHz 100kHz to 20MHz @156.25MHz 12kHz to 20MHz @156.25MHz		0.25 0.37 1.7	2	ps _{RMS}

Notes:

1.

Pin 4 V_{DD} should be filtered with 0.01uf capacitor. Output is enabled if Enable pad is floated or not connected. 2. 3.

Substitute to 100PPM stable output frequency after V_{DD} is applied and outputs are enabled. Output Waveform and Test Circuit figures below define the parameters.

4. 5.

Period Jitter includes crosstalk from adjacent output.

HCSL Phase jitter (integrated phase noise)

Output Waveform: HCSL

discera

Low-Jitter Configurable HCSL Oscillator

📰 discera

Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.				
Preheat Time 150°C to 200°C	60-180 Sec				
Time maintained above 217°C	60-150 Sec				
Peak Temperature	255-260°C				
Time within 5°C of actual Peak	20-40 Sec				
Ramp-Down Rate	6°C/Sec Max.				
Time 25°C to Peak Temperature	8 min Max.				

Package Dimensions

Disclaimer:

Discera makes no warranty of any kind, express or implied, with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Discera reserves the right to make changes without further notice to materials described herein. Discera does not assume any liability arising from the application or use of any product or circuit described herein. Discera does not authorize its products for use a critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Discera's product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Discera against all charges.

DISCERA, Inc. •	1961 Concourse Drive,	San Jose, California	95131	•	USA
Phone: +1 (408) 432-8600	• Fax: +1 (408)	432-8609 • Email:	sales@discera.com	•	www.discera.com