

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

 $\ensuremath{\textcircled{}^\circ}$ 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIO[®] MCUs and dsPIO[®] DSCs, KEEL00[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)
- Up to 20 MIPS operation (at 3.0-3.6V):
 - High temperature range (-40°C to +140°C)

High-Performance DSC CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- Software stack
- 16 x 16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- 8-channel hardware DMA
- Up to 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Timers/Capture/Compare/PWM:

- Timer/Counters, up to five 16-bit timers:
 - Can pair up to make two 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock/Calendar (RTCC):
 - Provides clock, calendar and alarm functions

Interrupt Controller:

- 5-cycle latency
- Up to 49 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 35 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 31 pins
- Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- Flash program memory (up to 128 Kbytes)
- Data SRAM (up to 16 Kbytes)
- Boot, Secure and General Security for program Flash

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to 13 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

Audio Digital-to-Analog Converter (DAC):

- 16-bit Dual Channel DAC module
- 100 ksps maximum sampling rate
- Second-Order Digital Delta-Sigma Modulator

Data Converter Interface (DCI) module:

- Codec interface
- Supports I²S and AC'97 protocols
- Up to 16-bit data words, up to 16 words per frame
- 4-word deep TX and RX buffers

Comparator Module:

• Two analog comparators with programmable input/output configuration

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- Fully static design
- 3.3V (±10%) operating voltage
- Industrial and Extended temperature
- Low power consumption

Communication Modules:

- 4-wire SPI (up to two modules):
- Framing supports I/O interface to simple codecs
- Supports 8-bit and 16-bit data
- Supports all serial clock formats and sampling modes
- I²C[™]:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA® encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN[™] module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support
- Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
- Programmable bit length for the CRC generator polynomial (up to 16-bit length)
- 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

Packaging:

- 28-pin SDIP/SOIC/QFN-S
- 44-pin TQFP/QFN

Note: See the device variant tables for exact peripheral features per device.

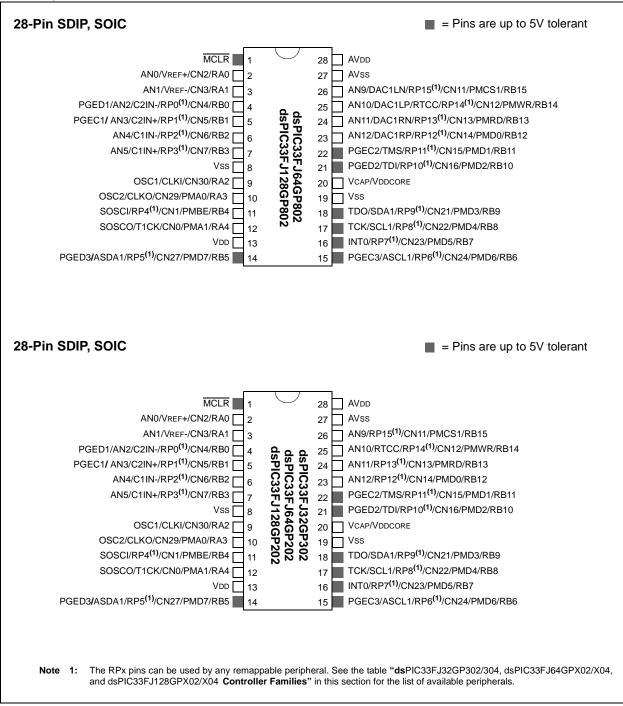
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PRODUCT FAMILIES

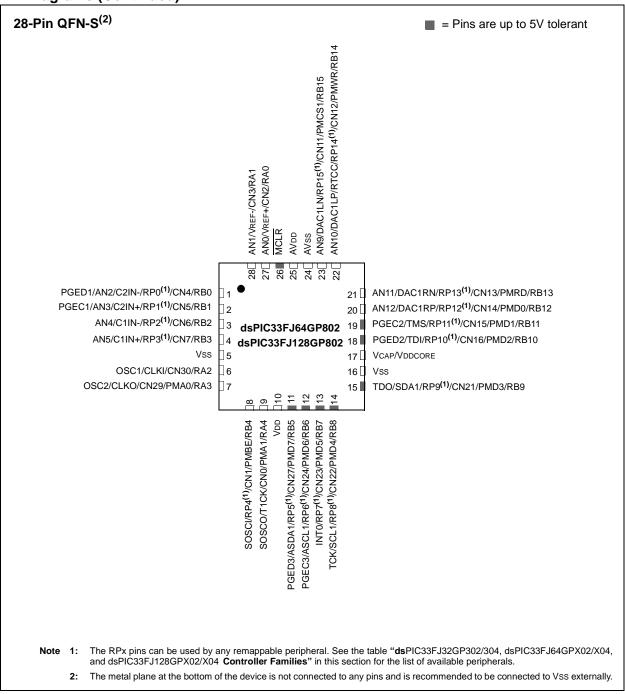
The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Controller Families

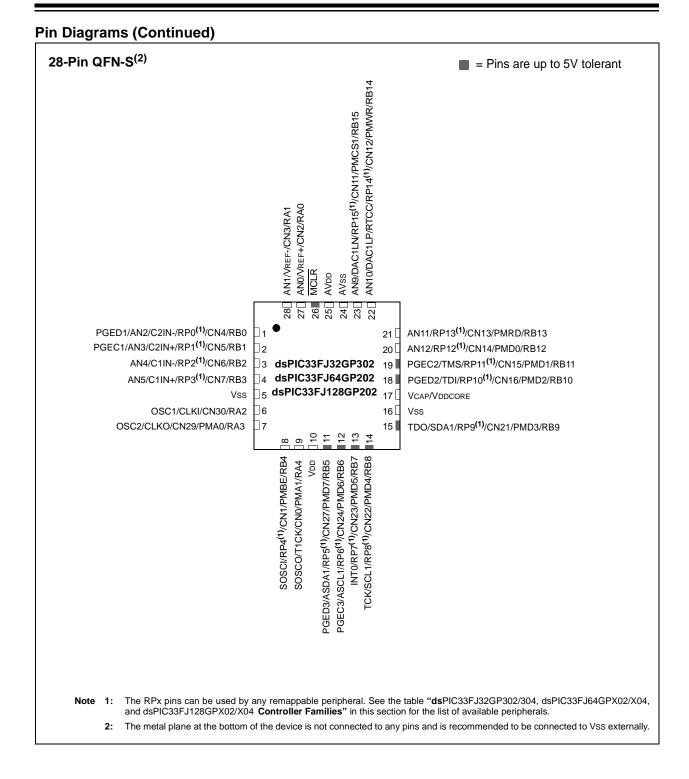
					_	Rem	appabl	e Peri	phera	al								Ĺ.			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	SPI	ECANTM	External Interrupts ⁽³⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ128GP802	28	128	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ128GP204	44	128	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ128GP202	28	128	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64GP804	44	64	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ64GP802	28	64	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64GP204	44	64	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ64GP202	28	64	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ32GP304	44	32	4	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ32GP302	28	32	4	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S

 1:
 RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM.

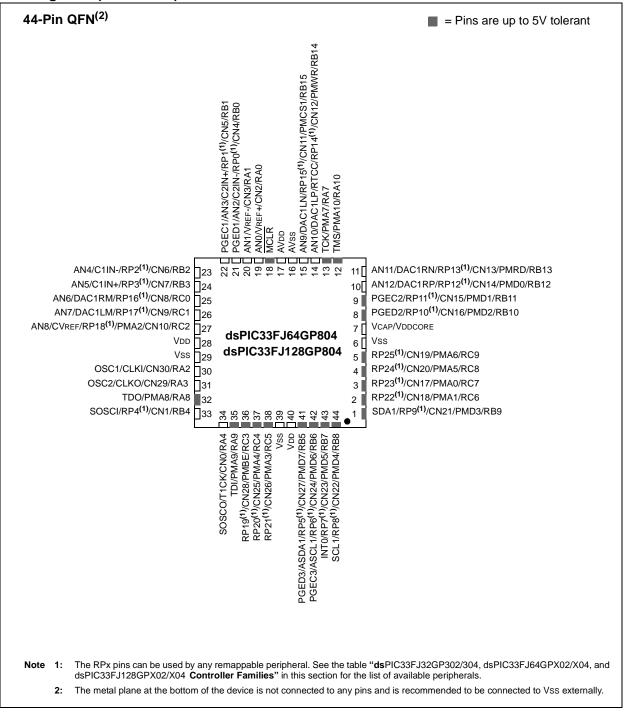

2: Only four out of five timers are remappable.


3: Only two out of three interrupts are remappable.

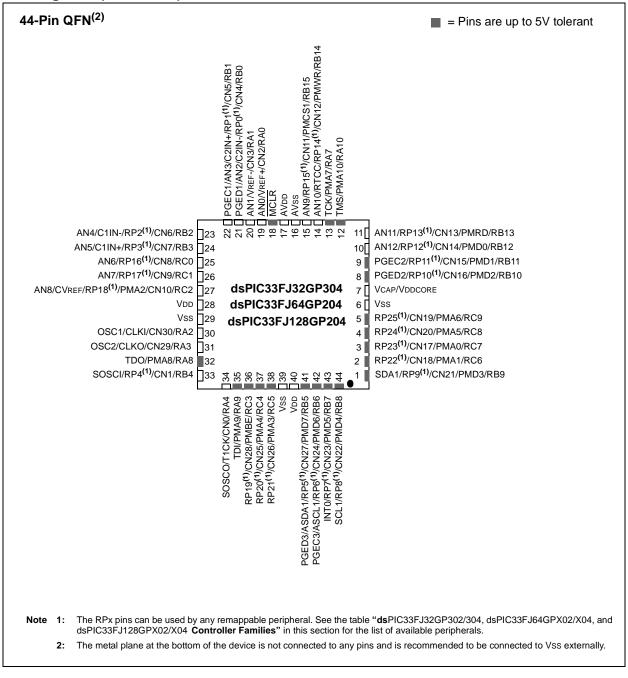
Note


dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

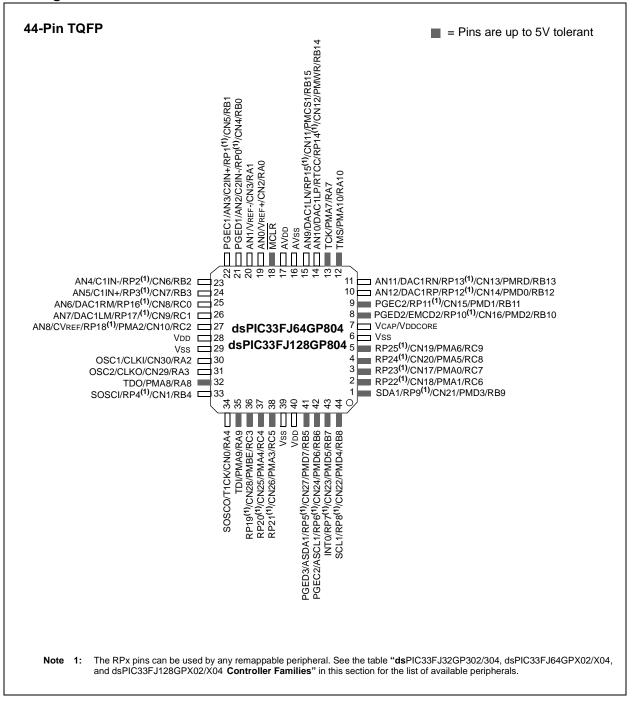
Pin Diagrams



Pin Diagrams (Continued)

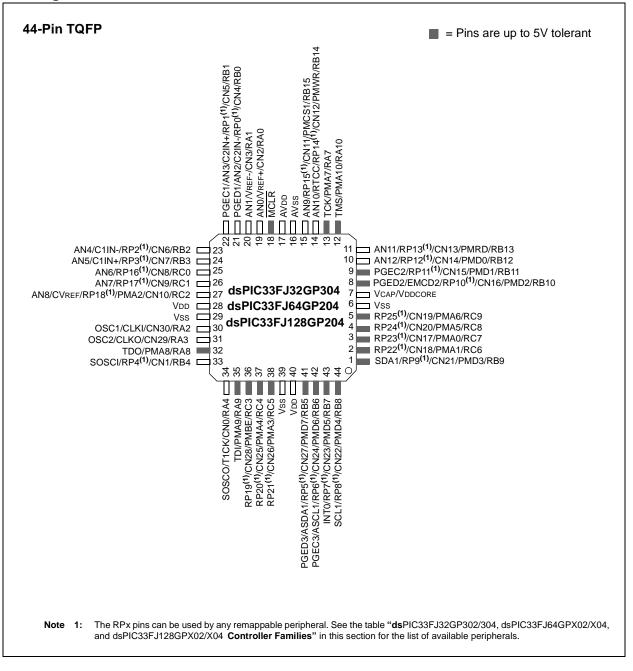


Pin Diagrams (Continued)


© 2009 Microchip Technology Inc.

Pin Diagrams (Continued)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04


Pin Diagram

© 2009 Microchip Technology Inc.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

Pin Diagram

Table of Contents

dsPl	C33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Product Families	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	129
9.0	Oscillator Configuration	
10.0	Power-Saving Features	153
11.0	I/O Ports	159
-	Timer1	
13.0	Timer2/3 and Timer4/5 feature	
	Input Capture	
15.0	Output Compare	
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit™ (I ² C™)	
	Universal Asynchronous Receiver Transmitter (UART)	
19.0	Enhanced CAN (ECAN™) Module	221
20.0	Data Converter Interface (DCI) Module	
21.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
22.0	Audio Digital-to-Analog Converter (DAC)	
23.0	Comparator Module	
24.0	Real-Time Clock and Calendar (RTCC)	
25.0	Programmable Cyclic Redundancy Check (CRC) Generator	
26.0	Parallel Master Port (PMP)	
27.0	Special Features	
28.0	Instruction Set Summary	309
29.0	Development Support	317
30.0	Electrical Characteristics	321
31.0	High Temperature Electrical Characteristics	
32.0	Packaging Information	377
Appe	ndix A: Revision History	
Index	٢	393
The I	Nicrochip Web Site	399
	omer Change Notification Service	
Custo	omer Support	399
Read	ler Response	400
Prod	uct Identification System	401

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

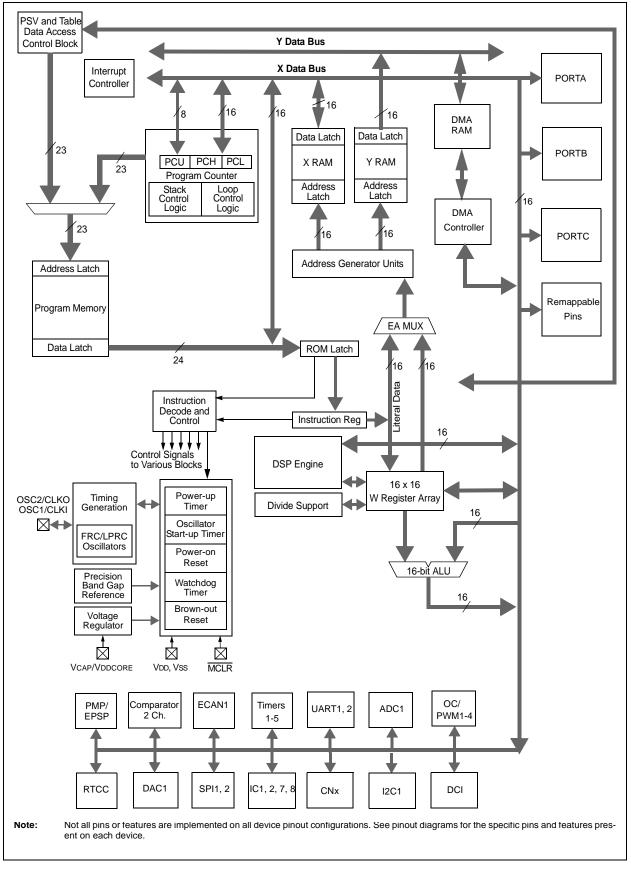
• Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

TABLE 1-1:	PINOU	T I/O DESC	CRIPTI	ONS		
Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN12	I	Analog		Analog input channels.		
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin function.		
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.		
OSC1	Ι	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode;		
OSC2	I/O	—	No	CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI SOSCO	 0	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.		
CN0-CN30	I	ST	No No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.		
IC1-IC2 IC7-IC8		ST ST	Yes Yes	Capture inputs 1/2. Capture inputs 7/8.		
OCFA OC1-OC4	I O	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.		
INT0	I	ST	No	External interrupt 0.		
INT1 INT2		ST ST	Yes Yes	External interrupt 1. External interrupt 2.		
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.		
RA7-RA10	I/O	ST	No	PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.		
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.		
T1CK	I	ST	No	Timer1 external clock input.		
T2CK	I	ST	Yes	Timer2 external clock input.		
T3CK		ST	Yes	Timer3 external clock input.		
T4CK		ST	Yes	Timer4 external clock input.		
T5CK	1	ST	Yes	Timer5 external clock input.		
U1CTS	0	ST	Yes Yes	UART1 clear to send. UART1 ready to send.		
U1RTS	1	ST	Yes	UART1 receive.		
U1RX U1TX	Ó	_	Yes	UART1 transmit.		
U2CTS	I	ST	Yes	UART2 clear to send.		
U2RTS	0	—	Yes	UART2 ready to send.		
U2RX	I	ST	Yes	UART2 receive.		
U2TX	0	—	Yes	UART2 transmit.		
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.		
SDI1		ST	Yes	SPI1 data in.		
SDO1 SS1	0		Yes	SPI1 data out.		
-	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.		
SCK2 SDI2	I/O	ST ST	Yes Yes			
SD02	0	51	Yes			
SS2	1/0	ST	Yes			
		S compatible				
		riager input				

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

O = Output I = Input PPS = Peripheral Pin Select

TABLE 1-1:	PINOU	TI/ODES	CRIPTI	ONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
TMS	I	ST	No	JTAG Test mode select pin.
TCK	I	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
C1RX	I	ST	Yes	ECAN1 bus receive pin.
C1TX	0	—	Yes	ECAN1 bus transmit pin.
RTCC	0		No	Real-Time Clock Alarm Output.
CVREF	0	ANA	No	Comparator Voltage Reference Output.
C1IN-	I	ANA	No	Comparator 1 Negative Input.
C1IN+	I	ANA	No	Comparator 1 Positive Input.
C1OUT	0	_	Yes	Comparator 1 Output.
C2IN-	I	ANA	No	Comparator 2 Negative Input.
C2IN+	I	ANA	No	Comparator 2 Positive Input.
C2OUT	0	—	Yes	Comparator 2 Output.
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and
				Output (Master modes).
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and
	•			Output (Master modes).
PMA2 -PMPA10	0	—	No	Parallel Master Port Address (Demultiplexed Master Modes).
PMBE PMCS1	0	_	No No	Parallel Master Port Byte Enable Strobe. Parallel Master Port Chip Select 1 Strobe.
PMD0-PMPD7	1/0	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/
	1/0	112/51	NO	Data (Multiplexed Master modes).
PMRD	ο	_	No	Parallel Master Port Read Strobe.
PMWR	õ	_	No	Parallel Master Port Write Strobe.
DAC1RN	0		No	DAC1 Right Channel Negative Output.
DAC1RP	Ő	_	No	DAC1 Right Channel Positive Output.
DAC1RM	õ	_	No	DAC1 Right Channel Middle Point Value (typically 1.65V).
DAC1LN	0		No	DAC1 Left Channel Negative Output.
DAC1LP	Ő	_	No	DAC1 Left Channel Positive Output.
DAC1LM	ŏ	_	No	DAC1 Left Channel Middle Point Value (typically 1.65V).
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.
CSDI	1/0	ST	Yes	Data Converter Interface serial data input pin
	0	01	Yes	Data Converter Interface serial data input pin
CSDO		-		
PGWD1 PGEC1	I/O	ST ST	No No	Data I/O pin for programming/debugging communication channel 1. Clock input pin for programming/debugging communication channel 1
PGECT PGWD2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC2		ST	No	Clock input pin for programming/debugging communication channel 2.
PGWD3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3	1	ST	No	Clock input pin for programming/debugging communication channel 3
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
Legend: CMOS		L S compatible	i e input c	
		rigger input		
	TTL inpu			PPS = Peripheral Pin Select
		-		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TABLE 1-1:	PINOUT I/O DESCRIPTIONS ((CONTINUED))
------------	----------------------------------	-------------	---

Pin Name	Pin Type	Buffer Type	PPS	Description
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.
VCAP/VDDCORE	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	_	No	Ground reference for logic and I/O pins.
Vref+	Ι	Analog	No	Analog voltage reference (high) input.
Vref-	Ι	Analog	No	Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

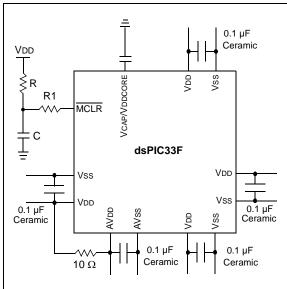
Getting started with the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")VCAP/VDDCORE
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

- Additionally, the following pins may be required:
- VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

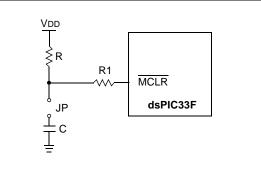
2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 30.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 27.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:


- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

- - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

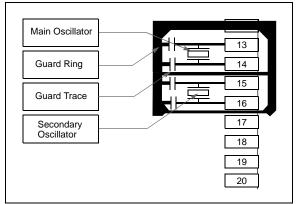
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.


- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™"* (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 2. CPU" (DS70204) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

3.1 Overview

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any time.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction

cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ32GP302/ 304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is shown in Figure 3-2.

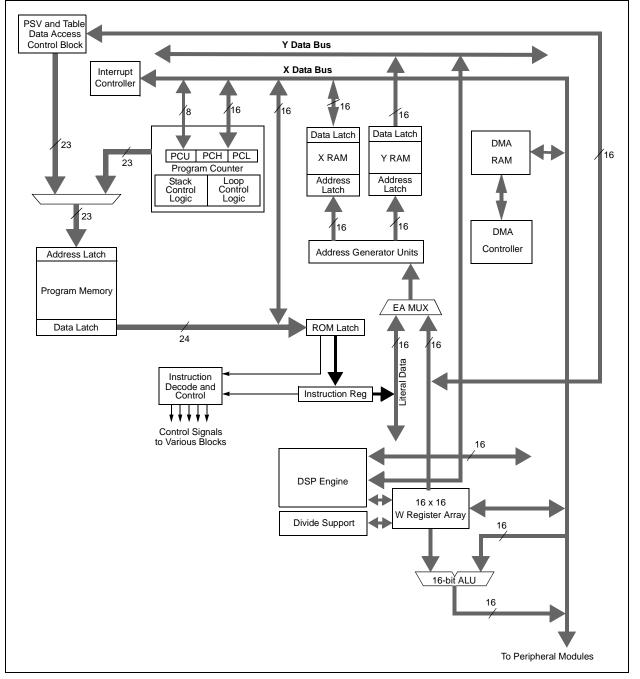
3.2 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.3 DSP Engine Overview


The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.


3.4 Special MCU Features

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-2: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 PROGRAMMER'S MODEL

3.5 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0	
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ⁽⁴⁾	DA	DC	
bit 15		•				•	bit 8	
(0)	(0)	(0)						
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
· -	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С	
bit 7							bit C	
Legend:								
C = Clear only	bit	R = Readable	e bit	U = Unimpler	mented bit, read	l as '0'		
S = Set only bi	it	W = Writable	bit	-n = Value at	POR			
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		_	
bit 15	OA: Accumul	ator A Overflov	v Status bit					
	1 = Accumula	ator A overflow ator A has not c	ed					
bit 14	OB: Accumul	ator B Overflow	v Status bit					
		ator B overflow						
		ator B has not o		(4)				
bit 13		SA: Accumulator A Saturation 'Sticky' Status bit ⁽¹⁾						
	 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated 							
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ⁽¹⁾							
		ator B is satura ator B is not sat		en saturated at	some time			
bit 11	OAB: OA C	B Combined A	ccumulator O	verflow Status	bit			
		ators A or B hav						
bit 10	SAB: SA S	B Combined A	ccumulator (S	ticky) Status bit	t ⁽⁴⁾			
		ators A or B are ccumulator A c			urated at some	time in the past	t	
bit 9	DA: DO Loop	Active bit						
	1 = DO loop ir 0 = DO loop n	n progress ot in progress						
bit 8	DC: MCU AL	U Half Carry/B	orrow bit					
	of the res	sult occurred	·	-	data) or 8th low-	·		
	•	-out from the 4 he result occur		oit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized	
Note 1: Th	is bit can be re	ad or cleared (not set).					
Le				•	RCON<3>) to fo 3> = 1. User in		• •	
3: Th	e IPL<2:0> Sta	tus bits are rea	ad only when I	NSTDIS = 1 (IN	NTCON1<15>).			

4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

REGISTER 3-1:	SR: CPU STATUS REGISTER	(CONTINUED)	

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - 4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_	_	US	EDT ⁽¹⁾		DL<2:0>	-
oit 15				1			bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
oit 7							bit (
Legend:		C = Clear onl	v hit				
R = Readable	bit	W = Writable	-	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear		x = Bit is unk			mented bit, read		
					,		
bit 15-13	Unimplemer	nted: Read as '	0'				
bit 12	US: DSP Mu	Itiply Unsigned	/Signed Contr	rol bit			
		ine multiplies a					
		ine multiplies a		- :+(1)			
bit 11	-	O Loop Termination e executing DO			toration		
	0 = No effect	-	loop at end o	i cuiterit loop i	leration		
oit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits			
	111 = 7 DO k	oops active					
	•						
	•						
	001 = 1 DO k	oop active					
	000 = 0 DO lo	pops active					
bit 7		Saturation En					
		ator A saturatio					
bit 6		ator A saturatio 3 Saturation En					
JIL 0		ator B saturatio					
		ator B saturatio					
oit 5	SATDW: Dat	a Space Write	from DSP Eng	gine Saturation	Enable bit		
		ce write satura					
		ce write satura					
oit 4		cumulator Satu		Select bit			
		ration (super s	,				
oit 3		iration (normal nterrupt Priority	-	hit 3(2)			
		rrupt priority lev					
		rrupt priority lev					
oit 2	PSV: Program	m Space Visibil	ity in Data Sp	ace Enable bit			
		space visible in					
	0 = Program	space not visib	ole in data spa	nce			

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

- bit 1
 RND: Rounding Mode Select bit

 1 = Biased (conventional) rounding enabled

 0 = Unbiased (convergent) rounding enabled

 bit 0
 IF: Integer or Fractional Multiplier Mode Select bit

 1 = Integer mode enabled for DSP multiply ops
 - 0 = Fractional mode enabled for DSP multiply ops
 - Note 1: This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.6 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.6.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.6.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.7 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- · Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

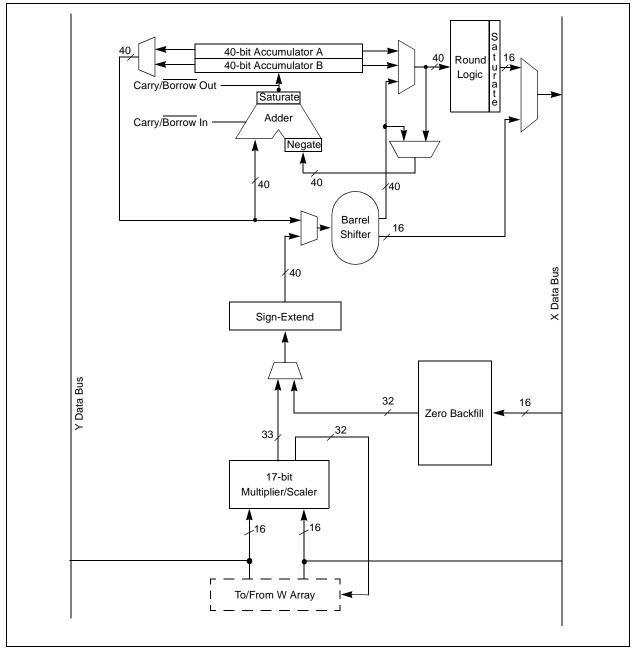

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	A = (x - y)2	No
EDAC	A = A + (x - y)2	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
МРҮ	A = x 2	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

FIGUR	E 3-3:

DSP ENGINE BLOCK DIAGRAM

3.7.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed two the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

3.7.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.7.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits

or

• SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).

• Bit 31 Overflow and Saturation:

When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.

 Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.7.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.7.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.7.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.7.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.7.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32GP302/304,
	dsPIC33FJ64GPX02/X04, and
	dsPIC33FJ128GPX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	"Section 3. Data Memory" (DS70202) of
	the "dsPIC33F/PIC24H Family Reference
	Manual", which is available from the
	Microchip website (www.microchip.com).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

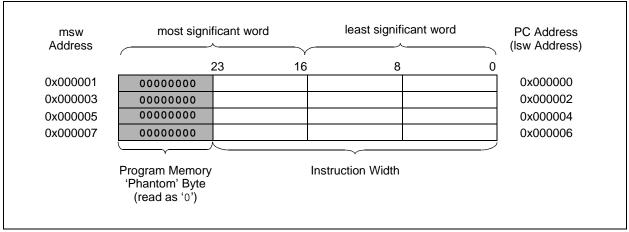
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, AND dsPIC33FJ128GPX02/X04 DEVICES

	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
Ť	Reset Address	Reset Address		0x000000 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x000004
	Reserved		Reserved	0x0000FE 0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
	User Program Flash Memory (11264 instructions)	User Program User Program Flash Memory (22016 instructions)		0x000200 0x0057FE 0x005800
	Unimplemented		Flash Memory (44032 instructions)	0x00ABFE 0x00AC00
	(Read '0's)	Unimplemented		
	(Read 0.3)	(Read '0's)		0x0157FE 0x015800
		(Read 0 S)		
			Unimplemented (Read '0's)	
	Reserved	Reserved		0x7FFFE 0x800000
	Device Configuration			0xF7FFFE
	Registers	Registers	Registers	0xF80000 0xF80017
	Reserved	Reserved	Reserved	0xF80018
	DEVID (2)		DEVID (2)	0xFEFFFE 0xFF0000 0xFF0002
¥.	Reserved	Reserved	Reserved	
	J			0xFFFFFE

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement up to 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

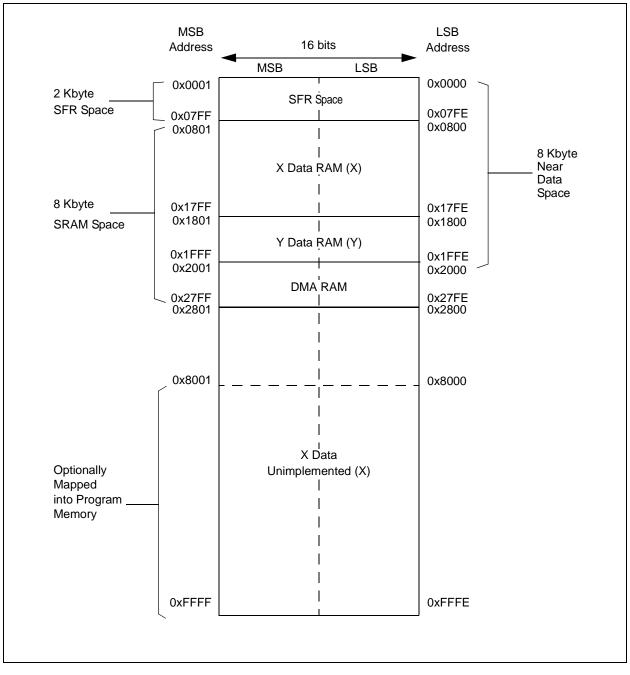
A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 core and peripheral modules for controlling the operation of the device.


SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.


4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ32GP302/304 DEVICES WITH 4 KB RAM

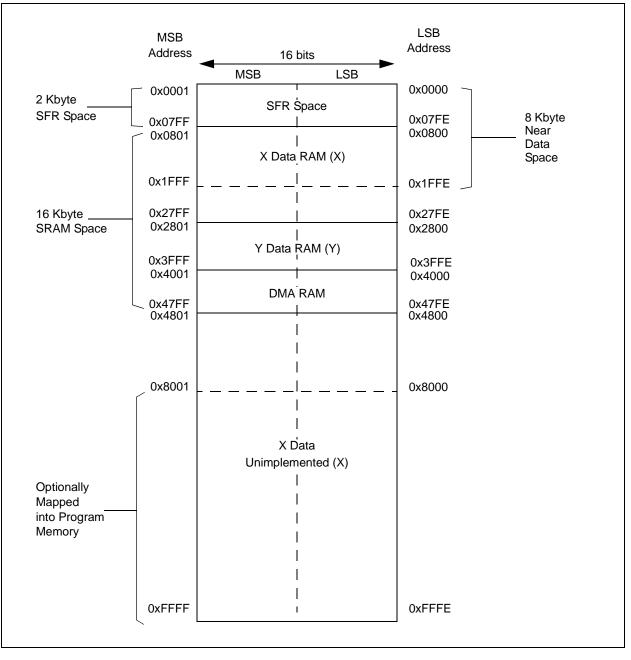


FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJ128GP202/204 AND dsPIC33FJ64GP202/ 204 DEVICES WITH 8 KB RAM

© 2009 Microchip Technology Inc.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/ 804 DEVICES WITH 16 KB RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space, and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

WREG1 WREG2 WREG2 WREG3 WREG3 WREG3 WREG4 WREG5 WREG5 WREG6 WREG6 WREG7 WREG7 WREG10 WREG10 WREG11 WREG11 WREG12 WREG13 WREG14 WREG15 WREG15 SPLIM WACCAL	0000 0002 0004 0006 0008 000A 000C 000C 000E								Working Po									
WREG2 WREG3 WREG3 WREG3 WREG4 WREG5 WREG5 WREG6 WREG6 WREG7 WREG7 WREG1 WREG10 WREG10 WREG11 WREG12 WREG12 WREG13 WREG13 WREG14 WREG15 WREG15 SPLIM ACCAL	0004 0006 0008 000A 000C 000E								WORKING RE	gister 0								0000
WREG3 WREG4 WREG5 WREG6 WREG6 WREG7 WREG8 WREG9 WREG10 WREG11 WREG11 WREG13 WREG13 WREG14 GWREG15 GPLIM ACCAL	0006 0008 000A 000C 000E								Working Re	gister 1								0000
WREG4 WREG5 WREG6 WREG7 WREG7 WREG9 WREG10 WREG11 WREG12 WREG13 WREG14 GWREG15 GELIM ACCAL	0008 000A 000C 000E								Working Re	gister 2								0000
WREG5 (WREG6 (WREG7 (WREG8 (WREG9 (WREG10 (WREG11 (WREG12 (WREG13 (WREG13 (WREG15 (SPLIM (ACCAL (000A 000C 000E								Working Re	gister 3								0000
WREG6 (WREG7 (WREG8 (WREG9 (WREG10 (WREG11 (WREG12 (WREG13 (WREG13 (WREG14 (WREG15 (SPLIM (ACCAL (000C 000E								Working Re	gister 4								0000
WREG7 WREG8 WREG9 WREG10 WREG11 WREG12 WREG13 WREG14 WREG15 GPLIM ACCAL	000E								Working Re	gister 5								0000
WREG8 WREG9 WREG10 WREG11 WREG12 WREG13 WREG14 WREG15 SPLIM ACCAL									Working Re	gister 6								0000
WREG9 WREG10 WREG11 WREG12 WREG13 WREG14 WREG15 SPLIM ACCAL	0010								Working Re	gister 7								0000
WREG10 WREG11 WREG12 WREG13 WREG14 WREG15 SPLIM ACCAL									Working Re	gister 8								0000
WREG11 WREG12 WREG13 WREG14 WREG15 SPLIM ACCAL	0012								Working Re	gister 9								0000
WREG12 WREG13 WREG14 WREG15 SPLIM ACCAL	0014								Working Reg	ister 10								0000
WREG13 (WREG14 (WREG15	0016								Working Reg									0000
WREG14 (WREG15) SPLIM ACCAL (0018								Working Reg	jister 12								0000
WREG15 SPLIM ACCAL	001A								Working Reg	jister 13								0000
SPLIM ACCAL	001C								Working Reg									0000
ACCAL	001E		Working Register 15 Stack Pointer Limit Register														0800	
	0020		Stack Pointer Limit Register														xxxx	
ACCALL	0022		Stack Pointer Limit Register ACCAL															xxxx
	0024								ACCA	Н								XXXX
	0026				ACCA<	39>							ACO	CAU				xxxx
	0028								ACCB									XXXX
	002A								ACCB	Н								XXXX
	002C				ACCB<	39>							ACO	CBU				XXXX
-	002E							Program	Counter Lov	w Word Reg	ister							XXXX
	0030	—	—	_	_		—						m Counter					0000
-	0032	—	—	_	_		—						Page Addres		-			0000
	0034		_	_	—		—	—	—		°.	am Memory	/ Visibility Pa	age Addres	s Pointer Re	egister		0000
	0036							Repe	at Loop Cou		er							XXXX
	0038								DCOUNT<								. 	XXXX
	003A							DOST	TARTL<15:1	>							0	XXXX
	003C	—	_	—	_	—	—	-		—	—			DOSTAF	RTH<5:0>			00xx
	003E							DOE	ENDL<15:1>								0	xxxx
	0040	-	-	-	-	-	-	-	-	—	-				INDH	-		00xx
	0042	OA	OB	SA	SB	OAB	SAB	DA	DC		IPL<2:0>		RA	N	OV	Z	С	0000
CORCON MODCON	0044	_	— YMODEN		US —	EDT	BWN	DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

0	
2009	
Microchip	
Technology	
Inc.	

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048							Х	(S<15:1>								0	xxxx
XMODEND	004A			XE<15:1> YS<15:1>														xxxx
YMODSRT	004C		XE<15:1> YS<15:1>														0	xxxx
YMODEND	004E							Y	′E<15:1>								1	xxxx
XBREV	0050	BREN							2	XB<14:0>								xxxx
DISICNT	0052	_							Disabl	e Interrupts	Counter R	egister						xxxx

TABLE 4-2:CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	_		—	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	—	CN27IE		—	CN24IE	CN23IE	CN22IE	CN21IE	-	-	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE		—	—	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A		CN30PUE	CN29PUE	—	CN27PUE	_	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	—	_	_	_	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

4-4:	INTER	RUPT CO	ONTRO	LLER R	EGISTER	R MAP										-	
SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
0082	ALTIVT	DISI		_	_		_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
8800	_	DMA4IF	PMPIF	_	_	_	_	_	_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
008A	—	RTCIF	DMA5IF	DCIIF	DCIEIF	_	_	_	_	_	_	_	_	_	—	_	0000
008C	DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	—	_	_	_	_	_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
0098	—	DMA4IE	PMPIE	—	_	_	_	_	_	_	_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
009A	—	RTCIE	DMA5IE	DCIIE	DCIEIE	_	_	_	_	_	_	_	_	_	—	_	0000
009C	DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	_	—	_	_	_	_	_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	0000
00A4	—	-	T1IP<2:0>		_	OC1IP<2:0> OC2IP<2:0> SPI1IP<2:0>			—		IC1IP<2:0>		_	IN	IT0IP<2:0>		4444
00A6	_	-	T2IP<2:0>		_	OC2IP<2:0>			_		IC2IP<2:0>		_	DN	/A0IP<2:0:	>	4444
00A8	_	U	1RXIP<2:0	>	-	SPI1IP<2:0> DMA1IP<2:0>			_	:	SPI1EIP<2:0	>	_	٦	[3IP<2:0>		4444
00AA	_	_	_	_	_	SPI1IP<2:0>			_		AD1IP<2:0>		_	U1	TXIP<2:0>	>	0444
00AC	_	(CNIP<2:0>		-	DMA1IP<2:0> CMIP<2:0>			_	I	MI2C1IP<2:0	>	_	SI	2C1IP<2:0:	>	4444
00AE	_	l	C8IP<2:0>		-		IC7IP<2:0;	>	_	_	_		_	IN	IT1IP<2:0>		4404
00B0	_	-	T4IP<2:0>		-	(DC4IP<2:0	>	_		OC3IP<2:0>		_	DN	/A2IP<2:0:	>	4444
00B2	_	U	2TXIP<2:0:	>	-	U	2RXIP<2:0)>	_		INT2IP<2:0>		_	٦	5IP<2:0>		4444
00B4	_	С	1IP<2:0> ⁽¹)	-	C1	RXIP<2:0:	_{>} (1)	_		SPI2IP<2:0>		_	SF	12EIP<2:0	>	4444
00B6	_	_	_	_	_	_	_	_	_	_	_	_	_	DN	/A3IP<2:0:	>	0004
00BA	_	_	_	_	_	D	MA4IP<2:0)>	_		PMPIP<2:0>		_	_	_	—	0440
00C0	_	D	CIEIP<2:0	>	-	_	_	_	_	_	_		_	_	_	_	4000
00C2	_	_	_	_	-	F	RTCIP<2:0	>	_		DMA5IP<2:0	>	_	D	CIIP<2:0>		0444
00C4	_	С	RCIP<2:0>	>	_	ι	J2EIP<2:0	>	_		U1EIP<2:0>		_		—	_	4440
00C6	_	_	_	_	_	C1	TXIP<2:0:	(1)	_		DMA7IP<2:0	>	_	DN	/A6IP<2:0:	>	0444
00CA	_	DAC	C1LIP<2:0>	_{>} (2)	_	DA	C1RIP<2:0)>(2)	_	_	_	_	_	_	_	—	4400
00E0	_	_	_	_		ILR<3	:0>>		_			VEC	CNUM<6:0>				4444
	SFR 0080 0082 0084 0086 0087 0088 0080 0084 0086 0087 0094 0094 0094 0094 0095 0094 0096 0097 0096 0097 0004 0004 0004 0004 0048 0048 0049 0044 0045 0046 0048 0048 0048 0048 0048 0048 0048 0048 0048 0048 0049 0049 0049 0044 0054 0054 0054 0054 0554 <	SFR AddrBit 150080NSTDIS0082ALTIVT00840086U2TXIF0087DAC1LIF(2)00980098000940095DAC1LIF(2)0096U2TXIE0097DAC1LIE(2)00980096DAC1LIE(2)0097DAC1LIE(2)009800480049004000410042004300440045004600470048004904	SFR Addr Bit 15 Bit 14 0080 NSTDIS OVAERR 0082 ALTIVT DISI 0084 — DMA1IF 0086 U2TXIF U2RXIF 0088 — DMA4IF 0084 — RTCIF 0085 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ 0084 — DMA4IF 0085 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ 0094 — DMA4IE 0095 U2TXIE U2RXIE 0096 U2TXIE U2RXIE 0097 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ 0098 — DMA4IE 0094 — RTCIE 0095 DAC1LIE ⁽²⁾ DAC1RIF ⁽²⁾ 0046 — — 0047 — — 0048 — — 0049 — — 0040 — — 0041 — — 0042 —	SFR Addr Bit 15 Bit 14 Bit 13 0080 NSTDIS OVAERR OVBERR 0082 ALTIVT DISI — 0084 — DMA1IF AD1IF 0084 — DMA1IF AD11F 0086 U2TXIF U2RXIF INT2IF 0088 — DMA4IF PMPIF 0080 DAC RTCIF DMA5IF 0080 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ — 0094 — DMA1IE AD11E 0095 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ — 0096 U2TXIE U2RXIE INT2IE 0097 DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ — 0098 — RTCIE DMA5IE 0097 DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ — 0098 — RTCIE DMA5IE 0098 — QUENTXIE 2:0> 0044 — — — 0045 —	SFR AddrBit 15Bit 14Bit 13Bit 120080NSTDISOVAERROVBERRCOVAERR0082ALTIVTDISI——0084—DMA1IFAD1IFU1TXIF0086U2TXIFU2RXIFINT2IFT5IF0086U2TXIFU2RXIFINT2IFT5IF0088—DMA4IFPMPIF—0084—RTCIFDMA5IFDCIIF0085DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ ——0094—DMA1IEAD1IEU1TXIE0096U2TXIEU2RXIEINT2IET5IE0098—DMA4IEPMPIE—0094—RTCIEDMA5IEDCIIE0095DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ ——0096—RTCIEDMA5IEDCIIE0097DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ ——0048————0040————0041————0042————0043————0044————0045————0046————0047————0048————0050————0051————0052—— <t< td=""><td>SFR AddrBit 15Bit 14Bit 13Bit 12Bit 110080NSTDISOVAERROVBERRCOVAERRCOVBERR0082ALTIVTDISI———0084—DMA1IFAD1IFU1TXIFU1RXIF0086U2TXIFU2RXIFINT2IFT5IFT4IF0088—DMA4IFPMPIF——0084—RTCIFDMA5IFDCIIFDCIEF0084—RTCIFDMA5IFDCIIFU1RXIE0084MDAC1RIF⁽²⁾———0084MDMA1IEAD1IEU1TXIEU1RXIE0096U2TXIEU2RXIEINT2IET5IET4IE0098—DMA4IEPMPIE——0094MBMC1EIPDMA5IEDCIIEDCIEIE0095DAC1LIE⁽²⁾DAC1RIE⁽²⁾———0096MTIP<2:D>———0044—————0045M————0046—————0047M————0048—————0049M————0040—————0041—————0042—————0043M——<</td><td>SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVAERR OVATE 0082 ALTIVT DIS — — — — — 0084 — DMA1IF AD1IF U1TXIF U1RXIF SPI1F 0086 U2TXIF U2RXIF INT2IF TSIF T4IF OC4IF 0088 — DMA4IF PMPIF — — — 0080 DAC1LIF⁽²⁾ DAC1RIF⁽²⁾ — — — — 0084 — DMA1IE AD1IE U1TXIE U1RXIE SPI1E 0085 DAC1LIF⁽²⁾ DAC1RIF⁽²⁾ — — — — 0096 U2TXIE U2RXIE INT2IE TSIE T4IE OC4IE 0098 — DMA4IE PMPIE — — — OC 0044 —<</td><td>SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVBERR OVBERR OVBERR OVBERR OVBERR OVBERR OVDERR OVATE OVATE OVATE 0082 ALTIVT DIS1 — — — — — — — — — — — — — — — — …</td><td>SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80080NSTDISOVAERROVBERRCOVAERRCOVBERROVATEOVBTECOVTE0082ALTIVTDISI———————0084—DMA1IFAD1IFU1TXIFU1RXIFSPI1IFSPI1EIFT3IF0086U2TXIFU2RXIFINT2IFT5IFT4IFOC4IFOC3IFDMA2IF0088—DMA4IFPMPIF—————0084—RTCIFDMA5IFDCIIFDCIEIF———0084MRTCIFDMA5IFDCIIFDCIEIF———0084MDMA1IEAD1IEU1TXIEU1RXIESPI1EIESPI1EIET3IE0084MDMA1IEAD1IEU1TXIEU1RXIESPI1EISPI1EIET3IE0096U2TXIEU2RXIEINT2IET5IET4IEOC4IEOC3IEDMA2IE0098—MA5IEPMPIE——————0094—RTCIEDMA5IEDCIIEDCIEIE————0095DAC1LIE⁽²⁾DAC1RIE⁽²⁾——————0094—RTCIEDMA5IEDCIIEDCIEIE————0095DAC1LIE⁽²⁾DAC1RIE⁽²⁾————<</td><td>SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR 0082 ALTIVT DISI — …</td><td>SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60080NSTDISOVAERROVBERRCOVAERRCOVAERROVATEOVBTECOVTSFTACERRDIVOERR0082ALTIVTDISI——————————0084—DMA1IFAD1IFU1TXIFU1RXIFSPI1IFSPI1EIFT3IFT2IFOC2IF0086U2TXIFU2RXIFINT2IFT5IFT4IFOC4IFOC3IFDMA2IFIC8IFIC7IF0084—DMA4IFPMPIF—————————0084—DMA4IFPMPIFPCIFP——<t< td=""><td>SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50080NSTDISOVAERROVBERRCOVAERRCOVAEROVATEOVBTECOVESSTACERRDIVOERRDMACERR0084ALTIVTDISI———</td><td>SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0800 NSTDIS OVAERR OVBERR COVBER COVBER OVBTE COVTE DOTT FTACERR DINOERR DMACER MATHERR 0844 — DMA1IF ADII U1TXIF U1TXIF U1TXIF SPIITE STIF T3IF T2IF OC2IF IC2IF DMAOIF 0084 — DMAAIF PMPIF — — — — — — — — MAOIF DMAJIF DMAJIF DMAJIF DMAJIF DAGITF DCIFF — — — — — — — — — — — — — — — MAOIF DMAJIF DMAJIF DOIF DCIFF — — — — — — — — — MAOIF DMAJIF DMAO</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 11 0080 NSTDIS OVAERR OVBERR COVAERR OVAERR OVAER OVAERR NATTEP INTTEP INTTEP</td><td>SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0080 NSTDIS OVAERR OVBERR COVBERR OVAER MAGER MAGER MAGER NITEP NITEP</td></t<></td></t<>	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 110080NSTDISOVAERROVBERRCOVAERRCOVBERR0082ALTIVTDISI———0084—DMA1IFAD1IFU1TXIFU1RXIF0086U2TXIFU2RXIFINT2IFT5IFT4IF0088—DMA4IFPMPIF——0084—RTCIFDMA5IFDCIIFDCIEF0084—RTCIFDMA5IFDCIIFU1RXIE0084MDAC1RIF ⁽²⁾ ———0084MDMA1IEAD1IEU1TXIEU1RXIE0096U2TXIEU2RXIEINT2IET5IET4IE0098—DMA4IEPMPIE——0094MBMC1EIPDMA5IEDCIIEDCIEIE0095DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ ———0096MTIP<2:D>———0044—————0045M————0046—————0047M————0048—————0049M————0040—————0041—————0042—————0043M——<	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVAERR OVATE 0082 ALTIVT DIS — — — — — 0084 — DMA1IF AD1IF U1TXIF U1RXIF SPI1F 0086 U2TXIF U2RXIF INT2IF TSIF T4IF OC4IF 0088 — DMA4IF PMPIF — — — 0080 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ — — — — 0084 — DMA1IE AD1IE U1TXIE U1RXIE SPI1E 0085 DAC1LIF ⁽²⁾ DAC1RIF ⁽²⁾ — — — — 0096 U2TXIE U2RXIE INT2IE TSIE T4IE OC4IE 0098 — DMA4IE PMPIE — — — OC 0044 —<	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVBERR OVBERR OVBERR OVBERR OVBERR OVBERR OVDERR OVATE OVATE OVATE 0082 ALTIVT DIS1 — — — — — — — — — — — — — — — — …	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80080NSTDISOVAERROVBERRCOVAERRCOVBERROVATEOVBTECOVTE0082ALTIVTDISI———————0084—DMA1IFAD1IFU1TXIFU1RXIFSPI1IFSPI1EIFT3IF0086U2TXIFU2RXIFINT2IFT5IFT4IFOC4IFOC3IFDMA2IF0088—DMA4IFPMPIF—————0084—RTCIFDMA5IFDCIIFDCIEIF———0084MRTCIFDMA5IFDCIIFDCIEIF———0084MDMA1IEAD1IEU1TXIEU1RXIESPI1EIESPI1EIET3IE0084MDMA1IEAD1IEU1TXIEU1RXIESPI1EISPI1EIET3IE0096U2TXIEU2RXIEINT2IET5IET4IEOC4IEOC3IEDMA2IE0098—MA5IEPMPIE——————0094—RTCIEDMA5IEDCIIEDCIEIE————0095DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ ——————0094—RTCIEDMA5IEDCIIEDCIEIE————0095DAC1LIE ⁽²⁾ DAC1RIE ⁽²⁾ ————<	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR 0082 ALTIVT DISI — …	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60080NSTDISOVAERROVBERRCOVAERRCOVAERROVATEOVBTECOVTSFTACERRDIVOERR0082ALTIVTDISI——————————0084—DMA1IFAD1IFU1TXIFU1RXIFSPI1IFSPI1EIFT3IFT2IFOC2IF0086U2TXIFU2RXIFINT2IFT5IFT4IFOC4IFOC3IFDMA2IFIC8IFIC7IF0084—DMA4IFPMPIF—————————0084—DMA4IFPMPIFPCIFP—— <t< td=""><td>SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50080NSTDISOVAERROVBERRCOVAERRCOVAEROVATEOVBTECOVESSTACERRDIVOERRDMACERR0084ALTIVTDISI———</td><td>SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0800 NSTDIS OVAERR OVBERR COVBER COVBER OVBTE COVTE DOTT FTACERR DINOERR DMACER MATHERR 0844 — DMA1IF ADII U1TXIF U1TXIF U1TXIF SPIITE STIF T3IF T2IF OC2IF IC2IF DMAOIF 0084 — DMAAIF PMPIF — — — — — — — — MAOIF DMAJIF DMAJIF DMAJIF DMAJIF DAGITF DCIFF — — — — — — — — — — — — — — — MAOIF DMAJIF DMAJIF DOIF DCIFF — — — — — — — — — MAOIF DMAJIF DMAO</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 11 0080 NSTDIS OVAERR OVBERR COVAERR OVAERR OVAER OVAERR NATTEP INTTEP INTTEP</td><td>SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0080 NSTDIS OVAERR OVBERR COVBERR OVAER MAGER MAGER MAGER NITEP NITEP</td></t<>	SFR AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50080NSTDISOVAERROVBERRCOVAERRCOVAEROVATEOVBTECOVESSTACERRDIVOERRDMACERR0084ALTIVTDISI———	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0800 NSTDIS OVAERR OVBERR COVBER COVBER OVBTE COVTE DOTT FTACERR DINOERR DMACER MATHERR 0844 — DMA1IF ADII U1TXIF U1TXIF U1TXIF SPIITE STIF T3IF T2IF OC2IF IC2IF DMAOIF 0084 — DMAAIF PMPIF — — — — — — — — MAOIF DMAJIF DMAJIF DMAJIF DMAJIF DAGITF DCIFF — — — — — — — — — — — — — — — MAOIF DMAJIF DMAJIF DOIF DCIFF — — — — — — — — — MAOIF DMAJIF DMAO	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 11 0080 NSTDIS OVAERR OVBERR COVAERR OVAERR OVAER OVAERR NATTEP INTTEP INTTEP	SFR Add Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0080 NSTDIS OVAERR OVBERR COVBERR OVAER MAGER MAGER MAGER NITEP NITEP

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Interrupts disabled on devices without ECANTM modules.

2: Interrupts disabled on devices without Audio DAC modules.

TON	— TSIDI	_	_	 Tir	— ner3 Holding	Period I — Timer2		TGATE	TCKPS	3<1:0>	_	TSYNC	TCS	_	XXXX FFFF 00000 XXXX
	— TSIDL		-			Timer2 Register (fo	Register or 32-bit time			S<1:0>	_	TSYNC	TCS	-	0000
	— TSIDL	_	-			Timer2 Register (fo	Register or 32-bit time			8<1:0>	—	TSYNC	TCS	_	0000 xxxx
				Tir	ner3 Holding	Register (fo	or 32-bit time	operations o	nly)						xxxx
				Tir	ner3 Holding	. .		operations o	nly)						
						T 0									xxxx
	Period Register 2 Period Register 3														
Period Register 3															FFFF
															FFFF
TON - TSIDL TGATE TCKPS<1:0> T32 - TCS -															0000
TON - TSIDL - - - - TGATE TCKPS<1:0> T32 - TCS - TON - TSIDL - - - - TGATE TCKPS<1:0> T32 - TCS -															0000
						Timer4	Register								xxxx
				Tin	ner5 Holding	Register (fo	or 32-bit time	operations o	nly)						xxxx
						Timer5	Register								xxxx
						Period I	Register 4								FFFF
						Period I	Register 5								FFFF
TON	- TSIDL	—	_	—	—		—	TGATE	TCKPS	S<1:0>	T32	—	TCS		0000
TON	- TSIDL	—	—	_	—	_	—	TGATE	TCKPS	S<1:0>	—	—	TCS	—	0000
Tr Tr	ON ON	ON — TSIDL ON — TSIDL	ON <u> </u>	ON <u> </u>	ON — TSIDL — # # # # # # # # # # # # # <td>ON — TSIDL — Display 1000000000000000000000000000000000000</td> <td>Timer4 Timer5 Holding Register (fc Timer5 Holding Register (fc Timer5 Period I ON — TSIDL — ON — TSIDL — — —</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — —</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations o Timer5 Register 4 Period Register 4 Period Register 5 ON <u> </u></td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS ON — TSIDL — — — — — — — TGATE TCKPS</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS<1:0> ON — TSIDL — — — — — — — TGATE TCKPS<1:0></td> <td>Timer4 Register Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — TGATE TCKPS<1:0> T32 ON — TSIDL — — — — TGATE TCKPS<1:0> —</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — ON — TSIDL — — — — — — TGATE TCKPS<1:0> — — —</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS<1:0> T32 — TCS ON — TSIDL — — — — — — — TGATE TCKPS<1:0> — — TCS</td> <td>Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON - TSIDL TCS - ON - TSIDL TCS - TCKPS<1:0> T32 - TCS - ON - TSIDL TGATE TCKPS<1:0> TCS -</td>	ON — TSIDL — Display 1000000000000000000000000000000000000	Timer4 Timer5 Holding Register (fc Timer5 Holding Register (fc Timer5 Period I ON — TSIDL — ON — TSIDL — — —	Timer4 Register Timer5 Holding Register (for 32-bit timer Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — —	Timer4 Register Timer5 Holding Register (for 32-bit timer operations o Timer5 Register 4 Period Register 4 Period Register 5 ON <u> </u>	Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS ON — TSIDL — — — — — — — TGATE TCKPS	Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS<1:0> ON — TSIDL — — — — — — — TGATE TCKPS<1:0>	Timer4 Register Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — TGATE TCKPS<1:0> T32 ON — TSIDL — — — — TGATE TCKPS<1:0> —	Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — TGATE TCKPS<1:0> T32 — ON — TSIDL — — — — — — TGATE TCKPS<1:0> — — —	Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON — TSIDL — — — — — — — TGATE TCKPS<1:0> T32 — TCS ON — TSIDL — — — — — — — TGATE TCKPS<1:0> — — TCS	Timer4 Register Timer5 Holding Register (for 32-bit timer operations only) Timer5 Holding Register (for 32-bit timer operations only) Timer5 Register Period Register 4 Period Register 5 ON - TSIDL TCS - ON - TSIDL TCS - TCKPS<1:0> T32 - TCS - ON - TSIDL TGATE TCKPS<1:0> TCS -

DS70292D-page 48

TABLE 4-6: INPUT CAPTURE REGISTER MAP

IADLL .	, -0.																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	apture Regist	er							xxxx
IC1CON	0142	_		ICSIDL	—	—	_	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	apture Regist	er							xxxx
IC2CON	0146	_		ICSIDL	—	—	_	_		ICTMR	ICI<	:1:0>	ICOV ICBNE ICM<2:0>					
IC7BUF	0158								Input 7 Ca	apture Regist	er							xxxx
IC7CON	015A	_		ICSIDL	—	—	_	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8Ca	pture Registe	er							xxxx
IC8CON	015E	_		ICSIDL	—	—	_	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	tput Compa	e 1 Seconda	ary Register							xxxx
OC1R	0182								Output Co	ompare 1 Re	gister							xxxx
OC1CON	0184	_	_	OCSIDL	—	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Ou	tput Compai	e 2 Seconda	ary Register							xxxx
OC2R	0188								Output Co	ompare 2 Re	gister							xxxx
OC2CON	018A	OCSIDL — — — — — OCFLT OCTSEL OCM<2:0>															0000	
OC3RS	018C							Ou	tput Compai	e 3 Seconda	ary Register							xxxx
OC3R	018E								Output Co	ompare 3 Re	gister							xxxx
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Ou	tput Compai	e 4 Seconda	ary Register							xxxx
OC4R	0194								Output Co	ompare 4 Re	gister							xxxx
OC4CON	0196	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_			_	_	—	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	_	—	—	—	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_			—	—										0000	
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT			—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_			—	—					Address	Register					0000
I2C1MSK	020C	_	_			_	—					Address Ma	isk Register					0000

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	TXISELI UTXINV UTXISELO — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXI															0110
U1TXREG	0224	_	_	_	_	_	_		UTX8			U	ART Transn	nit Register				xxxx
U1RXREG	0226	_	_	—	—	—	—	_	URX8			U	ART Receiv	ed Register				0000
U1BRG	0228							Bau	d Rate Ger	nerator Presc	aler							0000

TABLE 4-10: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	XISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA															0110
U2TXREG	0234	—	_	—	_	_	_	_	UTX8			U	ART Transn	nit Register				xxxx
U2RXREG	0236	—	_	—	_	_	_	_	URX8			l	JART Receiv	e Register				0000
U2BRG	0238							Bau	d Rate Ger	nerator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	—	—	_	_	—	SPIROV	—	_	—	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	—																0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	_		_	_	_	—	_	—	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	smit and Red	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	_	SPISIDL	—	—	—	_	_	-	SPIROV	_	_	—		SPITBF	SPIRBF	0000
SPI2CON1	0262	DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0															<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	-	_	_	_	_	_	_	_	_	-	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Trans	mit and Red	ceive Buffer	Register							0000

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
ADC1BUF0	0300								ADC Da	ata Buffer 0								xxxx	
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>		SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000	
AD1CON2	0322	V	CFG<2:0:	>	— — CSCNA CHPS<1:0> BUFS — SMPI<3:0> BUFM ALTS SAMC<4:0> ADCS<7:0> ADCS<7:0>										0000				
AD1CON3	0324	ADRC	_	_		S	AMC<4:0>	C<4:0> ADCS<7:0> 0000											
AD1CHS123	0326	_		_	_	—	CH123N	:0> ADCS<7:0> 0000 23NB - - - CH123NA<1:0> CH123SA 0000											
AD1CHS0	0328	CH0NB		_		C	H0SB<4:0>	>		CH0NA	_	_		С	H0SA<4:0	>	•	0000	
AD1PCFGL	032C	_		_									PCFG0	0000					
AD1CSSL	0330	_		_	CSS12 CSS11 CSS10 CSS9 — — — CSS5 CSS4 CSS3 CSS2 CSS1 CSS0									0000					
AD1CON4	0332	_	_	_	_	_	_	-	_	— — — — — — DMABL<2:0>								0000	

TABLE 4-13:ADC1 REGISTER MAP FOR dsPIC33FJ64GP202/802, dsPIC33FJ128GP202/802 AND dsPIC33FJ32GP302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ64GP204/804, dsPIC33FJ128GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ata Buffer 0								xxxx
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM		AD12B	FOR	M<1:0>		SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	V	′CFG<2:0	>	_		CSCNA	CHP	S<1:0>	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	_		S	AMC<4:0>						ADCS	<7:0>				0000
AD1CHS123	0326		—	_	_		CH123N	NB<1:0>	CH123SB		_	—			CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	_		С	H0SB<4:0>	>		CH0NA	—	—		С	H0SA<4:0:	>		0000
AD1PCFGL	032C		—	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330		_	_	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_		_		—	_			—	—			[DMABL<2:	0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: DAC1 REGISTER MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON	03F0	DACEN	-	DACSIDL	AMPON	_	—	-	FORM	-			D	ACFDIV<6:	0>			0000
DAC1STAT	03F2	LOEN		LMVOEN	_	_	LITYPE	LFULL	LEMPTY	ROEN		RMVOEN	_	_	RITYPE	RFULL	REMPTY	0000
DAC1DFLT	03F4								DAC1D	FLT<15:0>								0000
DAC1RDAT	03F6								DAC1RE	DAT<15:0>								0000
DAC1LDAT	03F8								DAC1LD	0AT<15:0>								0000

TABLE 4-16: DMA REGISTER MAP

	+-10.		LEGISI		Г	1		1		1	T			1			1	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	0E<1:0>	—	—	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	—	_	_	—		_	—	_				IRQSEL<6:0	>			0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S	STB<15:0>								0000
DMA0PAD	0388								F	AD<15:0>								0000
DMA0CNT	038A	_	_	_	_	_	_					CN	T<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD)E<1:0>	_	_	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	_	—	_	—	_	_	_	_				IRQSEL<6:0	>			0000
DMA1STA	0390								S	STA<15:0>								0000
DMA1STB	0392								S	STB<15:0>								0000
DMA1PAD	0394								F	AD<15:0>								0000
DMA1CNT	0396	_	_	_	_	_	_					CN	T<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW		—	_	_		AMOD)E<1:0>	—	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	_	—	_	_		_	_	_		•		IRQSEL<6:0:	>	•		0000
DMA2STA	039C			•	•			•	S	STA<15:0>	•							0000
DMA2STB	039E								S	STB<15:0>								0000
DMA2PAD	03A0								F	PAD<15:0>								0000
DMA2CNT	03A2			—	_	—	_					CN	T<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD)E<1:0>	_	—	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	_	—	_	—	_	_	_	_				IRQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	STB<15:0>								0000
DMA3PAD	03AC								F	AD<15:0>								0000
DMA3CNT	03AE			—	_	—	_					CN	T<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD)E<1:0>	_	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	_	—	_	—	_	_	_	_				IRQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	STB<15:0>								0000
DMA4PAD	03B8								F	AD<15:0>								0000
DMA4CNT	03BA	—	_	—	_	—	—					CN	T<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW		_	—	—	_	AMOD)E<1:0>	—	_	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	—	—	_	—		_	—	_				IRQSEL<6:0:	>			0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	STB<15:0>								0000
Legend:		nimplement	ed read as	s '0' Reset	values are	shown in he	vadecimal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: DMA REGISTER MAP (CONTINUED)

DMASPAD 03C4 PAD A <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								1											
DMASCNT 03C6 CNT<9:0> DMAGCON 03C8 CHEN SIZE DIR HALF NULLW AMODE<1:0> MODE<1:0> DMAGREQ 03C4 FORCE MODE<1:0> DMAGSTA 03CC MODE<1:0> DMAGSTA 03CC CNT<9:0> MODE<1:0> MODE<1:0> MODE<1:0> IRQSEL<6:0> IRQSEL<6:0> <td< th=""><th>File Name</th><th>Addr</th><th>Bit 15</th><th>Bit 14</th><th>Bit 13</th><th>Bit 12</th><th>Bit 11</th><th>Bit 10</th><th>Bit 9</th><th>Bit 8</th><th>Bit 7</th><th>Bit 6</th><th>Bit 5</th><th>Bit 4</th><th>Bit 3</th><th>Bit 2</th><th>Bit 1</th><th>Bit 0</th><th>All Resets</th></td<>	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA6CON 03C8 CHEN SIZE DIR HALF NULLW - - - AMODE<1:0> - - MODE<1:0> DMA6REQ 03CA FORCE - - - - - - MODE<1:0> - - - MODE<1:0> - - - - - - - - - - - - - - - - - - - NODE<1:0> NODE<1:0> - - MODE<1:0> - - MODE<1:0> - - MODE<1:0> - - - - -	DMA5PAD	03C4								P	AD<15:0>								0000
DMA6REQ 03CA FORCE - - - - - IRQSEL<6:0> DMA6STA 03CC - - - - STA<15:0> STA<15:0> DMA6STB 03C2 - - - - STA<15:0> STA<15:0> DMA6PAD 03D0 - - - - CNT<9:0> STA<15:0> DMA6CNT 03D2 - - - - - - OMA6STA DMA6CNT 03D2 - - - - - - OMA6STA OMA7STA OMA6STA OMA6ST	DMA5CNT	03C6	_	_	_	_	—	_					CNT	<9:0>					0000
DMA6STA 03CC STA<15:0> DMA6STB 03CE STA<15:0> DMA6PAD 03D0 PAD<15:0> DMA6CNT 03D2 — CNT<9:0> DMA7CON 03D4 CHEN SIZE DIR HALF NULLW - - - - AMODE<<1:0> - - MODE<1:0> DMA7REQ 03D6 FORCE - - - - - - - MODE<1:0> - - MODE<1:0> - - MODE<1:0> - - MODE<1:0> -	DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_		_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6STB 03CE STB<15:0> DMA6PAD 0300 PAD<15:0> DMA6CNT 03D2 - - - - CNT<9:0> DMA7CON 03D4 CHEN SIZE DIR HALF NULLW - - - - AMODE<1:0> - - MODE<1:0> DMA7CON 03D6 FORCE - - - - - - MODE<1:0> -	DMA6REQ	03CA	FORCE	_	_	_	—	_	_		_			I	RQSEL<6:0:	>			0000
DMA6PAD 03D0 PAD<15:0> DMA6CNT 03D2 - - - - CNT<9:0> DMA7CON 03D4 CHEN SIZE DIR HALF NULLW - - - AMODE<1:0> - - MODE<1:0> DMA7REQ 03D6 FORCE - - - - - AMODE<1:0> - - MODE<1:0> DMA7STA 03D8 - - - - - - IRQSEL<6:0> DMA7STB 03DA - <t< td=""><td>DMA6STA</td><td>03CC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S</td><td>TA<15:0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></t<>	DMA6STA	03CC								S	TA<15:0>								0000
DMA6CNT 03D2 CNT<9:0> DMA7CON 03D4 CHEN SIZE DIR HALF NULLW - AMODE<1:0> MODE<1:0> DMA7REQ 03D6 FORCE AMODE<1:0> MODE<1:0> DMA7REQ 03D6 FORCE - IRQSEL<6:0> DMA7STA 03D8 - - - - - - MODE<1:0> DMA7STB 03DA - - - - - - - - - IRQSEL<6:0> -	DMA6STB	03CE																	
DMA7CON 03D4 CHEN SIZE DIR HALF NULLW - - - - AMODE<1:0> - - MODE<1:0> DMA7REQ 0306 FORCE - - - - - - - MODE<1:0> DMA7REQ 0306 FORCE - - - - - - - MODE<1:0> DMA7STA 0308 - - - - - - - - - - - - - - - MODE<1:0> DMA7STA 0308 - - - - - - - STA<15:0> -	DMA6PAD	03D0					PAD<15:0> 0000												
DMA7REQ 03D6 FORCE — — — — — IRQSEL<6:0> DMA7STA 03D8	DMA6CNT	03D2	_	_	_	_													
DMA7STA 03D8 STA<15:0> DMA7STB 03DA STB<15:0> DMA7PAD 03DC PAD<15:0>	DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_	_		_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7STB 03DA STB<15:0> DMA7PAD 03DC PAD<15:0>	DMA7REQ	03D6	FORCE	_	_	_	—	_	_		_			I	RQSEL<6:0:	>			0000
DMA7PAD 03DC PAD<15:0>	DMA7STA	03D8								S	TA<15:0>								0000
	DMA7STB	03DA								S	TB<15:0>								0000
	DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT 03DE — — — — CNT<9:0>	DMA7CNT	03DE	_	_	_	_	—	_					CNT	<9:0>					0000
DMACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL	DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3												0000
DMACS1 03E2 LSTCH<3:0> PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPS	DMACS1	03E2	—	_	—	_		LSTCH<3:0> PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 0000										0000	
DSADR 03E4 DSADR<15:0>	DSADR	03E4								DS	ADR<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	7:	LOAN			P WHEN				(. •								1007)	
File Name	Add	r Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit	6 Bit	5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Al Res
C1CTRL1	0400) —	—	CSIDL	ABAT	—		REQOP<2:	0>	(OPMODE<	2:0>	—	CANCAP	—	—	WIN	048
C1CTRL2	0402	2 —				—	_	_	—	_				[DNCNT<4:)>		000
C1VEC	0404	· _	—	—			FILHIT<4:)>		—				ICODE<6:0)>			000
C1FCTRL	0406	6	DMABS<2	:0>	—	—	—	—	—	—	—	_			FSA<4:0>			000
C1FIFO	0408	3 —	—			FBF	P<5:0>			—	—			FNR	3<5:0>			000
C1INTF	040A	<u>۱</u> –		ТХВО	TXBP	RXBP	TXWA	R RXWAR	EWARN	IVRIF	WAK	IF ERF	IF —	FIFOIF	RBOVIF	RBIF	TBIF	000
C1INTE	0400	; –	—	_	_	—	-	-	—	IVRIE	WAK	IE ERF	IE —	FIFOIE	RBOVIE	RBIE	TBIE	000
C1EC	040E	:			TERRC	NT<7:0>			_				RERRC	NT<7:0>				000
C1CFG1	0410) —	—	—	—	—	—	—	—	SJ\	V<1:0>			BRP	<5:0>			000
C1CFG2	0412	2 —	WAKFIL	—	—	—		SEG2PH<2	:0>	SEG2PH	TS SAM	1	SEG1PH<	:2:0>	I	PRSEG<2:0)>	000
C1FEN1	0414	FLTEN1	5 FLTEN14	FLTEN13	B FLTEN12	FLTEN11	I FLTEN1	0 FLTENS	FLTEN8	FLTEN	FLTE	N6 FLTE	N5 FLTEN4	4 FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFF
C1FMSKSEL1	0418	B F7M	SK<1:0>	F6M	SK<1:0>	F5M	SK<1:0>	F4M	SK<1:0>	F3M	SK<1:0>	F2	MSK<1:0>	F1MS	K<1:0>	F0MS	K<1:0>	000
C1FMSKSEL2	041 <i>A</i>	F15N	ISK<1:0>	F14M	SK<1:0>	F13N	1SK<1:0>	F12M	SK<1:0>	F11M	SK<1:0>	F1	MSK<1:0>	F9MS	K<1:0>	F8MS	K<1:0>	000
TABLE 4-1					P WHEN Bit 12			N = 0 (F Bit 9	OR dsP Bit 8	IC33FJ ¹ Bit 7	1 28GP8 Bit 6	02/804 Bit 5	AND ds Bit 4	PIC33FJ Bit 3	64GP8(Bit 2)2/804) Bit 1	Bit 0	ARes
	0400- 041E							See	definition	when WIN	= x		-				•	
	•••=																	
	• • • • =	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	00
C1RXFUL1	0420									-				RXFUL3 RXFUL19	-	-	RXFUL0 RXFUL16	

RXOVF25 RXOVF24

TX1PRI<1:0>

TX3PRI<1:0>

TX5PRI<1:0>

TX7PRI<1:0>

RXOVF23

TXEN0

TXEN2

TXEN4

TXEN6

Received Data Word

Transmit Data Word

RXOVF22

TXABT0

TXABT2

TXABT4

TXABT6

RXOVF21

TXLARB0

TXLARB2

TXLARB4

TXLARB6

RXOVF20 RXOVF19

TXREQ0

TXREQ2

TXREQ4

TXREQ6

RTREN0

RTREN2

RTREN4

RTREN6

TXERR0

TXERR2

TXERR4

TXERR6

RXOVF18 RXOVF17 RXOVF16

TX0PRI<1:0>

TX2PRI<1:0>

TX4PRI<1:0>

TX6PRI<1:0>

Preliminary

C1RXOVF2

C1TR01CON

C1TR23CON

C1TR45CON

C1TR67CON

C1RXD

C1TXD

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

RXOVF29 RXOVF28

TXERR1

TXERR3

TXERR5

TXERR7

TXLARB1

TXLARB3

TXLARB5

TXLARB7

RXOVF27 RXOVF26

RTREN1

RTREN3

RTREN5

RTREN7

TXREQ1

TXREQ3

TXREQ5

TXREQ7

RXOVF31

TXEN1

TXEN3

TXEN5

TXEN7

RXOVF30

TXABT1

TXABT3

TXABT5

TXABT7

042A

0430

0432

0434

0436

0440

0442

0000

0000

0000

0000

0000

xxxx

xxxx

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			•					See defini	ion when W	/IN = x	•			•			
C1BUFPNT1	0420		F3BF	°<3:0>			F2BI	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BI	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	P<3:0>			F12BF	<3:0>		0000
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	15:8>							EID<	7:0>	•			xxx
C1RXF0SID	0440				SID<	10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	XXXX
C1RXF0EID	0442				EID<	15:8>							EID<	7:0>		•		XXXX
C1RXF1SID	0444				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxx
C1RXF1EID	0446				EID<	15:8>							EID<	7:0>		•		xxx
C1RXF2SID	0448				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxx
C1RXF2EID	044A				EID<	15:8>							EID<	7:0>				xxx
C1RXF3SID	044C				SID<	10:3>					SID<2:0>		-	EXIDE	—	EID<	17:16>	xxx
C1RXF3EID	044E				EID<	15:8>							EID<	7:0>				xxx
C1RXF4SID	0450				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF4EID	0452				EID<	15:8>							EID<	7:0>				xxx
C1RXF5SID	0454				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF5EID	0456				EID<	15:8>							EID<	7:0>				xxx
C1RXF6SID	0458				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF6EID	045A				EID<	15:8>							EID<	7:0>				xxx
C1RXF7SID	045C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF7EID	045E				EID<	15:8>							EID<	7:0>		_		xxx
C1RXF8SID	0460				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF8EID	0462				EID<	15:8>							EID<	7:0>				xxx
C1RXF9SID	0464				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF9EID	0466				EID<	15:8>							EID<	7:0>				xxx
C1RXF10SID	0468				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxx
C1RXF10EID	046A				EID<	15:8>							EID<	7:0>				xxx
C1RXF11SID	046C				SID<	10:3>					SID<2:0>		-	EXIDE	_	EID<	17:16>	xxx

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset S	State	
DCICON1	0280	DCIEN	—	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	—	—	—	COFSM1	COFSM0	0000	00000	0000 0	000
DCICON2	0282	_	—	_	_	BLEN1	BLEN0	_		COFS	G<3:0>		_		V	/S<3:0>		0000	0000 0	0000 0	000
DCICON3	0284	_	—	_	_						BCG<11	:0>						0000	0000 0	0000 0	000
DCISTAT	0286	_															TMPTY	0000	0000 0	0000 0	000
TSCON	0288	TSE15	TSE14 TSE13 TSE12 TSE11 TSE10 TSE9 TSE8 TSE7 TSE6 TSE5 TSE4 TSE3 TSE2 TSE1 TSE0														TSE0	0000	0000 0	0000 0	000
RSCON	028C	RSE15															RSE0	0000	0000 0	0000 0	000
RXBUF0	0290							Receive I	Buffer 0 Da	ta Regist	er							0000	0000 0	0000 0	000
RXBUF1	0292							Receive I	Buffer 1 Da	ita Regist	er							0000	0000 0	0000 0	000
RXBUF2	0294							Receive I	Buffer 2 Da	ta Regist	er							0000	0000 0	0000 0	000
RXBUF3	0296							Receive I	Buffer 3 Da	ta Regist	er							0000	0000 0	0000 0	000
TXBUF0	0298							Transmit	Buffer 0 Da	ata Regis	ter							0000	0000 0	0000 0	000
TXBUF1	029A							Transmit	Buffer 1 Da	ata Regis	ter							0000	0000 0	0000 0	000
TXBUF2	029C							Transmit	Buffer 2 Da	ata Regis	ter							0000	0000 0	0000 0	000
TXBUF3	029E							Transmit	Buffer 3 Da	ata Regis	ter							0000	0000 0	0000 0	000

Legend: — = unimplemented, read as '0'.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
RPINR0	0680	_	-	_			INT1R<4:0>			-		_	_	_	_	_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_			INT2R<4:0:	>		001F
RPINR3	0686	_	_	_			T3CKR<4:0>			_		_			T2CKR<4:0	>		1F1F
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			_		_			IC1R<4:0>			1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	_			IC7R<4:0>			1F1F
RPINR11	0696	_	_	_	_	_	_	_	_	_	_	_			OCFAR<4:0	>		001F
RPINR18	06A4	_	_	_			U1CTSR<4:0:	>		_	_	_			U1RXR<4:0	>		1F1F
RPINR19	06A6	_	_	_			U2CTSR<4:0:	>		_	_	_			U2RXR<4:0	>		1F1F
RPINR20	06A8	_	_	_			SCK1R<4:0>			_	_	_			SDI1R<4:0:	>		1F1F
RPINR21	06AA	_		_	_	_	_	_	_	_	_	_			SS1R<4:0>			001F
RPINR22	06AC	_	_	_			SCK2R<4:0>			_	_	_			SDI2R<4:0:	>		1F1F
RPINR23	06AE	_	_	_	_	_	_	_	_	_	_	_			SS2R<4:0>			001F
RPINR24	06B0	_	_	_			CSCKR<4:0>			_	_	_			CSDIR<4:0	>		1F1F
RPINR25	06B2	_		_	_	_	_	_	_	_	_	_			COFSR<4:0	>		001F
RPINR26 ⁽¹⁾	06B4	_		_	-	_	_	_	_	_	_	_			C1RXR<4:0	>		001F

TABLE 4-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP

© 2009 Microchip Technology Inc.

TABLE 4-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	—	—	-			RP1R<4:0;	>		—	-	—			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0;	>		_	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0;	>		_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0;	>		_	_	_			RP6R<4:0>			0000
RPOR4	06C8	_	_				RP9R<4:0;	>		—		_			RP8R<4:0>			0000
RPOR5	06CA	—	—	-			RP11R<4:0	>		—	_	—		I	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_		1	RP12R<4:0>			0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_		1	RP14R<4:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

			51 052															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	-	—	—			RP1R<4:0>			—	—	—			RP0R<4:0>			0000
RPOR1	06C2	_	—	—			RP3R<4:0>			_	—	—			RP2R<4:0>			0000
RPOR2	06C4		_	_			RP5R<4:0>			_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	—	—			RP7R<4:0>			_	—	—			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>			_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	_			RP10R<4:0>	•		0000
RPOR6	06CC	_	_	-			RP13R<4:0	>		_	_	_			RP12R<4:0;	•		0000
RPOR7	06CE	_	_	-			RP15R<4:0	>		_	_	_			RP14R<4:0;	•		0000
RPOR8	06D0		_	_			RP17R<4:0	>		_	_	_			RP16R<4:0>			0000
RPOR9	06D2		_	—			RP19R<4:0	>		_	_	_			RP18R<4:0>	•		0000
RPOR10	06D4	_	—	—			RP21R<4:0	>		_	—	—			RP20R<4:0>	•		0000
RPOR11	06D6	_	_	_			RP23R<4:0	>		_	_	_			RP22R<4:0>	•		0000
RPOR12	06D8	_	—	—			RP25R<4:0	>		—	_	_			RP24R<4:0>	,		0000

TABLE 4-24: PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	_	PSIDL	ADRMU	JX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	<1:0>														0000
PMADDR	0604	ADDR15	CS1		ADDR<13:0>													
PMDOUT1	0604				ADDR<13:0> Parallel Port Data Out Register 1 (Buffers 0 and 1)													
PMDOUT2	0606						P	Parallel Port I	Data Out Reo	gister 2 (Buff	iers 2 and 3)							0000
PMDIN1	0608							Parallel Port	Data In Reg	ister 1 (Buffe	ers 0 and 1)							0000
PMPDIN2	060A							Parallel Port	Data In Reg	ister 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	—	PTEN14	_	—	_	_	—	—	—	_	_	_	_	_	PTEN	<1:0>	0000
PMSTAT	060E	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF			OB3E	OB2E	OB1E	OB0E	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN		PSIDL	ADRML	JX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQN	1<1:0>	INCM	<1:0>	MODE16	MODE	=<1:0>	WAITE	3<1:0>		WAITM	/<3:0>		WAITE	E<1:0>	0000
PMADDR	0604	ADDR15	CS1		ADDR<13:0> Parallel Port Data Out Register 1 (Buffers 0 and 1)													
PMDOUT1	0604				ADDR<13:0> Parallel Port Data Out Register 1 (Buffers 0 and 1)													
PMDOUT2	0606						P	arallel Port I	Data Out Reg	gister 2 (Buff	ers 2 and 3)							0000
PMDIN1	0608							Parallel Port	Data In Regi	ster 1 (Buffe	ers 0 and 1)							0000
PMPDIN2	060A							Parallel Port	Data In Regi	ster 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	_	PTEN14	_	_	_					F	PTEN<10:0:	>					0000
PMSTAT	060E	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		_	OB3E	OB2E	OB1E	OB0E	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
A	ALRMVAL	0620		Alarm Value Register Window based on APTR<1:0>														xxxx	
A	ALCFGRPT	0622	ALRMEN	CHIME															0000
F	RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTC	PTR<1:0>							xxxx
F	RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				CAL	<7:0>				0000
				D .															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
CRCCON	0640	_	—	CSIDL		WWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>													
CRCXOR	0642								X<1	5:0>								0000	
CRCDAT	0644								CRC Data Ir	nput Register	r							0000	
CRCWDAT	0646								CRC Resu	ult Register								0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632	_	_	—		-			_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	—	_	_	_	_	—	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	—	—	—	_	_	_	—	_	_	_	—	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	_	_	—	_	_	_	_	—	_	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_		_			TRISA10	TRISA9	TRISA8	TRISA7		—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	-	_	_	_	_	RA10	RA9	RA8	RA7	_	_	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	-	_	_	_	_	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	_	_	_	-	-	ODCA10	ODCA9	ODCA8	ODCA7	_	—	-	—	—	-	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	—	_		_	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5		_	—	-	_	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	_	_	_	_	_	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	02D6	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	_	_	_	0000

TABLE 4-33: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	_	—	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	—		COSC<2:	0>	—	N	OSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF	—	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:	0>	DOZEN	FR	CDIV<2:0	>	PLLPOS	ST<1:0>	—		F	PLLPRE<4	4:0>		3040
PLLFBD	0746	_	_	_	—	_	_	_		•		P	LLDIV<8:0	>				0030
OSCTUN	0748	—	—	—	_	_	_	_	—	—	—			TUN	l<5:0>			0000
ACLKCON	074A	_	—	SELACLK	AOSCMD	<1:0>	APS	TSCLR<2:	0>	ASRCSEL	_	—		—	—	—	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-34: SECURITY REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	_	—	—		_	_	_	_	_	_		_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_		—	_	_	_	-	_	_	-	_	_	-	IW_ SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not present in devices with 4K RAM and 32K Flash memory.

TABLE 4-35: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	_	_	_	ERASE	_	—	NVMOP<3:0>			0000	
NVMKEY	0766	_	_	—			_	_		NVMKEY<7:0>				0000				

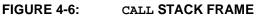
Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

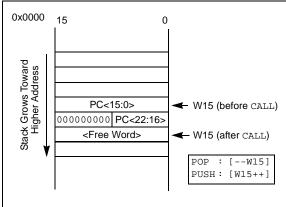
TABLE 4-36: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—		DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	—	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	-	-	CMPMD	RTCCMD	PMPMD	CRCMD	DAC1MD	_	_	—	_	—	-	0000

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-37 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	s avai	lable only	for W9
	(in X spac	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the $\ensuremath{\mathtt{MAC}}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

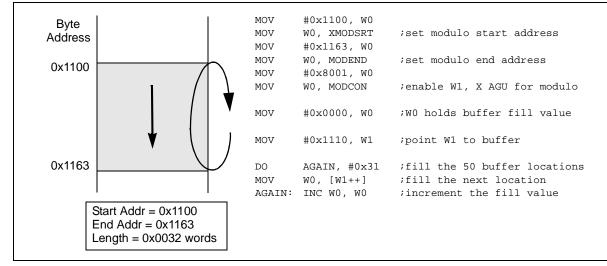
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

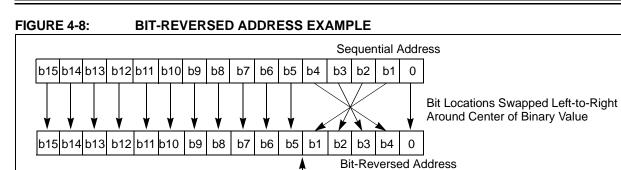
The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.


XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

Pivot Point

XB = 0x0008 for a 16-Word Bit-Reversed Buffer

TABLE 4-38: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

			_		- (,		
		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

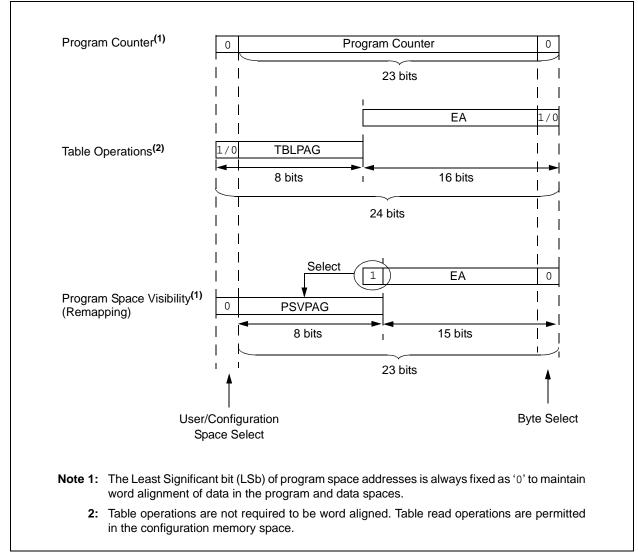

Table 4-39 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 4-39: PROGRAM SPACE ADDRESS CONSTRUCTION

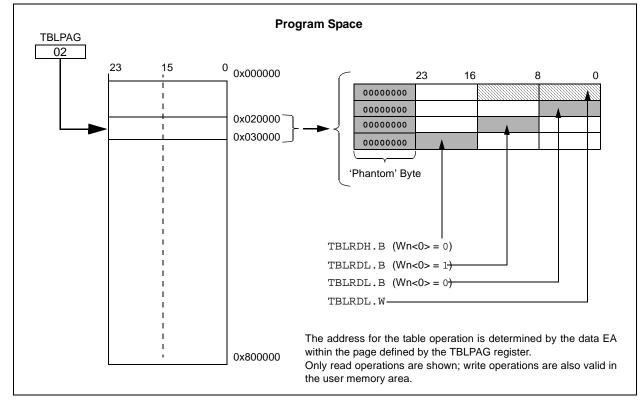
	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		PC<22:1>		0					
(Code Execution)		0xx xxxx xxxx xxxx xxx0									
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xx	xxxx xxxx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		1	xxx xxxx	xxxx x	xxx xxxx xxxx						
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾							
(Block Remap/Read)		0 xxxx xxxx xxx xxx xxx									

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

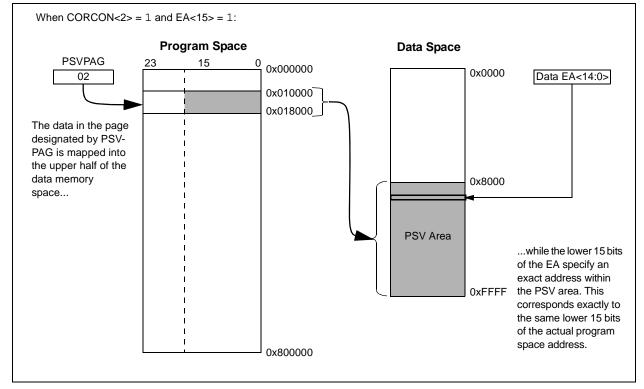
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

5.0 FLASH PROGRAM MEMORY

- This data sheet summarizes the features Note 1: dsPIC33FJ32GP302/304, of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 5. Flash Programming" (DS70191) of the "dsPIC33F/ PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

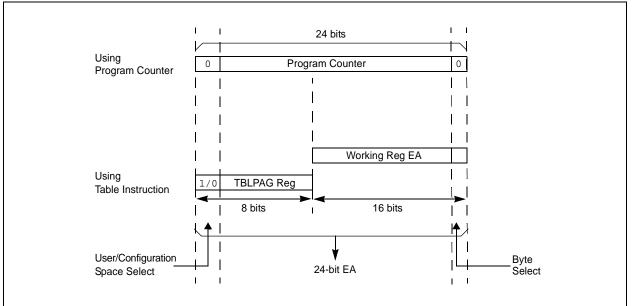
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows any of the following devices, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04, to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

5.2 RTSP Operation

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 30-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 30-12).

EQUATION 5-1: PROGRAMMING TIME

$$\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

REGISTER		IN: FLASH		CONTROL RE	GISTER					
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	_	_			—			
bit 15							bit			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0(1)			
0-0	ERASE	0-0	0-0	R/W-0		<3:0> ⁽²⁾	K/W-U			
 bit 7	ERASE	_	_		INVINOF	<3.0>(7	bit			
Legend:		SO = Setta	ble only bit							
R = Readable	e bit	W = Writab	le bit	U = Unimple	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	WR: Write Cor									
		Flash memor hardware on			on. The operation	on is self-timed	and the bit			
				lete and inactiv	e					
bit 14	WREN: Write I	•	a en le cemp		•					
	1 = Enable Fla		erase operati	ons						
	0 = Inhibit Flas									
bit 13	WRERR: Write	e Sequence E	rror Flag bit							
	1 = An improp	er program o	erase seque	ence attempt or	termination has	s occurred (bit i	s set			
	automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally									
			-	npleted normally	ý					
bit 12-7	Unimplemented: Read as '0'									
bit 6	ERASE: Erase	-								
					3:0> on the next P<3:0> on the n					
bit 5-4	Unimplement		-							
bit 3-0	NVMOP<3:0>:			ts(2)						
	If ERASE = 1:	opola								
	1111 = Memor	ry bulk erase o	operation							
	1110 = Reserved									
	1101 = Erase									
	1100 = Erase	•	ent							
	1011 = Reserved 0011 = No operation									
	0010 = Memor	0010 = Memory page erase operation								
	0001 = No operation									
	0000 = Erase a single Configuration register byte									
	<u> If ERASE = 0:</u>	If ERASE = 0:								
		1111 = No operation								
	1110 = Reserved									
	1101 = No operation 1100 = No operation									
	1011 = Reserv									
	0011 = Memor		am operation							
	0010 = No ope		nonorotion							
	0001 = Memor 0000 = Progra			egister byte						
				- 3.0.0. 0 , 10						
Note 1: ⊺	hese bits can only	be reset on	POR.							

2: All other combinations of NVMOP<3:0> are unimplemented.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

				-			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

		_ ·	
;	-	N for row programming op	erations
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first progra	m memory location to be written
;	program memo	ry selected, and writes	enabled
	MOV	#0x0000, W0	;
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
		#0x6000, W0	; An example program memory address
;	Perform the	TBLWT instructions to wr	ite the latches
;	0th_program_	word	
	MOV	#LOW_WORD_0, W2	i
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	lst_program_	word	
	MOV	#LOW_WORD_1, W2	;
	MOV	<pre>#HIGH_BYTE_1, W3</pre>	;
		W2, [W0]	; Write PM low word into program latch
		W3, [W0++]	; Write PM high byte into program latch
;			
	MOV		;
		<pre>#HIGH_BYTE_2, W3</pre>	;
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program		
	MOV	· · · · · · · · · · · · · · · · · · ·	;
	MOV	#HIGH_BYTE_31, W3	i
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 8. Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset

- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM** RESET Instruction Glitch Filter WDT Module Sleep or Idle BOR Internal SYSRST Regulator Vnn POR VDD Rise Detect **Trap Conflict** Illegal Opcode Uninitialized W Register **Configuration Mismatch**

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—			_	CM	VREGS
bit 15							bit
D/M/ O	DAM 0	DANO	DAMO	D/M/ O	D/M/ O	D/M/ 4	DAM 4
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR bit
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	TRAPR: Trap	Reset Flag bit					
		onflict Reset ha					
	•	onflict Reset ha					
bit 14		gal Opcode or			•		
	•	I opcode deteo Pointer caused		gal address mo	ode or uninitia	lized W registe	er used as a
		l opcode or unir		leset has not or	ccurred		
bit 13-10	Unimplemented: Read as '0'						
bit 9		ation Mismatch					
		ration mismatch ration mismatch					
bit 8	•	age Regulator S					
		egulator is active egulator goes in			eep		
bit 7	-	nal Reset (MCL	_	3	1		
		Clear (pin) Res Clear (pin) Res					
bit 6		re Reset (Instru					
	1 = A reset	instruction has instruction has	been execute	ed			
bit 5		oftware Enable/					
	1 = WDT is e						
	0 = WDT is di	isabled					
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	t			
		e-out has occur e-out has not oc					
bit 3		e-up from Sleep					
bit o		as been in Slee	•				
		as not been in S					
bit 2	IDLE: Wake-up from Idle Flag bit						
		as in Idle mode					
	0 = Device wa	as not in Idle m	ode				
	of the Reset st use a device R	atus bits can be eset.	e set or cleare	ed in software. S	Setting one of t	hese bits in sof	ware doe

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit

 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.1 System Reset

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

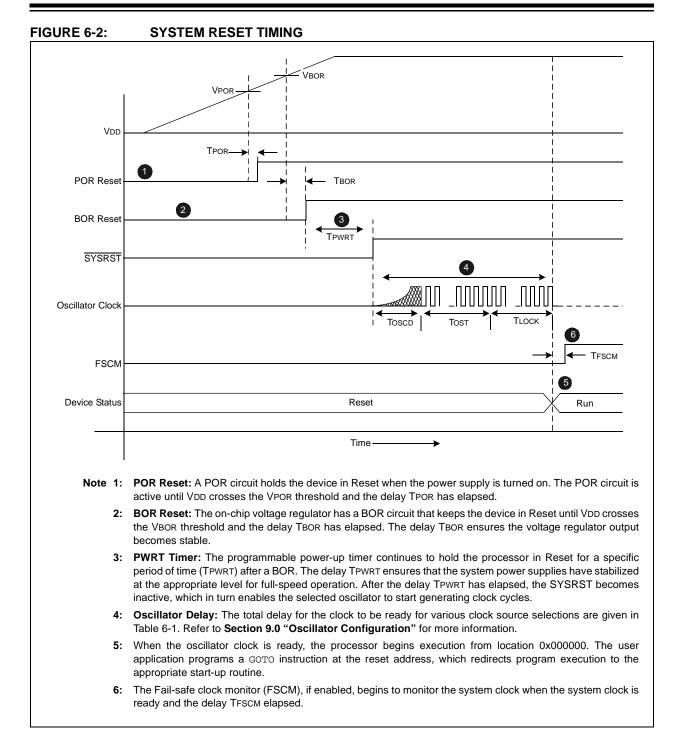

	DOILLATOR DELAT			
Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	—	_	Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—	—	—
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
SOSC	Toscd	Tost	—	TOSCD + TOST
LPRC	Toscd		—	Toscd

TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
Тғасм	Fail-Safe Clock Monitor Delay	900 μs maximum

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

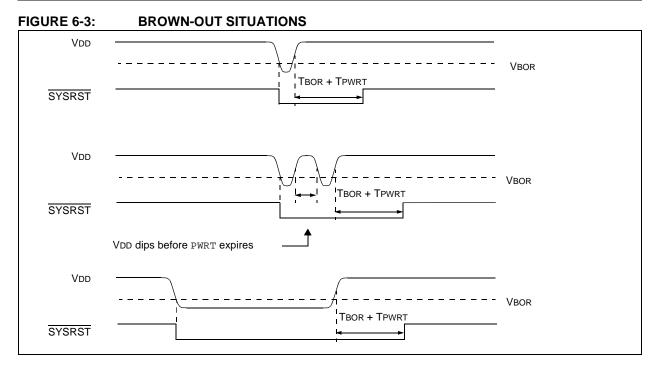
6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 30.0 "Electrical Characteristics"** for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)


The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 27.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

6.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse-width will generate a Reset. Refer to **Section 30.0 "Electrical Characteristics"** for minimum pulse-width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 27.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

6.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on trap conflict Resets.

6.7 **Configuration Mismatch Reset**

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to Section 11.0 "I/O Ports" for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.8 **Illegal Condition Device Reset**

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

TABLE 6-3:

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

RESET FLAG BIT OPERATION

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

UNINITIALIZED W REGISTER 6.8.0.2 RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

SECURITY RESET 6.8.0.3

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 27.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:	
TRAPR (RCON<15>)	Trap conflict event	POR,BOR	
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR	
CM (RCON<9>)	Configuration Mismatch	POR,BOR	
EXTR (RCON<7>)	MCLR Reset	POR	
SWR (RCON<6>)	RESET instruction	POR,BOR	
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR	
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR	
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR	
BOR (RCON<1>)	POR, BOR	—	
POR (RCON<0>)	POR	—	

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304, of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 32. Interrupts (Part III)" (DS70214) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bitwide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address. dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement up to 53 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 INTERRUPT VECTOR TABLE

		_	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
Drio	~		
r F	~		
orde	~		
O T	Interrupt Vector 116	0x0000FC	
nra	Interrupt Vector 117	0x0000FE	
Nat	Reserved	0x000100	
l Dí	Reserved	0x000102	
asir	Reserved	_	
Decreasing Natural Order Priority	Oscillator Fail Trap Vector Address Error Trap Vector	_	
Dec	Stack Error Trap Vector	_	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved		1
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	0,000114	
	~	-	
	~		
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~]	
	Interrupt Vector 116]	
Ļ	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	vectors.

IVT Address			
	AIVT Address	Interrupt Source	
0x000004	0x000104	Reserved	
0x000006	0x000106	Oscillator Failure	
0x00008	0x000108	Address Error	
0x00000A	0x00010A	Stack Error	
0x00000C	0x00010C	Math Error	
0x00000E	0x00010E	DMA Error	
0x000010	0x000110	Reserved	
0x000012	0x000112	Reserved	
0x000014	0x000114	INT0 – External Interrupt 0	
0x000016	0x000116	IC1 – Input Compare 1	
0x000018	0x000118	OC1 – Output Compare 1	
0x00001A	0x00011A	T1 – Timer1	
0x00001C	0x00011C	DMA0 – DMA Channel 0	
0x00001E	0x00011E	IC2 – Input Capture 2	
0x000020	0x000120	OC2 – Output Compare 2	
0x000022	0x000122	T2 – Timer2	
	0x000124	T3 – Timer3	
	0x000126	SPI1E – SPI1 Error	
	0x000128	SPI1 – SPI1 Transfer Done	
	0x00012A	U1RX – UART1 Receiver	
		U1TX – UART1 Transmitter	
		ADC1 – ADC 1	
		DMA1 – DMA Channel 1	
		Reserved	
		SI2C1 – I2C1 Slave Events	
		MI2C1 – I2C1 Master Events	
		CM – Comparator Interrupt	
		CN – Change Notification Interrupt	
		INT1 – External Interrupt 1	
	0x00013E	Reserved	
	0x000140	IC7 – Input Capture 7	
		IC8 – Input Capture 8	
		DMA2 – DMA Channel 2	
		OC3 – Output Compare 3	
		OC4 – Output Compare 4	
		T4 – Timer4	
		T5 – Timer5	
		INT2 – External Interrupt 2	
		U2RX – UART2 Receiver	
		U2TX – UART2 Transmitter	
		SPI2E – SPI2 Error	
		SPI2 – SPI2 Transfer Done	
		C1RX – ECAN1 RX Data Ready	
		C1 – ECAN1 Event	
		DMA3 – DMA Channel 3	
		Reserved	
		Reserved	
	0x000006 0x000008 0x00000A 0x00000C 0x00000E 0x000010 0x000012 0x000014 0x000016 0x000018 0x00001A 0x00001E 0x00001E 0x00001E 0x00001E	0x00006 0x000106 0x00000A 0x00010A 0x00000C 0x00010C 0x000010 0x00010E 0x0000110 0x000111 0x000012 0x000112 0x000014 0x000116 0x000015 0x000116 0x000016 0x000117 0x000017 0x000118 0x000018 0x000117 0x000010 0x000112 0x0000112 0x000112 0x000012 0x000112 0x000012 0x000112 0x000012 0x000120 0x000021 0x000122 0x000022 0x000124 0x000023 0x000124 0x000024 0x000124 0x000025 0x000122 0x000026 0x000130 0x000031 0x000132 0x000032 0x000132 0x000033 0x000134 0x000034 0x000134 0x000035 0x000134 0x000036 0x000134 0x000038 0x000134	

TABLE 7-1:INTERRUPT VECTORS

Vector	IVT Address	AIVT Address	Interrupt Source
Number			
47	0x000062	0x000162	Reserved
48	0x000064	0x000164	Reserved
49	0x000066	0x000166	Reserved
50	0x000068	0x000168	Reserved
51	0x00006A	0x00016A	Reserved
52	0x00006C	0x00016C	Reserved
53	0x00006E	0x00016E	PMP – Parallel Master Port
54	0x000070	0x000170	DMA – DMA Channel 4
55	0x000072	0x000172	Reserved
56	0x000074	0x000174	Reserved
57	0x000076	0x000176	Reserved
58	0x000078	0x000178	Reserved
59	0x00007A	0x00017A	Reserved
60	0x00007C	0x00017C	Reserved
61	0x00007E	0x00017E	Reserved
62	0x000080	0x000180	Reserved
63	0x000082	0x000182	Reserved
64	0x000084	0x000184	Reserved
65	0x000086	0x000186	Reserved
66	0x000088	0x000188	Reserved
67	0x00008A	0x00018A	DCIE – DCI Error
68	0x00008C	0x00018C	DCI – DCI Transfer Done
69	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	0x000090	0x000190	RTCC – Real Time Clock
71	0x000092	0x000192	Reserved
72	0x000094	0x000194	Reserved
73	0x000096	0x000196	U1E – UART1 Error
74	0x000098	0x000198	U2E – UART2 Error
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt
76	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request
79	0x0000A2	0x0001A2	Reserved
80	0x0000A4	0x0001A4	Reserved
81	0x0000A6	0x0001A6	Reserved
82	0x0000A8	0x0001A8	Reserved
83	0x0000AA	0x0001AA	Reserved
84	0x0000AC	0x0001AC	Reserved
85	0x0000AE	0x0001AE	Reserved
86	0x0000B0	0x0001B0	DAC1R – DAC1 Right Data Request
87	0x0000B2	0x0001B2	DAC1L – DAC1 Left Data Request
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved
00-120	0700000+-070000FE	0,000104-0,0001FE	Negelven

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

7.3 Interrupt Control and Status Registers

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-31 in the following pages.

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ^(2,3))	RA	N	OV	Z	С	
bit 7							bit (
Legend:								
C = Clear only bit R = Readable			e bit	U = Unimplemented bit, read as '0'				
S = Set only bi	t	W = Writable	bit	-n = Value at POR				
'1' = Bit is set '0' = Bit is clea			ared	x = Bit is unkı	nown			

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
bit 7-5	
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)

SR: CPU STATUS REGISTER⁽¹⁾

- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL < 3 > = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-1:

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend: C = Clear only bit			y bit				
R = Readable bit W = Writable bit		bit	-n = Value at POR '1' = E		'1' = Bit is set		
0' = Bit is cleare	is cleared 'x = Bit is unknown U = Unimplemented bit, read as '0'						
				•			

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3(2)

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7	-3: INTCO	N1: INTERR	UPI CONTR	OL REGISTE	IR 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit rea	d as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
		1 - Dit 13 36t					OWIT			
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit							
		nesting is disab								
	0 = Interrupt i	nesting is enab	led							
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit						
	1 = Trap was caused by overflow of Accumulator A									
bit 13	0 = Trap was not caused by overflow of Accumulator A									
DIL 13	OVBERR: Accumulator B Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator B									
	0 = Trap was not caused by overflow of Accumulator B									
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit									
	1 = Trap was caused by catastrophic overflow of Accumulator A									
	0 = Trap was not caused by catastrophic overflow of Accumulator A									
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit									
				flow of Accumu overflow of Accu						
bit 10	OVATE: Accumulator A Overflow Trap Enable bit									
	1 = Trap over 0 = Trap disa	flow of Accumu bled	ulator A							
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit									
	1 = Trap over 0 = Trap disa	flow of Accumu bled	ulator B							
bit 8	COVTE: Catastrophic Overflow Trap Enable bit									
	1 = Trap on c 0 = Trap disa		erflow of Accur	mulator A or B e	enabled					
bit 7	SFTACERR: Shift Accumulator Error Status bit									
		•	•	llid accumulator invalid accumul						
bit 6	DIV0ERR: Arithmetic Error Status bit									
			-	-						
	 1 = Math error trap was caused by a divide by zero 0 = Math error trap was not caused by a divide by zero DMACERR: DMA Controller Error Status bit 1 = DMA controller error trap has occurred 									
bit 5	1 = DMA cont	troller error trap	has occurred	ł						
bit 5 bit 4	1 = DMA con 0 = DMA con		has occurred has not occu	ł						

DECISTED 7 2 INTCOMA, INTERDURT CONTROL DECISTER 4

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER	7-4: INTC	ON2: INTERR	UPT CONT	ROL REGIST	ER 2				
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	—	—	—	—	—		
bit 15		·					bit		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
			_		INT2EP	INT1EP	INT0EP		
bit 7							bit		
Legend:									
R = Readabl	a hit	W = Writable	hit	II – I Inimplei	mented bit read	1 as 'O'			
-n = Value at	0.011	'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown					
		1 – Dit 13 3et							
bit 15 bit 14	1 = Use alt 0 = Use sta DISI: DISI 1 = DISI ir	able Alternate In ernate vector tabl indard (default) v Instruction Status istruction is active istruction is not a	le ector table s bit e	or Table bit					
bit 13-3	Unimpleme	ented: Read as '	0'						
bit 2	1 = Interrup	tternal Interrupt 2 ot on negative edg ot on positive edg	ge	ct Polarity Selec	t bit				
bit 1	1 = Interrup	tternal Interrupt 1 t on negative edg	ge	ct Polarity Selec	t bit				
	•	ot on positive edg							
bit 0	INTOEP: E>	NT0EP: External Interrupt 0 Edge Detect Polarity Select bit							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

1 = Interrupt on negative edge0 = Interrupt on positive edge

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGISTE	ER 0						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF				
bit 7	UCZIF	ICZIF	DIVIAULE	I HF	OCTIF	ICTIF	bit C				
<u> </u>							_				
Legend:											
R = Readable		W = Writable		-	nented bit, rea						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15	Unimplemer	nted: Read as '	0'								
bit 14	-	IA Channel 1 D		complete Interr	upt Flag Status	s bit					
	1 = Interrupt	request has oc request has no	curred								
bit 13	AD1IF: ADC	1 Conversion C	omplete Interr	upt Flag Statu	s bit						
		request has oc request has no									
bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit										
	•	request has oc request has no									
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit										
	•	request has oc request has no									
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit										
		request has oc request has no									
bit 9	SPI1EIF: SPI1 Error Interrupt Flag Status bit										
		request has oc request has no									
bit 8	T3IF: Timer3 Interrupt Flag Status bit										
	•	request has oc request has no									
bit 7	T2IF: Timer2 Interrupt Flag Status bit										
		request has oc request has no									
bit 6	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit										
		request has oc request has no									
1. 1. F	IC2IF: Input	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit									
bit 5											
5 110		request has oc request has no									
bit 4	0 = Interrupt	-	t occurred	complete Interr	upt Flag Status	s bit					
	0 = Interrupt DMA0IF: DN 1 = Interrupt	request has no	t occurred ata Transfer C curred	Complete Interr	upt Flag Status	s bit					
	0 = Interrupt DMA0IF: DM 1 = Interrupt 0 = Interrupt	request has no IA Channel 0 D request has oc	t occurred ata Transfer C curred t occurred	complete Interr	upt Flag Status	s bit					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER	7-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	ER 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7				.	•••••		bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
							-			
bit 15	U2TXIF: UA	RT2 Transmitte	r Interrupt Flag	status bit						
		t request has oc		,						
		t request has no								
bit 14	U2RXIF: UA	ART2 Receiver II	nterrupt Flag S	Status bit						
		t request has oc								
	•	t request has no								
bit 13		INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred								
bit 12	 0 = Interrupt request has not occurred T5IF: Timer5 Interrupt Flag Status bit 									
SIT 12		t request has oc								
		t request has no								
bit 11	T4IF: Timer	T4IF: Timer4 Interrupt Flag Status bit								
		t request has oc								
		t request has no								
bit 10	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit									
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
bit 9	0 = Interrupt request has not occurred OC3IF: Output Compare Channel 3 Interrupt Flag Status bit									
Dit 9	-	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred									
bit 8	DMA2IF: D	MA Channel 2 D	ata Transfer C	omplete Interr	upt Flag Status	s bit				
	DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt	t request has no	t occurred							
bit 7	IC8IF: Input Capture Channel 8 Interrupt Flag Status bit									
		1 = Interrupt request has occurred								
L:1.0	-	0 = Interrupt request has not occurred								
bit 6	-	IC7IF: Input Capture Channel 7 Interrupt Flag Status bit 1 = Interrupt request has occurred								
		t request has no								
bit 5		nted: Read as '								
bit 4	•	ernal Interrupt 1		t						
		t request has oc	-							
		t request has no								
bit 3	CNIF: Input	Change Notifica	ation Interrupt I	Flag Status bit						
		t request has oc								
	0 = Interrupt	t request has no	t occurred							

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER	7-7: IFS2:	INTERRUPT	FLAG STAT	US REGISTI	ER 2						
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—	DMA4IF	PMPIF	—	—	—	-	—				
bit 15							bit				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
0-0	0-0	0-0	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF				
bit 7			DIVIAGII	0111	OTIXI	01 1211	bit				
Legend:											
R = Readab		W = Writable			mented bit, read						
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15	Unimplomor	tod. Bood on	· ^ '								
bit 14	-	Unimplemented: Read as '0'									
DIL 14	DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred										
	•										
bit 13	 0 = Interrupt request has not occurred PMPIF: Parallel Master Port Interrupt Flag Status bit 										
	1 = Interrupt request has occurred										
	0 = Interrupt	request has no	ot occurred								
bit 12-5	Unimplemer	nted: Read as	'0'								
bit 4	DMA3IF: DM	DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 3		C1IF: ECAN1 Event Interrupt Flag Status bit ⁽¹⁾									
	1 = Interrupt request has occurred										
bit 2	0 = Interrupt request has not occurred										
DILZ	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit ⁽¹⁾										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit										
		request has oc	•								
		request has no									
bit 0	•	•	pt Flag Status I	bit							
		request has oc									
		request has no									

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts disabled on devices without ECAN[™] modules.

© 2009 Microchip Technology Inc.

	-0. II 05.						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	RTCIF	DMA5IF	DCIIF	DCIEIF	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	_	_	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimplemented: Read as '0'						
hit 11	BTCIE: Deal Time Cleak and Calendar Interrupt Flag Status hit						

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 13	DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 12	DCIIF: DCI Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 11	DCIEIF: DCI Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 10-0	Unimplemented: Read as '0'

REGISTER 7	-9: IFS4: I	NTERRUPT	FLAG STAT	US REGISTI	ER 4				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	—	—				_		
bit 15							bi		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_		
bit 7							bi		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F		(1) = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
							own		
bit 15	DAC1LIF: DA	C Left Channe	el Interrupt Fla	g Status bit ⁽²⁾					
	DAC1LIF: DAC Left Channel Interrupt Flag Status bit ⁽²⁾ 1 = Interrupt request has occurred								
	0 = Interrupt r	equest has no	t occurred						
bit 14	DAC1RIF: DAC Right Channel Interrupt Flag Status bit ⁽²⁾								
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
	•	•							
bit 13-7	Unimplement				(4)				
bit 6	C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit ⁽¹⁾								
	1 = Interrupt request has occurred								
L:4 C	0 = Interrupt request has not occurred								
bit 5	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit								
	 I = Interrupt request has occurred Interrupt request has not occurred 								
bit 4	DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 3	CRCIF: CRC Generator Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 2	U2EIF: UART2 Error Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 1		1 Error Interru		bit					
		equest has oc equest has no							
h # 0	-	-							
bit 0	Unimplement	ted: Read as '	U ¹						

INTEDDUDT ELAC STATUS DECISTED A 100 .

Note 1: Interrupts disabled on devices without ECAN[™] modules.

2: Interrupts disabled on devices without Audio DAC modules.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
<u> </u>	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE				
pit 15	Dimitie	ADTIE	OTIAL	OTIVIL	OTTIL	OFFICE	bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE				
bit 7			-1				bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own				
-											
bit 15	Unimpleme	nted: Read as	'0'								
bit 14	DMA1IE: DN	/A Channel 1	Data Transfer C	Complete Interru	upt Enable bit						
		1 = Interrupt request enabled									
bit 13		request not en		runt Enchla hit							
		AD1IE: ADC1 Conversion Complete Interrupt Enable bit									
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 12	U1TXIE: UART1 Transmitter Interrupt Enable bit										
	1 = Interrupt request enabled										
	-	request not en									
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 10	SPI1IE: SPI1 Event Interrupt Enable bit										
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 9	SPI1EIE: SPI1 Error Interrupt Enable bit										
	1 = Interrupt request enabled										
L:1. 0	0 = Interrupt request not enabled										
bit 8	T3IE: Timer3 Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 7	T2IE: Timer2	T2IE: Timer2 Interrupt Enable bit									
		1 = Interrupt request enabled									
	-	0 = Interrupt request not enabled									
bit 6	-	OC2IE: Output Compare Channel 2 Interrupt Enable bit									
	1 = Interrupt request enabled										
bit 5	 0 = Interrupt request not enabled IC2IE: Input Capture Channel 2 Interrupt Enable bit 										
	-	1 = Interrupt request enabled									
	0 = Interrupt request on abled										
bit 4	DMAOIE: DN	/A Channel 0 [Data Transfer C	Complete Interru	upt Enable bit						
		request enable									
	0 = Interrupt	request not en	abled								
	T 41 C T	-									
bit 3		I Interrupt Enal	ole bit								

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE			
bit 15	1						bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkn	iown			
bit 15	U2TXIE: UA	RT2 Transmitte	er Interrupt Ena	able bit						
		request enable								
	-	request not en								
bit 14		RT2 Receiver	•	e bit						
		request enable								
bit 13	0 = Interrupt request not enabled INT2IE: External Interrupt 2 Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 12	T5IE: Timer5 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 11	T4IE: Timer4 Interrupt Enable bit									
	 I = Interrupt request enabled Interrupt request not enabled 									
bit 10	O = Interrupt request not enabled OC4IE: Output Compare Channel 4 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 9	OC3IE: Output Compare Channel 3 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 8		DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit								
	 I = Interrupt request enabled I = Interrupt request not enabled 									
bit 7	 Interrupt request not enabled IC8IE: Input Capture Channel 8 Interrupt Enable bit 									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 6	IC7IE: Input	IC7IE: Input Capture Channel 7 Interrupt Enable bit								
	1 = Interrupt request enabled									
	-	request not en								
bit 5	-	nted: Read as								
bit 4		rnal Interrupt 1								
		request enable request not en								
bit 3	-	Change Notific		Enable bit						
	1 = Interrupt	request enable	ed							

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled

0 = Interrupt request not enabled

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—	DMA4IE	PMPIE	—	—	—		_				
bit 15						·	bit				
			DAMO	DAMO	DAM 0	DAVO	DAMO				
U-0	U-0	U-0	R/W-0 DMA3IE	R/W-0 C1IE ⁽¹⁾	R/W-0 C1RXIE ⁽¹⁾	R/W-0 SPI2IE	R/W-0 SPI2EIE				
 pit 7		_	DIVIASIE	CIIE()	CIRAL (SFIZIE	bit				
							Dit				
_egend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	=	Unimplemented: Read as '0'									
oit 14	DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit										
	1 = Interrupt request enabled										
bit 13	 0 = Interrupt request not enabled PMPIE: Parallel Master Port Interrupt Enable bit 										
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 12-5	Unimplemen	Unimplemented: Read as '0'									
bit 4	DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit										
	1 = Interrupt request enabled										
	0 = Interrupt request has enabled										
bit 3	C1IE: ECAN1 Event Interrupt Enable bit ⁽¹⁾										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit ⁽¹⁾										
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit										
	1 = Interrupt request enabled										
	•	request not en									
bit 0		2 Error Interru	-								
	1 = Interrupt request enabled										
	0 = Interrupt i	0 = Interrupt request not enabled									

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts disabled on devices without ECAN[™] modules.

	<i>i</i> =13. ieos.				OIOTEIX J				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
_	RTCIE	DMA5IE	DCIIE	DCIEIE	—	—	_		
bit 15		·					bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—		—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimplemer	ted: Read as '	כ'						
bit 14	RTCIE: Real	-Time Clock and	d Calendar In	terrupt Enable	bit				
	1 = Interrupt	request enabled	b						
	0 = Interrupt	request not ena	bled						
bit 13	DMA5IE: DM	1A Channel 5 Da	ata Transfer (Complete Interr	upt Enable bit				
		request enabled							
	0 = Interrupt	request not ena	bled						
bit 12	DCIIE: DCI Event Interrupt Enable bit								

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

1 = Interrupt request enabled0 = Interrupt request not enabledDCIEIE: DCI Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

Unimplemented: Read as '0'

bit 11

bit 10-0

REGISTER 7	-14: IEC4: I	NTERRUPT	ENABLE CO	ONTROL RE	GISTER 4						
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0				
DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	—	—	—	—	—	—				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—				
bit 7			·		• 		bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15		C Left Channe		able bit ⁽²⁾							
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 14	DAC1RIE: DAC Right Channel Interrupt Enable bit ⁽²⁾										
	1 = Interrupt request enabled										
	•	equest not ena									
bit 13-7	-	ted: Read as '			(4)						
bit 6	C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit ⁽¹⁾										
	 1 = Interrupt request occurred 0 = Interrupt request not occurred 										
bit 5	DMA7IE: DMA Channel 7 Data Transfer Complete Interrupt Enable bit										
	1 = Interrupt r	equest enable equest not ena	d	·							
bit 4	DMA6IE: DMA Channel 6 Data Transfer Complete Interrupt Enable bit										
		equest enable equest not ena									
bit 3	CRCIE: CRC Generator Interrupt Enable bit										
		equest enable equest not ena									
bit 2	U2EIE: UART2 Error Interrupt Enable bit										
		equest enable equest not ena									
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit								
		equest enable equest not ena									
bit 0	Unimplemen	ted: Read as '	0'								

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

Note 1: Interrupts disabled on devices without ECAN[™] modules.

2: Interrupts disabled on devices without Audio DAC modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T1IP<2:0>		_		OC1IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		IC1IP<2:0>		—		INT0IP<2:0>					
bit 7					1		bit (
Legend:											
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	Unimpleme	ented: Read as 'o)'								
bit 14-12	-										
	T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
		upt is priority 1 upt source is disa	abled								
bit 11		ented: Read as '0									
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interr	upt is priority 1									
		upt source is disa	abled								
bit 7											
bit 7 bit 6-4	Unimpleme	upt source is disa)'	errupt Priority b	its						
	Unimpleme IC1IP<2:0>	upt source is disa ented: Read as '0)' hannel 1 Inte		its						
	Unimpleme IC1IP<2:0>	rupt source is disa e nted: Read as '0 : Input Capture C)' hannel 1 Inte		its						
	Unimpleme IC1IP<2:0> 111 = Interr • • • 001 = Interr	upt source is disa ented: Read as '0 : Input Capture C upt is priority 7 (h upt is priority 1)' hannel 1 Inte nighest priori		its						
bit 6-4	Unimpleme IC1IP<2:0> 111 = Interr • • • • 001 = Interr 000 = Interr	rupt source is disa ented: Read as 'C : Input Capture C rupt is priority 7 (h rupt is priority 1 rupt source is disa	₎ , hannel 1 Inte nighest priori abled		its						
bit 6-4 bit 3	Unimpleme IC1IP<2:0> 111 = Interr • • • 001 = Interr 000 = Interr Unimpleme	Pupt source is disa ented: Read as '0 Input Capture C Pupt is priority 7 (h Pupt is priority 1 Pupt source is disa ented: Read as '0	₎ , hannel 1 Inte nighest priori abled ,	ty interrupt)	its						
bit 6-4	Unimpleme IC1IP<2:0> 111 = Interr • • • 001 = Interr 000 = Interr Unimpleme INT0IP<2:0	rupt source is disa ented: Read as 'C : Input Capture C rupt is priority 7 (h rupt is priority 1 rupt source is disa)' hannel 1 Inte nighest priori abled)' upt 0 Priority	ty interrupt)	its						
bit 6-4 bit 3	Unimpleme IC1IP<2:0> 111 = Interr • • • 001 = Interr 000 = Interr Unimpleme INT0IP<2:0	upt source is disa ented: Read as '0 : Input Capture C upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 >: External Intern)' hannel 1 Inte nighest priori abled)' upt 0 Priority	ty interrupt)	its						
bit 6-4 bit 3	Unimpleme IC1IP<2:0> 111 = Interr • • • 001 = Interr 000 = Interr Unimpleme INT0IP<2:0	upt source is disa ented: Read as '0 : Input Capture C upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 >: External Intern)' hannel 1 Inte nighest priori abled)' upt 0 Priority	ty interrupt)	its						
bit 6-4 bit 3	Unimpleme IC1IP<2:0> 111 = Interr 001 = Interr 000 = Interr Unimpleme INT0IP<2:0 111 = Interr	upt source is disa ented: Read as '0 : Input Capture C upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 >: External Intern)' hannel 1 Inte nighest priori abled)' upt 0 Priority	ty interrupt)	its						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		T2IP<2:0>				OC2IP<2:0>					
bit 15							bit				
	DAM 4	D/M/ O	DAM 0		D/M/ 4	DAMO	DAM 0				
U-0	R/W-1	R/W-0 IC2IP<2:0>	R/W-0	U-0	R/W-1	R/W-0 DMA0IP<2:0>	R/W-0				
bit 7		10211 <2.02				DIMAUL <2.0>	bit				
Legend:											
R = Readab		W = Writable I	oit	-	mented bit, rea						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
hit 15	Unimalama	nted. Dood oo '	、 ,								
bit 15	-	ented: Read as '(
bit 14-12		Timer2 Interrupt	-	the interrupt)							
	•	rupt is priority 7 (h	lignest phon	ity interrupt)							
	•										
	•										
		upt is priority 1	- -								
		upt source is disa									
bit 11	•	ented: Read as '0									
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Interr	upt is priority 7 (r	nignest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
		upt source is disa									
bit 7	-	ented: Read as 'o									
bit 6-4		: Input Capture C			oits						
	111 = Interr	rupt is priority 7 (h	highest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
		upt source is disa									
bit 3	-	ented: Read as '0									
bit 2-0		0>: DMA Channe		-	e Interrupt Prio	rity bits					
	111 = Interr	upt is priority 7 (h	nghest priori	ty interrupt)							
	•										
	•										
		upt is priority 1									
	000 – Interr	upt source is disa	ablad								

.... DDIODITY CONTROL DECISTED 4 16

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		U1RXIP<2:0>				SPI1IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		SPI1EIP<2:0>				T3IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown				
bit 15	-	ented: Read as '									
bit 14-12		0>: UART1 Rece	-	-							
	111 = Inter	rupt is priority 7 (I	highest priori	ty interrupt)							
	•										
	•										
		rupt is priority 1 rupt source is dis	abled								
bit 11		ented: Read as '									
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 7		ented: Read as '									
	-			ity hito							
bit 6-4	SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) 										
	•										
	•										
		rupt is priority 1 rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as '	0'								
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits								
		rupt is priority 7 (I	-	ty interrupt)							
	•										
	•										
	•	munt in priority 4									
		rupt is priority 1 rupt source is dis	ahled								
	000 = Intell		abieu								

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_		DMA1IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0		R/W-0	R/W-0				
0-0	K/VV-1	AD1IP<2:0>	R/W-U	0-0	R/W-1	U1TXIP<2:0>	R/W-0				
 bit 7		ADTIF<2.0>		_		011/17<2.0>	bit (
							Dit (
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown				
bit 15-11	Unimpleme	nted: Read as '	0'								
bit 10-8	DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is priority 1										
		upt source is dis	abled								
bit 7		nted: Read as '									
bit 6-4	-	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3		nted: Read as '									
bit 2-0	-			nt Priority bite							
DIL 2-0		U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
		upi is priority 7 (ingriest priorit	y mienupi)							
	•										
	•										
	001 = Interr	001 = Interrupt is priority 1									

000 = Interrupt source is disabled

REGISTER 7-19:	IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		CNIP<2:0>				CMIP<2:0>						
bit 15					• •		bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		MI2C1IP<2:0>		_		SI2C1IP<2:0>						
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit, rea	ad as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own					
				0 2000 000								
bit 15	Unimpleme	ented: Read as 'd)'									
bit 14-12	CNIP<2:0>	: Change Notifica	tion Interrup	t Priority bits								
	111 = Inter	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	• 001 = Interrupt is priority 1											
		rupt source is dis	abled									
bit 11		ented: Read as 'o										
bit 10-8	CMIP<2:0>: Comparator Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 7		ented: Read as '(
bit 6-4	-			rupt Priority bit	3							
	MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
		rupt source is dis	abled									
bit 3		ented: Read as '(
bit 2-0	-	:0>: I2C1 Slave E		int Priority hits								
51120		rupt is priority 7 (I										
	•			-,								
	•											
	•											
		rupt is priority 1	abled									
	000 = Inter	rupt source is dis	apied									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		IC8IP<2:0>				IC7IP<2:0>				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
					1\/ \V-1	INT1IP<2:0>	10/00-0			
bit 7						111111 \2.02	bit (
Legend:			,		6 11 26					
R = Readab		W = Writable I	DIt	•	mented bit, rea					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 11		ented: Read as 'o								
bit 10-8	<pre>IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
bit 7-3		ented: Read as 'o								
bit 2-0	INT1IP<2:0	>: External Interr	upt 1 Priority	bits						
	111 = Interr •	rupt is priority 7 (ł	nighest priorit	y interrupt)						

001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T4IP<2:0>				OC4IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		OC3IP<2:0>				DMA2IP<2:0>					
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimplem	ented: Read as 'o) '								
bit 14-12	-										
Dit 14-12	T4IP<2:0>: Timer4 Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) 										
	•										
	• 001 = Interrupt is priority 1										
		rupt is priority 1 rupt source is disa	abled								
bit 11		•									
bit 10-8	Unimplemented: Read as '0' OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 7	Unimpleme	ented: Read as ')'								
bit 6-4	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	• 001 = Interrupt is priority 1										
		rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as ')'								
bit 2-0	DMA2IP<2:	:0>: DMA Channe	el 2 Data Tra	insfer Complete	e Interrupt Prior	rity bits					
		rupt is priority 7 (ł	nighest priori	ty interrupt)							
	•										
	•										
		rupt is priority 1									
	000 = Interi	rupt source is disa	abled								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		U2TXIP<2:0>				U2RXIP<2:0>					
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		INT2IP<2:0>		—		T5IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
	<u> </u>						-				
bit 15	Unimpleme	nted: Read as '	0'								
bit 14-12											
	111 = Interru	U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
		-									
bit 11	-	nted: Read as '									
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
	• 001 = Interrupt is priority 1										
		ipt is priority 1 ipt source is dis	ahled								
bit 7		-									
bit 6-4	Unimplemented: Read as '0' INT2IP<2:0>: External Interrupt 2 Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) 										
	•										
	• 001 = Interru	• 001 = Interrupt is priority 1									
		pt source is dis	abled								
bit 3	Unimpleme	nted: Read as '	0'								
bit 2-0	T5IP<2:0>: ⊺	Timer5 Interrupt	Priority bits								
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)							
	•										
	•										
		upt is priority 1									
	000 = Interru	upt source is dis	abled								

REGISTER 7-23:	IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		C1IP<2:0> ⁽¹⁾				C1RXIP<2:0>(1)						
bit 15					•		bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		SPI2IP<2:0>				SPI2EIP<2:0>						
bit 7							bit (
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						ad as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown					
bit 15	Unimplemented: Read as '0'											
bit 14-12		ECAN1 Event In										
	111 = Interr	upt is priority 7 (h	nighest priori	ty interrupt)								
	•	•										
	•											
	001 = Interrupt is priority 1											
	000 = Interr	upt source is disa	abled									
bit 11	Unimpleme	ented: Read as '0)'									
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits ⁽¹⁾											
	111 = Interrupt is priority 7 (highest priority interrupt)											
			lignest priori	ty interrupt)								
	•	артюрнон у т (.	lighest phon	ty interrupt)								
	• • •	ep 10 p 10.1.9 1 (.	lighest phon	ty interrupt)								
	• •		ngriest priori	ty interrupt)								
	• • 001 = Interr	upt is priority 1 upt source is disa		ty interrupt)								
bit 7	• • 001 = Interr 000 = Interr	upt is priority 1	abled	ty interrupt)								
bit 7 bit 6-4	• • 001 = Interr 000 = Interr Unimpleme	rupt is priority 1 rupt source is disa	abled									
	• • • 001 = Interr 000 = Interr Unimpleme SPI2IP<2:0:	upt is priority 1 upt source is disa ented: Read as '0	abled)' errupt Priorit	y bits								
	• • • 001 = Interr 000 = Interr Unimpleme SPI2IP<2:0:	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int	abled)' errupt Priorit	y bits								
	• • • 001 = Interr 000 = Interr Unimpleme SPI2IP<2:0:	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int	abled)' errupt Priorit	y bits								
	• 001 = Interr 000 = Interr Unimpleme SPI2IP<2:0 111 = Interr •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int	abled)' errupt Priorit	y bits								
	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int upt is priority 7 (h	abled o' errupt Priorit nighest priori	y bits								
bit 6-4	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int upt is priority 7 (h	abled o' rerrupt Priorii nighest priori	y bits								
bit 6-4 bit 3	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '(>: SPI2 Event Int upt is priority 7 (h upt is priority 1 upt source is disa	abled)' errupt Priorit nighest priori abled	ty bits ty interrupt)								
bit 6-4 bit 3	• • • • • • • • • • • • • •	rupt is priority 1 rupt source is disa ented: Read as '0 >: SPI2 Event Int rupt is priority 7 (h rupt is priority 1 rupt source is disa ented: Read as '0	abled o' errupt Priorit nighest priori abled o' iterrupt Prior	ty bits ty interrupt) ity bits								
	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 0>: SPI2 Error In	abled o' errupt Priorit nighest priori abled o' iterrupt Prior	ty bits ty interrupt) ity bits								
bit 6-4 bit 3	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 0>: SPI2 Error In	abled o' errupt Priorit nighest priori abled o' iterrupt Prior	ty bits ty interrupt) ity bits								
bit 6-4 bit 3	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa ented: Read as '0 >: SPI2 Event Int upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 0>: SPI2 Error In	abled o' errupt Priorit nighest priori abled o' iterrupt Prior	ty bits ty interrupt) ity bits								

Note 1: Interrupts disabled on devices without ECAN[™] modules.

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—				
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
	—	—	—	—	DMA3IP<2:0>			
bit 7						bit 0		
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P						nown		

bit 15-3 Unimplemented: Read as '0'

DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)

•

bit 2-0

•

• 001 = Interrupt is priority 1

000 =Interrupt source is disabled

REGISTER 7-25:	IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11
----------------	--

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	bit 8 U-0 — bit 0							
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 - PMPIP<2:0> - - - oit 7 .egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	U-0 — bit (
— PMPIP<2:0> — Divit 7 Legend: R R Readable bit W = Writable bit U = Unimplemented bit, read as '0' M Main as '0' Eit is cleared x = Bit is unknow X = Bit is unknow X = Bit is unknow Divit 15-11 Unimplemented: Read as '0' DMA4IP Z:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits X = Divit Vite X = Divit Vite	bit							
- PMPIP<2:0> - - - bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	bit (
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknowbit 15-11Unimplemented: Read as '0'bit 10-8DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	vn							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	vn							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	vn							
bit 15-11Unimplemented: Read as '0'bit 10-8DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits	vn							
bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits								
 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled 	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>							
bit 7 Unimplemented: Read as '0'								
<pre>bit 6-4 PMPIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>								
bit 3-0 Unimplemented: Read as '0'								

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—		DCIEIP<2:0>			—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	_	—			
bit 7 bit 0										
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown							
bit 15	Unimplemen	ted: Read as 'd)'							
bit 14-12	DCIEIP<2:0>	: DCI Error Inte	errupt Priority	bits						
	111 = Interru	ot is priority 7 (ł	nighest priorit	y interrupt)						
	•									
	•									

000 = Interrupt source is disabledbit 11-0Unimplemented: Read as '0'

001 = Interrupt is priority 1

REGISTER 7-27: IF	PC15: INTERRUPT PRIORITY CONTROL REGISTER 15
-------------------	--

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	— — — — RTCIP<2:0>									
bit 15		·		·			bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—		DMA5IP<2:0>		—		DCIIP<2:0>				
bit 7							bit			
Legend:										
R = Readab	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10-8	RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Flag Status bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	• 001 = Interrupt is priority 1									
		pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4	DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 3-0										
		DCIIP<2:0>: DCI Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)								
	•		ingriest priorit	y interrupt)						
	•									
	•									
	001 = Interru									
	000 = Interrupt source is disabled									

© 2009 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		CRCIP<2:0> — U2EIP<2:0>								
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
		U1EIP<2:0>		—	_	—	—			
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
			-1							
bit 15	-	ented: Read as '								
bit 14-12	CRCIP<2:0>: CRC Generator Error Interrupt Flag Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	001 = Interrupt is priority 1									
	000 = Interr	upt source is dis	abled							
bit 11	Unimplemented: Read as '0'									
bit 10-8	U2EIP<2:0>: UART2 Error Interrupt Priority bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	• 001 = Interrupt is priority 1									
	000 = Interrupt source is disabled									
bit 7	Unimpleme	ented: Read as ')'							
bit 6-4	U1EIP<2:0>	UART1 Error li	nterrupt Prio	rity bits						
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)						
	•									
	•									
	• 001 – Interr	upt is priority 1								
		upt is priority i upt source is dis	abled							
		and a de Dana dana (

- -_ _ _ _

Unimplemented: Read as '0' bit 3-0

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_		—	_	_	(C1TXIP<2:0> ⁽¹⁾					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		DMA7IP<2:0>		—		DMA6IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
bit 15-11	Unimplement	ed: Read as '0	,								
bit 10-8	C1TXIP<2:0>	ECAN1 Trans	mit Data Re	quest Interrupt	Priority bits ⁽¹⁾						
		ot is priority 7 (h			-						
	•										
	•										
	001 = Interrupt is priority 1										
		ot source is disa	abled								
bit 7	Unimplement	ted: Read as '0	,								
bit 6-4	DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits										
	111 = Interrup	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•		lighest phon	ity interrupt)							
	•		lighest phon	ity interrupt)							
	• • 001 = Interrup	ot is priority 1	lighest phon	ity interrupt)							
	• • 001 = Interrup 000 = Interrup	ot is priority 1 ot source is disa		ty interrupt)							
bit 3	000 = Interrup		abled	ty interrupt)							
	000 = Interrup Unimplement	ot source is disa ted: Read as '0	abled	ty interrupt) Insfer Complete	Interrupt Priori	ty bits					
	000 = Interrup Unimplement DMA6IP<2:0>	ot source is disa ted: Read as '0	abled ,' 6 Data Tra	insfer Complete	Interrupt Priori	ty bits					
	000 = Interrup Unimplement DMA6IP<2:0>	ot source is disa ed: Read as '0 : DMA Channe	abled ,' 6 Data Tra	insfer Complete	Interrupt Priori	ty bits					
bit 3 bit 2-0	000 = Interrup Unimplement DMA6IP<2:0>	ot source is disa ed: Read as '0 : DMA Channe	abled ,' 6 Data Tra	insfer Complete	Interrupt Priori	ty bits					
	000 = Interrup Unimplement DMA6IP<2:0>	ot source is disa ted: Read as '0 : DMA Channe ot is priority 7 (h	abled ,' 6 Data Tra	insfer Complete	Interrupt Priori	ty bits					

Note 1: Interrupts disabled on devices without ECAN[™] modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_		DAC1LIP<2:0>	1)		DAC1RIP<2:0> ⁽¹⁾		1)				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	_	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable bit $W = Writable bit$				U = Unimpler	mented bit, read	d as '0'					
-n = Value at POR '1' = Bit				'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	Unimpleme	nted: Read as '	0'								
bit 14-12	DAC1LIP<2:0>: DAC Left Channel Interrupt Flag Status bit ⁽¹⁾										
	111 = Interr	upt is priority 7 (highest prior	ity interrupt)							
	•	•									
	•	•									
	001 = Interr	• 001 = Interrupt is priority 1									
		upt source is dis	abled								
bit 11	Unimpleme	ented: Read as '	0'								
bit 10-8	DAC1RIP<2	2:0>: DAC Right	Channel Inte	errupt Flag Statu	us bit ⁽¹⁾						
	111 = Interr	upt is priority 7 (highest prior	ity interrupt)							
	•										
	•										
	•										

-- ..

bit 7-0 Unimplemented: Read as '0'

001 = Interrupt is priority 1 000 = Interrupt source is disabled

Note 1: Interrupts disabled on devices without Audio DAC modules.

REGISTER 7-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

						.			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
_	_	—	_		ILI	R<3:0>			
bit 15							bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
_				VECNUM<6:0	>				
bit 7	·						bit 0		
Legend:									
R = Readab	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	t POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown			nown			
bit 15-12	Unimpleme	nted: Read as '	0'						
bit 11-8	-	ew CPU Interru		/el bits					
		I Interrupt Priorit							
	•		,						
	•								
	•								
		J Interrupt Priorit J Interrupt Priorit							
L:1.7		•	,						
bit 7	-	nted: Read as '							
bit 6-0		:0>: Vector Nun		•	5				
	0111111 =	Interrupt Vector	pending is nu	mber 135					
	•								
	•								
	•	Interrupt Vector	pending is pu	umber 0					
		Interrupt Vector							

0000000 = Interrupt Vector pending is number 8

© 2009 Microchip Technology Inc.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 38. Direct Memory Access (DMA) (Part III)" (DS70215) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

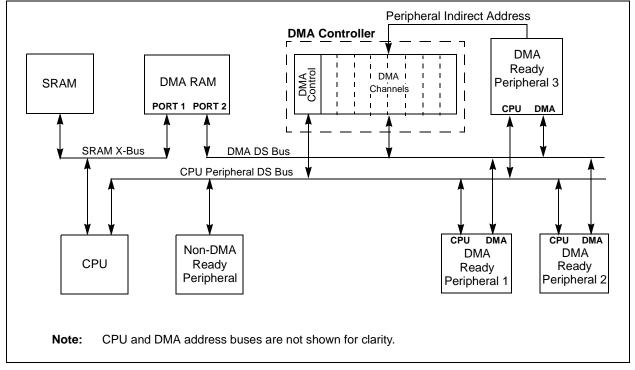
Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read from Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	_
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	_	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 convert done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—
PMP – Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)
DCI – Codec Transfer Done	0111100	0x0290 (RXBUF0)	0x0298 (TXBUF0)
DAC1 – Right Data Output	1001110	—	0x03F6 (DAC1RDAT)
DAC2 – Left Data Output	1001111	—	0x03F8 (DAC1LDAT)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAx-STA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CHEN	SIZE	DIR	HALF	NULLW	_		_				
bit 15			1				bit				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
0-0	0-0	1	E<1:0>	0-0	0-0	1	E<1:0>				
 bit 7	_	AMOD	E<1.0>	_	_	MODE	bit				
Legend:											
R = Readab		W = Writable		-	nented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown				
		nal Frakla kit									
bit 15	1 = Channel	nnel Enable bit									
	0 = Channel										
bit 14		Fransfer Size bi	ł								
	1 = Byte		•								
	0 = Word										
bit 13	DIR : Transfer Direction bit (source/destination bus select)										
				to peripheral ad o DMA RAM ad							
bit 12	HALF: Early	Block Transfer	Complete Int	errupt Select bit							
			•	ipt when half of ipt when all of th							
bit 11		I Data Peripher	-	-		en moveu					
		•			write (DIR hit)	must also be cle	ar)				
	0 = Normal c										
bit 10-6	Unimpleme	nted: Read as '	0'								
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating	Mode Select bits	S						
		•	•	ct Addressing m	ode)						
	10 = Peripheral Indirect Addressing mode										
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode										
bit 3-2		nted: Read as '									
bit 1-0	•			ode Select bits							
	MODE<1:0>: DMA Channel Operating Mode Select bits 11 = Ope-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)										
	 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 										
	10 = Continu		g modes enab	oled			buller)				

_ _ _ _ _

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾	—	—	_	—	—	_	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	IRQSEL6<6:0> ⁽²⁾									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15	1 = Force a s	e DMA Transfe ingle DMA tran DMA transfer	sfer (Manual	,						
bit 14-7	Unimplemen	ted: Read as 'd	כ'							
bit 6-0	IRQSEL<6:0	-: DMA Periphe	eral IRQ Num	ber Select bits	(2)					
	0000000-112	L1111 = DMAI	RQ0-DMAIRC	Q127 selected t	to be Channel D	MAREQ				
Note 1: Th	e FORCE bit c	annot be cleare	ed by the use	er. The FORCE	bit is cleared b	y hardware wh	en the forced			

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

DMA transfer is complete.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				<15:8>				
bit 15							bit 8	
	DAMA	DAM 0	DAMA	DAMA	DAM 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	A<7:0>				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is un			nown		

REGISTER 8-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A⁽¹⁾

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STB	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is un			nown	

bit 15-0 **STB<15:0>:** Secondary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$			

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	_	_	_	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0> ⁽²⁾									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0							
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 15		•					bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0
bit 7	X110020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XWOOLI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XWOOLL	XWOOLI	bit
Legend:		C = Clear onl	v bit				
R = Readable	bit	W = Writable	•	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F				'0' = Bit is cle			
bit 15	1 = Write colli	annel 7 Periph sion detected collision detecte		llision Flag bit			
bit 14	1 = Write colli	annel 6 Periph sion detected collision detecte		llision Flag bit			
bit 13	1 = Write colli	annel 5 Periph sion detected collision detecte		llision Flag bit			
bit 12	1 = Write colli	annel 4 Periph sion detected		llision Flag bit			
bit 11	1 = Write colli	annel 3 Periph sion detected		llision Flag bit			
bit 10	PWCOL2: Ch 1 = Write colli	annel 2 Periph	eral Write Col	llision Flag bit			
bit 9	1 = Write colli	annel 1 Periph sion detected collision detecte		llision Flag bit			
bit 8	1 = Write colli	annel 0 Periph sion detected		llision Flag bit			
bit 7	XWCOL7: Ch 1 = Write colli	annel 7 DMA I	RAM Write Co	llision Flag bit			
bit 6	 With considerated XWCOL6: Channel 6 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 						
bit 5	XWCOL5: Ch 1 = Write colli	annel 5 DMA I	RAM Write Co	Ilision Flag bit			
bit 4	1 = Write colli	annel 4 DMA I sion detected collision detecte		llision Flag bit			

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

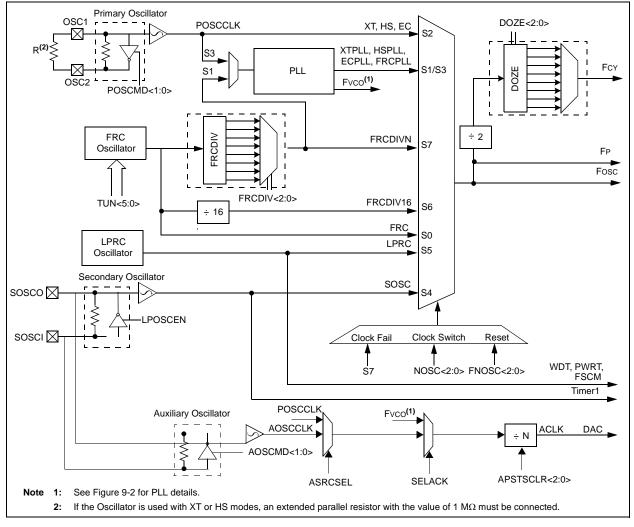
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
_	—	—	—		LSTCI	H<3:0>		
oit 15							bit	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	
bit 7							bit	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown		
bit 15-12	Unimplemen	ted: Read as '	0'					
bit 11-8	-	: Last DMA Ch		oits				
	1111 = No DI	MA transfer has	s occurred sin	ce system Res	et			
	1110-1000 =							
		lata transfer wa						
		lata transfer wa lata transfer wa						
		data transfer wa						
		data transfer wa						
		data transfer wa						
	0001 = Last data transfer was by DMA Channel 1							
bit 7	0000 = Last data transfer was by DMA Channel 0 PPST7: Channel 7 Ping-Pong Mode Status Flag bit							
	1 = DMA7STE	B register select A register select	cted					
bit 6	PPST6: Chan	nel 6 Ping-Por	ng Mode Statu	s Flag bit				
	1 = DMA6STB register selected 0 = DMA6STA register selected							
bit 5	PPST5: Channel 5 Ping-Pong Mode Status Flag bit							
	1 = DMA5STB register selected 0 = DMA5STA register selected							
bit 4		nel 4 Ping-Por		s Flag bit				
		B register select A register select						
bit 3	-							
	1 = DMA3STB register selected 0 = DMA3STA register selected							
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit							
	1 = DMA2STB register selected 0 = DMA2STA register selected							
bit 1		nel 1 Ping-Por		s Flag bit				
	1 = DMA1STE	B register select A register select	cted	-				
bit 0		nel 0 Ping-Por		s Flag bit				
		more ring rer	ig mode claid					

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAE	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

NOTES:


9.0 OSCILLATOR CONFIGURATION

- This data sheet summarizes the features Note 1: dsPIC33FJ32GP302/304 of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 39. Oscillator (Part III)" (DS70216) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Non-volatile Configuration bits for main oscillator selection
- · An auxiliary crystal oscillator for Audio DAC
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 OSCILLATOR SYSTEM DIAGRAM

9.1 CPU Clocking System

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.4 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 27.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

9.1.3 AUXILIARY OSCILLATOR

The Auxiliary Oscillator (AOSC) can be used for peripherals that need to operate at a frequency unrelated to the system clock such as a Digital-to-Analog Converter (DAC).

The Auxiliary Oscillator can use one of the following as its clock source:

Crystal (XT): Crystal and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the SOCI and SOSCO pins.

High-Speed Crystal (HS): Crystals in the range of 10 to 40 MHz. The crystal is connected to the SOSCI and SOSCO pins.

External Clock (EC): External clock signal up to 64 MHz. The external clock signal is directly applied to SOSCI pin.

9.1.4 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

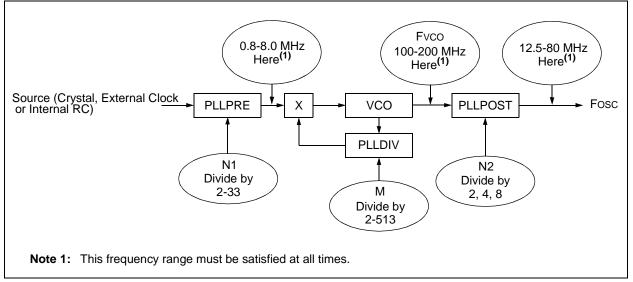
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M,' by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

$$Fosc = Fin \cdot \left(\frac{M}{N1 \cdot N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

FCY =
$$\frac{\text{Fosc}}{2} = \frac{1}{2} \left(\frac{1000000 \cdot 32}{2 \cdot 2} \right) = 40 \text{ MIPS}$$

© 2009 Microchip Technology Inc.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y			
		COSC<2:0>		—		NOSC<2:0> ⁽²⁾				
bit 15							bit 8			
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0			
CLKLOCK	IOLOCK	LOCK		CF	_	LPOSCEN	OSWEN			
bit 7		I		1			bit 0			
Legend:		y = Value set	from Configur	ation bits on P	OR	C = Clea	r only bit			
R = Readable I	bit	W = Writable	-		nented bit, rea					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	Unimplemen	ted: Read as '	0'							
bit 14-12	-	Current Oscilla		bits (read-only)					
		C oscillator (FF		,						
		C oscillator (FF	,							
		y oscillator (XT		DU						
		y oscillator (XT dary oscillator (PLL						
		ower RC oscilla								
		C oscillator (FF C oscillator (FF								
bit 11		ted: Read as '	•	,						
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾									
	001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pc 110 = Fast R	C oscillator (FF C oscillator (FF y oscillator (XT y oscillator (XT dary oscillator (ower RC oscillator C oscillator (FF C oscillator (FF	RC) with PLL , HS, EC) , HS, EC) with SOSC) ator (LPRC) RC) with Divide	e-by-16						
bit 7	CLKLOCK: C	lock Lock Ena	ble bit							
		ing is enabled				= 0b01)				
		itching is disab itching is enab				y clock switching	g			
bit 6		ipheral Pin Sel								
						ers not allowed gisters allowed				
bit 5	-	ock Status bit (F	9				
	1 = Indicates	that PLL is in that PLL is ou	lock, or PLL st			is disabled				
bit 4		ted: Read as '								
bit 3	-	Detect bit (real		plication)						
-	1 = FSCM ha	as detected clo as not detected	ck failure	,						
						scillator (Part III crochip website)				
		-				CPLL mode are				

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 2	Unimplemented: Read as '0'
-------	----------------------------

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
 - **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 9-2:	CLKDIV: CLOCK DIVISOR REG	SISTER
---------------	----------------------------------	--------

REGISTER	9-2: CLKD	IV: CLOCK D	IVISOR RE	GISTER			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPC	DST<1:0>				PLLPRE<4:0	>	
bit 7			•				bit (
Legend:		y = Value set	from Configu	ration bits on P	OR		
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Interrupts	r on Interrupt bi s clears the DO s have no effec	ZEN bit and	-	lock/periphera	l clock ratio is se	et to 1:1
bit 14-12	DOZE<2:0>: 000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 (100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/12		K Reduction	Select bits			
bit 11	1 = DOZE<2	ZE Mode Enabl :0> field specifi or clock/periphe	es the ratio b		ipheral clocks	and the process	or clocks
bit 10-8		ivide by 1 (defa ivide by 2 ivide by 4 ivide by 8 ivide by 16 ivide by 32 ivide by 64		or Postscaler bit	S		
bit 7-6	PLLPOST<1: 00 = Output/2 01 = Output/2 10 = Reserve 11 = Output/8	2 4 (default) ed	Output Divide	er Select bits (al	so denoted as	'N2', PLL posts	caler)
bit 5	Unimplemen	ted: Read as '	כ'				
bit 4-0	PLLPRE<4:0 00000 = Inpu 00001 = Inpu	ıt/2 (default)	Detector Inpu	ıt Divider bits (a	lso denoted as	s 'N1', PLL preso	caler)
	•						
	11111 = I npu	it/33					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 9-	3: PLLF	BD: PLL FEE	DBACK DI	ISUR REGIS	IER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_		—	—	—	_	_	PLLDIV<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLC	0IV<7:0>				
bit 7							bit (
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = B		'1' = Bit is set	' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000000 = 2 000000001 = 3 000000010 = 4 • • • 000110000 = 50 (default) •

111111111 = 513

bit 8-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		_	_	_		_	_				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				TUN	<5:0> ⁽¹⁾						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknown							
bit 15-6	Unimplemen	ted: Read as '	0'								
bit 5-0	TUN<5:0>: FRC Oscillator Tuning bits ⁽¹⁾										
		nter frequency									
	011110 = Ce	nter frequency	r +11.25% (8.2	0 MHz)							
	•										
	•										
	• 000001 – Ce	nter frequency	±0 375% (7 A	о MH-7)							
		nter frequency									
		nter frequency									
	•										
	•										
	•										
	100001 = Ce										

- 100000 = Center frequency -12% (6.49 MHz)
- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	SELACLK	AOSCI	MD<1:0>	A	PSTSCLR<2:0	>				
bit 15	- SELACLK AOSCMD<1:0> APSTSCLR<2:0 D U-0 U-0 U-0 U-0 EL - - - - able bit W = Writable bit U = Unimplemented bit, read as '0'		bit 8								
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
ASRCSEL		—	—	—	—	—	—				
bit 7							bit				
Logondi											
Legend: R = Readable	e hit	W = Writable h	nit	II = Unimpler	nented hit rea	d as '0'					
-n = Value at				-			own				
bit 15-14	Unimplem	ented: Read as '0)'								
bit 13	•										
	0 = PLL ou	tput (Fvco) provid	es the source	e clock for the A	Auxiliary Clock	Divider					
bit 12-11	AOSCMD<1:0>: Auxiliary Oscillator Mode										
bit 10-8		•		Divider							
	100 = divid 011 = divid										
	011 = divid 010 = divid	•									
	001 = divid										
	000 = divid	led by 256 (defaul	t)								

REGISTER 9-5: ACLKCON: AUXILIARY CONTROL REGISTER

	000 = divided by 256 (default)
bit 7	ASRCSEL: Select Reference Clock Source for Auxiliary Clock
	 1 = Primary Oscillator is the Clock Source 0 = Auxiliary Oscillator is the Clock Source
	0 – Advinary Oscillator is the Clock Source
bit 6-0	Unimplemented: Read as '0'

9.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 27.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 39. "Oscillator (Part III)" (DS70216) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009} Microchip Technology Inc.

NOTES:

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 9. Watchdog Timer and Power-Saving Modes" (DS70196) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

10.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD	_	—	DCIMD
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD	AD1MD
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkr	nown
bit 15	1 = Timer5 r	r5 Module Disal nodule is disabl nodule is enable	ed				
bit 14	T4MD: Time 1 = Timer4 r	r4 Module Disal nodule is disable nodule is enable	ole bit ed				
bit 13	T3MD: Time 1 = Timer3 r	r3 Module Disal nodule is disable nodule is enable	ole bit ed				
bit 12	T2MD: Time 1 = Timer2 r	r2 Module Disal nodule is disable nodule is enable	ole bit ed				
bit 11	1 = Timer1 r	r1 Module Disal nodule is disabl nodule is enable	ed				
bit 10-9	Unimpleme	nted: Read as '	0'				
bit 8	1 = DCI mod	l Module Disable dule is disabled dule is enabled	e bit				
bit 7	$1 = I^2 C1 mo$	C1 Module Disat dule is disabled dule is enabled	ble bit				
bit 6	1 = UART2 I	T2 Module Disa module is disabl module is enabl	ed				
bit 5	1 = UART1 I	T1 Module Disa module is disabl module is enabl	ed				
bit 4	1 = SPI2 mc	Pl2 Module Disa odule is disabled odule is enabled					
bit 3	1 = SPI1 mc	PI1 Module Disa odule is disabled odule is enabled					
bit 2	Unimpleme	nted: Read as '	0'				
bit 1	C1MD: ECA 1 = ECAN1	N1 Module Disa module is disab module is enabl	able bit led				
bit 0	1 = ADC1 m	C1 Module Disa odule is disable odule is enable	d				

REGISTER	(10-2: PMD)	2: PERIPHER		E DISABLE C	UNIROL RE	GISTER 2						
R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
IC8MD	IC7MD	<u> </u>	<u> </u>	<u> </u>	<u> </u>	IC2MD	IC1MD					
bit 15												
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	_	—	—	OC4MD	OC3MD	OC2MD	OC1MD					
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15		Conturo 8 Ma	dula Disabla bi	•								
		•	dule Disable bi is disabled	L								
	 I = Input Capture 8 module is disabled Input Capture 8 module is enabled 											
bit 14	IC7MD: Input	IC7MD: Input Capture 2 Module Disable bit										
	1 = Input Capture 7 module is disabled											
	0 = Input Cap	oture 7 module	is enabled									
bit 13-10	Unimplemen	ted: Read as	0'									
bit 9	IC2MD: Input	Capture 2 Mo	dule Disable bi	t								
		oture 2 module oture 2 module										
bit 8	IC1MD: Input	IC1MD: Input Capture 1 Module Disable bit										
	1 = Input Capture 1 module is disabled											
	0 = Input Capture 1 module is enabled											
bit 7-4	Unimplemen	ted: Read as	0'									
bit 3	OC4MD: Out	put Compare 4	Module Disab	le bit								
		ompare 4 mod ompare 4 mod										
bit 2	OC3MD: Output Compare 3 Module Disable bit											
	1 = Output Compare 3 module is disabled											
	0 = Output Co	ompare 3 mod	ule is enabled									
bit 1	OC2MD: Out	put Compare 2	Module Disab	le bit								
		ompare 2 mod ompare 2 mod										
bit 0	OC1MD: Out	put Compare 1	Module Disab	le bit								
		ompare 1 mod										
	0 Output C	ompare 1 mod	and a state of the state									

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_	—		CMPMD	RTCCMD	PMPMD
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	—	—	—	—	—	_
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10	CMPMD: Cor	mparator Modu	le Disable bit				
		tor module is d tor module is e					
bit 9	RTCCMD: RT	FCC Module Di	isable bit				
	1 = RTCC mc 0 = RTCC mc	odule is disable odule is enable					

1 = PMP module is disabled
 0 = PMP module is enabled
 CRCMD: CRC Module Disable bit

1 = CRC module is disabled 0 = CRC module is enabled

1 = DAC1 module is disabled 0 = DAC1 module is enabled

Unimplemented: Read as '0'

DAC1MD: DAC1 Module Disable bit

bit 7

bit 6

bit 5-0

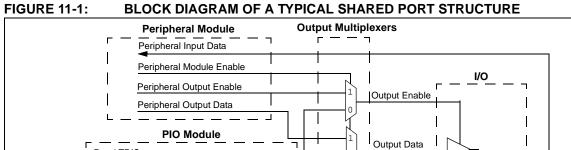
NOTES:

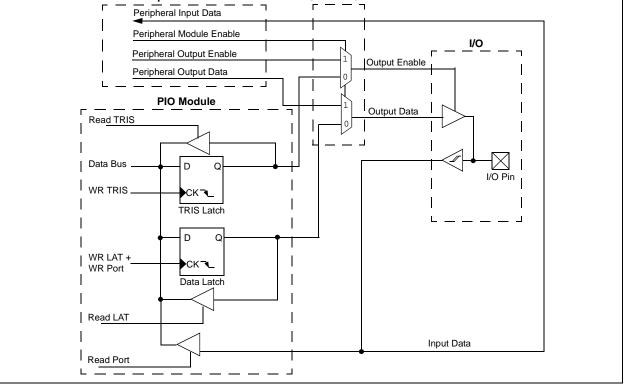
11.0 **I/O PORTS**

- This data sheet summarizes the features Note 1: dsPIC33FJ32GP302/304, of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 10. I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, Vss, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2009 Microchip Technology Inc.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "**Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
btss	PORTB, #13	;	Next Instruction

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

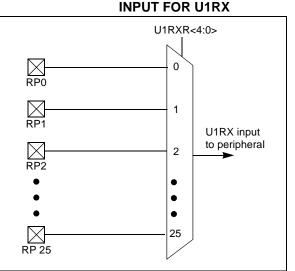
11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.6.2.1 Input Mapping

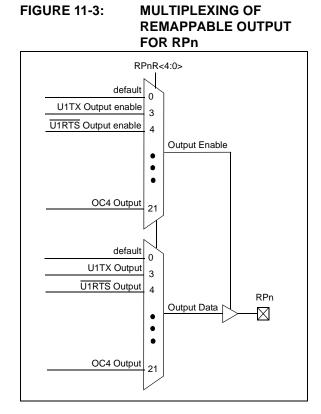
The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-16). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings. Therefore,
	when configuring the RPx pin for input, the
	corresponding bit in the TRISx register
	must also be configured for input (i.e., set
	to '1').

FIGURE 11-2: REMAPPABLE MUX

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
DCI Serial Data Input	CSDI	RPINR24	CSDIR<4:0>
DCI Serial Clock Input	CSCK	RPINR24	CSCKR<4:0>
DCI Frame Sync Input	COFS	RPINR25	COFSR<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>


TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

11.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-17 through Register 11-29). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1	01000	RPn tied to SPI1 Clock Output
SS1	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2	01011	RPn tied to SPI2 Clock Output
SS2	01100	RPn tied to SPI2 Slave Select Output
CSDO	01101	RPn tied to DCI Serial Data Output
CSCK	01110	RPn tied to DCI Serial Clock Output
COFS	01111	RPn tied to DCI Frame Sync Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4

TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note: MPLAB[®] C30 provides built-in C language functions for unlocking the OSCCON register: __builtin_write_OSCCONL(value) __builtin_write_OSCCONH(value) See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<IOL1WAY>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

11.7 Peripheral Pin Select Registers

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 16 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11 and PRINR18-RPINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Inpu	t and Output	Re	gister	valu	es can	only
	be	changed	if	the	IOI	_OCK	bit
	(OS	CCON<6>)	is	set	to	'0'.	See
	Sec	tion 11.6.3.1		"Cont	rol	Reg	ister
	Loc	k " for a spec	cific	comm	and	seque	nce.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss 11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1 00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	•	•					bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			INT2R<4:0>		
bit 7	•	•					bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER	_	K3: PERIPHE	_			-				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		—			T3CKR<4:0	>				
bit 15							bit			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		<u> </u>			T2CKR<4:0	>				
bit 7							bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at POR '1' = Bit is set			:	'0' = Bit is cle	eared	x = Bit is unki	nown			
	11001 = Input tied to RP25									
	00001 = Input tied to RP1									
	00000 = Input tied to RP0									
bit 7-5	•	nted: Read as '								
bit 4-0	T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin									
	11111 = Input tied to Vss 11001 = Input tied to RP25									
	•									
	•									
	•									
		ut tied to RP1 ut tied to RP0								

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

_ _ _

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			T5CKR<4:0:	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	_			T4CKR<4:0:	>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ıd as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
	11111 = Inpu 11001 = Inpu •	it tied to RP25					
	00001 = Inpu 00000 = Inpu						
bit 7-5	Unimplemen	ted: Read as	ʻ0'				
bit 4-0		• Assian Time	4 External Clo	ock (T4CK) to t	he correspond	ing RPn pin	

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0 — U-0 —	U-0 — U-0 —	R/W-1 R/W-1	R/W-1	R/W-1 IC2R<4:0> R/W-1	R/W-1	R/W-1 bit 8
U-0	U-0	R/W-1	R/W-1		R/W-1	
U-0 —	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	
—	—					R/W-1
				IC1R<4:0>		
						bit C
bit	W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	
OR	'1' = Bit is set		•		x = Bit is unkr	nown
11001 = Inpu • • 00001 = Inpu	ut tied to RP25 ut tied to RP1					
•		ı '				
IC1R<4:0>: A	Assign Input Cap ut tied to Vss	oture 1 (IC1)	to the correspo	onding RPn pin		
	OR Unimplement IC2R<4:0>: A 11111 = Inpu 11001 = Inpu • • • • • • • • • • • • • • • • • • •	OR '1' = Bit is set Unimplemented: Read as '0 IC2R<4:0>: Assign Input Cap 11111 = Input tied to Vss 11001 = Input tied to RP25 • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0 IC1R<4:0>: Assign Input Cap 11111 = Input tied to Vss 11001 = Input tied to RP25.	OR '1' = Bit is set Unimplemented: Read as '0' IC2R<4:0>: Assign Input Capture 2 (IC2) ' 11111 = Input tied to Vss 11001 = Input tied to RP25 • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' IC1R<4:0>: Assign Input Capture 1 (IC1) ' 11111 = Input tied to Vss 11001 = Input tied to RP25.	OR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<4:0>: Assign Input Capture 2 (IC2) to the correspondence of t	OR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin 11111 = Input tied to VSS 11001 = Input tied to RP25 • • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin 1111 = Input tied to VSS 11001 = Input tied to RP25.	OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • • 00001 = Input tied to RP1 00000 = Input tied to RP0 Unimplemented: Read as '0' IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin 1111 = Input tied to Vss 11001 = Input tied to RP25.

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—					IC8R<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	—			IC7R<4:0>				
bit 7							bit (
Legend:									
R = Readab		W = Writable		•	mented bit, rea				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared $x = Bit$						x = Bit is unkr	x = Bit is unknown		
	11001 = Input tied to RP25 • •								
		ut tied to RP1 ut tied to RP0							
bit 7-5	Unimpleme	n ted: Read as '	0'						
bit 4-0	IC7R<4:0>: . 11111 = Inp	Assign Input Ca ut tied to Vss	pture 7 (IC7) 1	to the correspo	onding pin RPr	n pin			

REGISTER 11-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

REGISTER 11-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—			—		
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
0-0	0-0	0-0				N/ VV- I	N/ VV- 1	
	_	_		OCFAR<4:0>				
bit 7							bit 0	
Lanandi								
Legend:								
R = Readable I	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as ')'					

bit 4-0 OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 •

> 00001 = Input tied to RP1 00000 = Input tied to RP0

© 2009 Microchip Technology Inc.

DS70292D-page 171

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	_				U1CTSR<4:)>			
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—					U1RXR<4:0	>			
bit 7							bit (
Legend:									
R = Readab		W = Writable		•	mented bit, rea				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
	11001 = Input tied to RP25 • •								
	00001 = Input tied to RP1 00000 = Input tied to RP0								
bit 7-5	Unimpleme	nted: Read as '	0'						
bit 4-0	U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25								
	•								
		out tied to RP1 out tied to RP0							

REGISTER 11-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 11-9: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		—			U2CTSR<4:)>				
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—		U2RXR<4:0>						
bit 7							bit C			
Legend:	1- 1-:4									
R = Readabl		W = Writable k	DIT	-	nented bit, rea					
-n = Value at	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl						nown			
	• •	ut tied to RP25								
	00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimplemer	nted: Read as '0)'							
bit 4-0	11111 = I npu	Assign UART2 ut tied to Vss ut tied to RP25	2 Receive (U2	2RX) to the co	rresponding R	Pn pin				
	•									
		ut tied to RP1 ut tied to RP0								

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	_			SCK1R<4:0	>				
oit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
		—			SDI1R<4:0>	>				
oit 7							bit C			
_egend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	nd as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
	11001 = Input tied to RP25									
	00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimpleme	ented: Read as '	0'							
bit 4-0	SDI1R-4.0-	<pre>SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 •</pre>								
	11111 = I np	out tied to Vss	oata Input (SD	 to the corre 	sponding RPr	i pin				

REGISTER 11-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 11-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

— Image: Constraints and the state of the st								
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W — — — — SS1R<4:0> bit 7 Legend:	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 U-0 R/W-1 R/W R/W-1 R/W R/W-1 R/W R/W R/W R/W R/W-1 R/W	_	—	—	—	_	—	—	—
	bit 15							bit 8
bit 7 Legend:	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
Legend:	_	_	—					
	bit 7							bit 0
-	Logondu							
$K = Keadable bit \qquad W = Witable bit \qquad 0 = Offittiplefielded bit, fead as 0$	R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown
		-						-
bit 15-5 Unimplemented: Read as '0'	bit 15-5	-						

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • •

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	—			SCK2R<4:0	>				
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
		<u> </u>		SDI2R<4:0>						
bit 7					ODIZITE 1.0		bit (
Legend:										
R = Readabl	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
	11001 = Input tied to RP25									
	• 00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimplement	t ed: Read as '0	,							
bit 4-0	11111 = Inpur 11001 = Inpur •	t tied to RP25	ata Input (SD	I2) to the corre	esponding RPr	n pin				
	00001 = Input 00000 = Input									

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	— — SS2R<4:0>					
bit 7		•					bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	Unimplemen	ted: Read as ')'				
bit 4-0	SS2R<4:0>:	Assign SPI2 Sl	ave Select In	out (SS2) to the	e corresponding	RPn nin	

00000 = Input tied to RP0

```
© 2009 Microchip Technology Inc.
```

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_					CSCKR<4:0	>	
oit 15							bit
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		<u> </u>			CSDIR<4:0>	>	
bit 7							bit (
Legend: R = Readabl	lo hit	W = Writable	hit		nented bit, rea	d ac '0'	
-n = Value at		'1' = Bit is set		0 = 0 Himpler 0' = Bit is cle		x = Bit is unkr	0000
bit 15-13	Unimplomo	nted. Dood oo (0'				
	ommpleme	nted: Read as '	0				
bit 12-8	-)>: Assign DCI S		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp	D>: Assign DCI S out tied to Vss		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp 11001 = Inp	D>: Assign DCI S		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp	D>: Assign DCI S out tied to Vss		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp 11001 = Inp	D>: Assign DCI S out tied to Vss		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp 11001 = Inp •	D>: Assign DCI S but tied to Vss but tied to RP25		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp 11001 = Inp • • • 00001 = Inp	D>: Assign DCI S out tied to Vss		put (CSCK) to	the correspon	ding RPn pin	
	CSCKR<4:0 11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	D>: Assign DCI S but tied to Vss but tied to RP25	Serial Clock In				
bit 12-8	CSCKR<4:0 11111 = Inp 11001 = Inp • • • • • • • • • • • • •	 D>: Assign DCI S but tied to Vss but tied to RP25 but tied to RP1 but tied to RP0 >: Assign DCI So but tied to Vss 	Serial Clock In				
bit 12-8	CSCKR<4:0 11111 = Inp 11001 = Inp • • • • • • • • • • • • •	 D>: Assign DCI S but tied to Vss but tied to RP25 but tied to RP1 but tied to RP0 >: Assign DCI S 	Serial Clock In				
bit 12-8	CSCKR<4:0 11111 = Inp 11001 = Inp • • • • • • • • • • • • •	 D>: Assign DCI S but tied to Vss but tied to RP25 but tied to RP1 but tied to RP0 >: Assign DCI So but tied to Vss 	Serial Clock In				
bit 12-8	CSCKR<4:0 11111 = Inp 11001 = Inp 00001 = Inp 00000 = Inp CSDIR<4:0: 11111 = Inp 11001 = Inp	 D>: Assign DCI S but tied to Vss but tied to RP25 but tied to RP1 but tied to RP0 >: Assign DCI So but tied to Vss 	Serial Clock In				
bit 12-8	CSCKR<4:0 11111 = Inp 11001 = Inp 00001 = Inp 00000 = Inp CSDIR<4:0: 11111 = Inp 11001 = Inp	 D>: Assign DCI S but tied to Vss but tied to RP25 but tied to RP1 but tied to RP0 >: Assign DCI So but tied to Vss 	Serial Clock In				

REGISTER 11-15: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			COFSR<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-5	Unimplemented: Read as '0'	

00000 =Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 _ ____ _ ____ ____ _ ____ ____ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> ____ bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 11-16: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

```
bit 4-0 C1RXR<4:0>: Assign ECAN1Receive (C1RX) to the corresponding RPn pin

11111 = Input tied to Vss

11001 = Input tied to RP25

•

•

•

00001 = Input tied to RP1

00000 = Input tied to RP0
```

Note 1: This register is disabled on devices without ECAN[™] module.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP1R<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP0R<4:0>			
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bi			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as '0)'					

 bit 12-8
 RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for peripheral function numbers)

 bit 7-5
 Unimplemented: Read as '0'

 bit 4.0
 RP0R : 4:0 + Designed to Qutput Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-19: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP4R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	ut U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-20: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

© 2009 Microchip Technology Inc.

REGISTER 11-21: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>	>	
bit 15	·						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP8R<4:0>				
bit 7	• •						bit C
Legend:							
R = Readable	bit	W = Writable k	Dit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-22: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-23: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—			RP13R<4:0>	>	
bit 15							bit 8
11.0			DAM 0	DAMA	DAMO	DAMO	DAM 0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— —	-			RP12R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$			nown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-24: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

© 2009 Microchip Technology Inc.

REGISTER 11-25:	RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8 ⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP17R<4:0:	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			RP16R<4:0	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		
bit 15-13	Unimplemen	ted: Read as 'o)'				
bit 12-8	RP17R-4.0~	· Parinharal Ou	tout Function	n is Assigned to	RP17 Output	Pin hits (see Tal	ble 11-2 for

bit 12-8	RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-26: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9 ⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—			RP19R<4:0>	>		
bit 15	•		•				bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	0-0						
_		—	RP18R<4:0>					
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	nted: Read as	٠́،					
	•					D' 1'' / T		
bit 12-8		: Peripheral Or	-	is Assigned to	RP19 Output	Pin bits (see Tal	ble 11-2 for	
bit 7-5	Unimplemer	nted: Read as	'0'					
bit 4-0		: Peripheral On nction numbers	-	is Assigned to	RP18 Output	Pin bits (see Tal	ble 11-2 for	

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-27: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

11.0	11.0	11.0	DALO	D M A A		DAM 0	DAALO
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP21R<4:0>				
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	R/VV-U	R/W-0			R/W-U
—	—	—			RP20R<4:0	>	
bit 7						bit	
Legend:							
R = Readable bit W = Writable bit		bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown		

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 11-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-28: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	—			RP23R<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP22R<4:0>					
bit 7	·						bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	Unimplemented: Read as '0'						
bit 12-8		: Peripheral Ounction numbers)	-	n is Assigned to	RP23 Output	Pin bits (see Tal	ble 11-2 for	

bit 7-5 Unimplemented: Read as '0'

Note 1: This register is implemented in 44-pin devices only.

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 11-2 for peripheral function numbers)

...

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP25R<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	0-0	R/W-0	R/W-U			R/W-U	
—	—	—	RP24R<4:0>					
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 11. Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

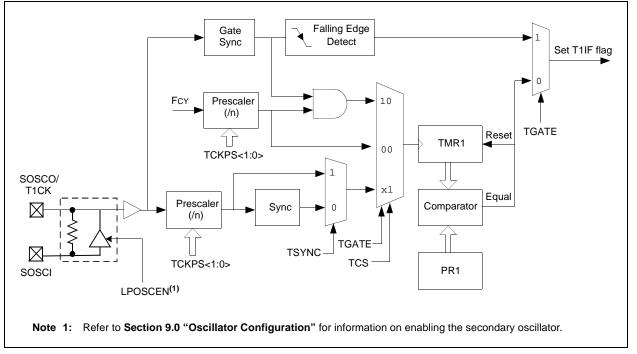
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated timer	0	1	х
Synchronous counter	1	x	1
Asynchronous counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER	12-1: T1CO	N: TIMER1 CC	ONTROL RI	EGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
—	TGATE	TCKPS	<1:0>	—	TSYNC	TCS				
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	-bit Timer1								
	0 = Stops 16-	-bit Timer1								
bit 14	Unimplemer	nted: Read as '0	,							
bit 13		in Idle Mode bit								
		ue module oper module operation			lle mode					
bit 12-7	Unimplemer	nted: Read as '0	,							
bit 6	TGATE: Time	er1 Gated Time	Accumulation	n Enable bit						
	When T1CS									
	This bit is ign									
	When T1CS	<u>= 0:</u> ne accumulation	onablad							
		ne accumulation								
bit 5-4	TCKPS<1:0>	. Timer1 Input C	Clock Presca	le Select bits						
	11 = 1:256	· · · · · · · · · · · · · · · · · · ·								
	10 = 1:64									
	01 = 1:8									
bit 3	00 = 1:1	tod: Pood as '0	,							
bit 2	-	Unimplemented: Read as '0'								
	TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1:									
		1 = Synchronize external clock input								
		nchronize exter/		ut						
	<u>When TCS =</u> This bit is ign									
bit 1	Ũ	Clock Source S	elect bit							
		clock from pin T		rising edae)						
	0 = Internal c			5 5 - 7						
bit 0	Unimplemer	Unimplemented: Read as '0'								

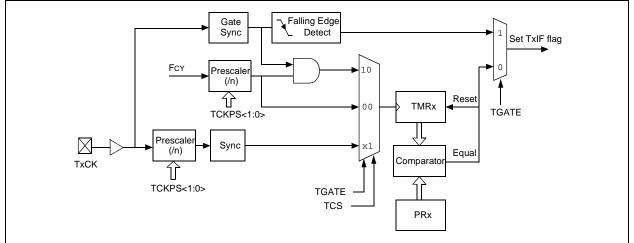
CIETED 12 1

13.0 TIMER2/3 AND TIMER4/5 FEATURE

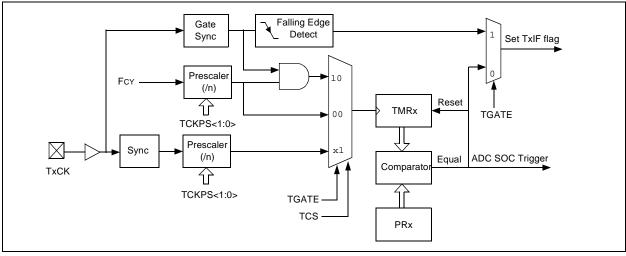
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 11. Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers with the following specific features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.


A block diagram of the Type B timer is shown in Figure 13-1.

Timer3 and Timer5 are Type C timers with the following specific features:


- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 13-2.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

Mode	TCS	TGATE
Timer	0	0
Gated timer	0	1
Synchronous coun- ter	1	х

13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note:	Only Timer2 and Timer3 can trigger a	l
	DMA data transfer.	

13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

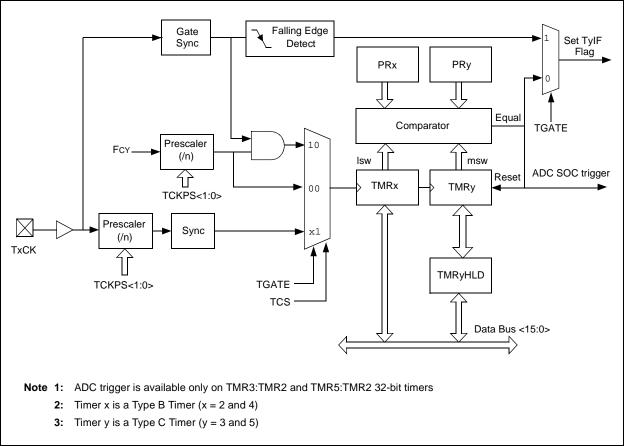
When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit). For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 13-2.

TABLE 13-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)
Timer2	Timer3
Timer4	Timer5

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-bit timer module can operate in one of the following modes:


- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

FIGURE 13-3: 32-BIT TIMER BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	—	—	_	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
_	TGATE	TCKP	S<1:0>	T32	_	TCS					
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	TON: Timerx	On bit									
		1 (in 32-bit Tim									
		-bit TMRx:TMR									
	=	0 = Stops 32-bit TMRx:TMRy timer pair									
		<u>When T32 = 0 (in 16-bit Timer mode):</u> 1 = Starts 16-bit timer									
	0 = Stops 16-										
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Stop	in Idle Mode bi	t								
	1 = Discontin		tion when de	vice enters Idle	mode						
bit 12-7		nted: Read as '		e							
bit 6	-	erx Gated Time		n Enable bit							
bit 0	When TCS =	1:	Accumulatio								
	This bit is ignored.										
	$\frac{\text{When TCS} = 0}{1 = \text{Gated time accumulation enabled}}$										
		ne accumulation									
bit 5-4	TCKPS<1:0>	-: Timerx Input	Clock Presca	ale Select bits							
	11 = 1:256 prescale value										
		10 = 1:64 prescale value									
	01 = 1:8 prescale value 00 = 1:1 prescale value										
bit 3	•		lect hit								
DIL 3	T32: 32-bit Timerx Mode Select bit 1 = TMRx and TMRy form a 32-bit timer										
		d TMRy form s		vit timer							
bit 2	Unimplemented: Read as '0'										
bit 1	TCS: Timerx	Clock Source S	Select bit								
		clock from TxC clock (Fosc/2)	K pin								
		0 = Internal clock (Fosc/2) Unimplemented: Read as '0'									

REGISTER	13-2: TxCON	N: TIMER CO	NTROL RE	GISTER (x =	3 OR 5)					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽²⁾	—	TSIDL ⁽¹⁾	—	—	—	—	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾		—	TCS ⁽²⁾	—			
bit 7							bit C			
1										
Legend:	- hit		L:1		a a sata al la 14 mara					
R = Readabl		W = Writable		•	nented bit, rea					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15	TON: Timery	On hit(2)								
DIL 15										
		1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx								
bit 14	-	Unimplemented: Read as '0'								
bit 13		n Idle Mode bit								
		1 = Discontinue timer operation when device enters Idle mode								
		timer operation		e						
bit 12-7	Unimplemen	ted: Read as '	כ'							
bit 6		erx Gated Time	Accumulatio	n Enable bit ⁽²⁾						
	When TCS =									
	•	This bit is ignored. When TCS = 0:								
		$\frac{\text{When } 1 \text{ CS} = 0}{1 = \text{Gated time accumulation enabled}}$								
		e accumulation								
bit 5-4	TCKPS<1:0>	TCKPS<1:0>: Timerx Input Clock Prescale Select bits ⁽²⁾								
	11 = 1:256 pr									
	10 = 1:64 pre									
	01 = 1:8 pres									
bit 3-2	-	00 = 1:1 prescale value Unimplemented: Read as '0'								
bit 1	-	Clock Source S								
bit i		clock from TxCl								
			- 1							
bit 0		0 = Internal clock (Fosc/2) Unimplemented: Read as '0'								

REGISTER 13-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

NOTES:

14.0 INPUT CAPTURE

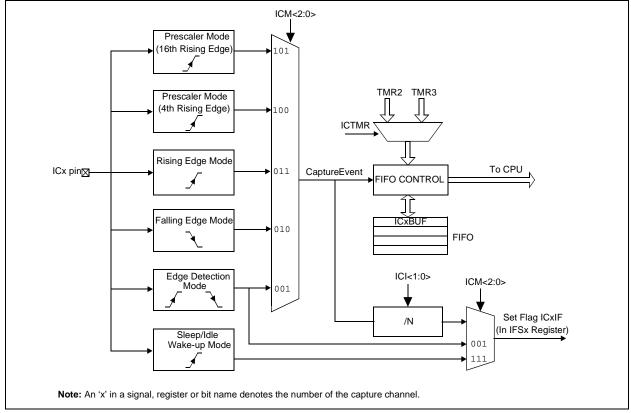
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 12. Input Capture" (DS70198) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

1. Simple Capture Event modes:

- Capture timer value on every falling edge of input at ICx pin
- Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin


Each input capture channel can select one of two 16bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

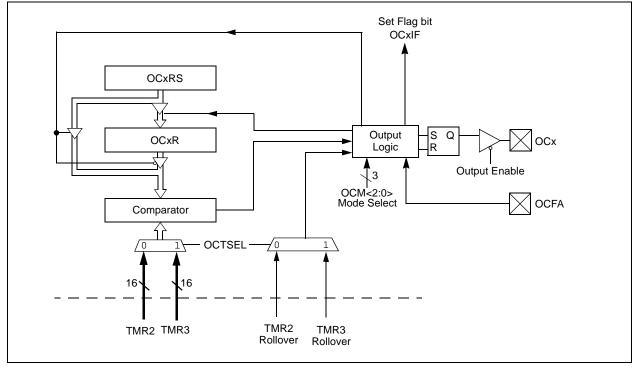
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—		ICSIDL	—	—	—	—	—
bit 15 bit 15					bit 8		

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:								
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-14	Unimpler	nented: Read as '0'						
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit							
1 = Input capture module halts in CPU Idle mode								
	0 = Input	capture module continues t	o operate in CPU Idle mode					
bit 12-8	Unimplemented: Read as '0'							
bit 7	ICTMR: Ir	nput Capture Timer Select b	bits					
	1 = TMR2	contents are captured on o	ontents are captured on capture event					
	0 = TMR3	contents are captured on o	capture event					
bit 6-5	ICI<1:0>:	Select Number of Captures	s per Interrupt bits					
	11 = Inter	rupt on every fourth capture event						
	10 = Inter	10 = Interrupt on every third capture event						
	01 = Inter	rupt on every second captu	re event					
	00 = Inter	rupt on every capture even	t					
bit 4	ICOV Inc	ICOV: Input Capture Overflow Status Flag bit (read-only)						

- bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)
 - 1 = Input capture overflow occurred
 - 0 = No input capture overflow occurred
- bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only)
 - 1 = Input capture buffer is not empty, at least one more capture value can be read0 = Input capture buffer is empty
- bit 2-0 ICM<2:0>: Input Capture Mode Select bits
 - 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.)
 - 110 = Unused (module disabled)
 - 101 = Capture mode, every 16th rising edge
 - 100 = Capture mode, every 4th rising edge
 - 011 = Capture mode, every rising edge
 - 010 = Capture mode, every falling edge
 - 001 = Capture mode, every edge (rising and falling)
 - (ICI<1:0> bits do not control interrupt generation for this mode.)
 - 000 = Input capture module turned off

15.0 OUTPUT COMPARE


- This data sheet summarizes the features Note 1: the dsPIC33FJ32GP302/304, of dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 13. Output Compare" (DS70209) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.1 **Output Compare Modes**

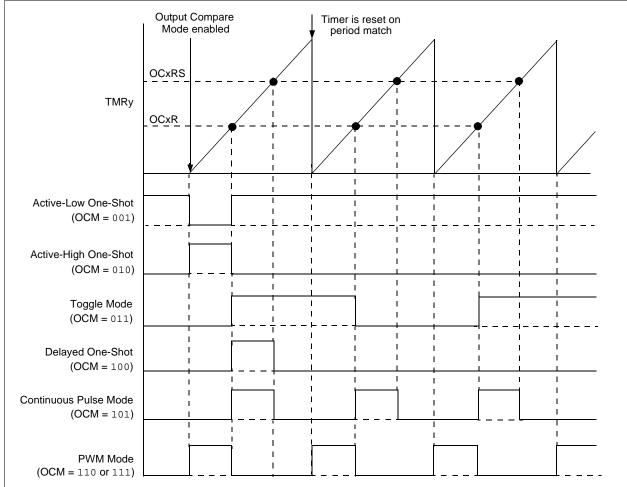

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

TABLE 15-1: 0	DUTPUT COMPARE MODES
---------------	----------------------

- Note 1: Only OC1 and OC2 can trigger a DMA data transfer.
 - 2: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS70209) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
000	Module Disabled	Controlled by GPIO register	—		
001	Active-Low One-Shot	0	OCx Rising edge		
010	Active-High One-Shot	1	OCx Falling edge		
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge		
100	Delayed One-Shot	0	OCx Falling edge		
101	Continuous Pulse mode	0	OCx Falling edge		
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt		
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4		

FIGURE 15-2: OUTPUT COMPARE OPERATION

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL		—		—	—
bit 15							bit 8
			D 0 1 10		D 444 o	DAMA	DAMO
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
 bit 7	_	—	OCFLT	OCTSEL		OCM<2:0>	bit (
DIT 7							DIT
Legend:		HC = Cleared	in Hardware	HS = Set in H	lardware		
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 12-5	0 = Output	Compare x halts Compare x contir ented: Read as '0	nues to operate		ode		
1 1 40 5		-	-	e in CPU Idle mo	ode		
bit 4	OCFLT: PV	VM Fault Conditio	n Status bit				
	0 = No PW	ault condition has M Fault condition only used when C	has occurred		e only)		
bit 3	OCTSEL: (Dutput Compare	Fimer Select bi	t			
		is the clock source is the clock source					
bit 2-0	OCM<2:0>	: Output Compare	e Mode Select	bits			
	110 = PWN 101 = Initia 100 = Initia	I mode on OCx, I I mode on OCx, I lize OCx pin low, lize OCx pin low, pare event toggle	Fault pin disab generate conti generate singl	led inuous output pເ		pin	

010 = Initialize OCx pin high, compare event forces OCx pin low

001 = Initialize OCx pin low, compare event forces OCx pin high

000 = Output compare channel is disabled

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 18. Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

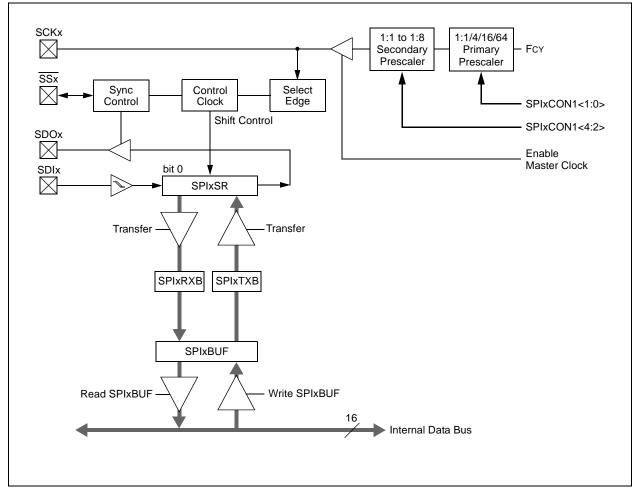


FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
SPIEN		SPISIDL	_		—	—	—				
bit 15							bit 8				
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0				
_	SPIROV			_	—	SPITBF	SPIRBF				
bit 7							bit (
Legend:		C = Clearable	bit								
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	nt POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 14 bit 13 bit 12-7 bit 6	SPISIDL: Stop 1 = Discontinue 0 = Continue Unimplement SPIROV: Rec 1 = A new by previous	ted: Read as '(p in Idle Mode I ue module oper module operati ted: Read as '(teive Overflow I te/word is com data in the SPI	bit ration when c on in Idle mo o' Flag bit pletely receiv xBUF registe	de red and discard	lle mode led. The user so	oftware has not	read the				
bit 5-2		ow has occurre ted: Read as '(-								
bit 1	-	Transmit Buffe		bit							
UIL I	1 = Transmit r 0 = Transmit s Automatically	not yet started, started, SPIxTX set in hardward	SPIxTXB is f (B is empty e when CPU	writes SPIxBU	F location, load		SPIxSR.				
bit 0	SPIRBF: SPI	SPIRBF: SPIx Receive Buffer Full Status bit									
	0 = Receive is Automatically		SPIxRXB is e when SPIx	transfers data	from SPIxSR to BUF location, r		(B.				

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER	16-2: SPIxC	ON1: SPIx C	ONTROL R	EGISTER 1			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN	10/00-0	SPRE<2:0>(2			<1:0> ⁽²⁾
bit 7	-						bit (
Legend:	la h:t		h:+				
R = Readab -n = Value a		W = Writable '1' = Bit is set		0 = 0 mmpler 0' = Bit is cle	nented bit, read		
-n = value a	IPOR	I = DILIS SEL			areu	x = Bit is unkr	IOWI
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	-	able SCKx pin		er modes only)			
	1 = Internal S	PI clock is disa PI clock is ena	bled, pin fund	• •			
bit 11		able SDOx pin					
		n is not used by n is controlled b		functions as I/C)		
bit 10		ord/Byte Comm					
		ication is word- ication is byte-v					
bit 9	SMP: SPIx D	ata Input Samp	le Phase bit				
	Master mode	<u>:</u> a sampled at er	nd of data out	nut time			
		a sampled at m					
	Slave mode:	e cleared when		in Clava mada			
bit 8		lock Edge Sele		in Slave mode.			
				on from active	clock state to Id	lle clock state (see bit 6)
					ock state to activ	ve clock state (see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de) ⁽³⁾			
		used for Slave r not used by more		rolled by port fu	unction		
bit 6		Polarity Select b					
		for clock is a h for clock is a lo					
bit 5		ster Mode Enab	le bit				
	1 = Master m 0 = Slave mo						
	The CKE bit is n (FRMEN = 1).	ot used in the	Framed SPI	modes. Progra	m this bit to '0	' for the Frame	ed SPI mode
	Do not set both P	rimary and Sec	condary preso	alers to the val	ue of 1:1.		
		•	<i>,</i>				

0014

3: This bit must be cleared when FRMEN = 1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽²⁾ 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - •
 - •
 - .
 - 000 = Secondary prescale 8:1
- bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽²⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
 - Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to the value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

REGISTER 16-3:	SPIxCON2: SPIx CONTROL REGISTER 2
----------------	-----------------------------------

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	—	—	_	—	—				
bit 15			•				bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
_	—	—			—	FRMDLY	—				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15		MEN: Framed SPIx Support bit									
		SPIx support en SPIx support dis		in used as fran	ne sync pulse ii	nput/output)					
bit 14	SPIFSD: Fra	me Sync Pulse	Direction Cor	ntrol bit							
	1 = Frame sy	1 = Frame sync pulse input (slave)									
	0 = Frame sync pulse output (master)										
bit 13	FRMPOL: Fr	RMPOL: Frame Sync Pulse Polarity bit									
	,	/nc pulse is acti	U								
		/nc pulse is acti									
bit 12-2	Unimplemer	nted: Read as '	0'								
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Select	bit							
		/nc pulse coinci									
	0 = Frame sy	/nc pulse prece	des first bit clo	ock							

bit 0 Unimplemented: Read as '0' This bit must not be set to '1' by the user application.

© 2009 Microchip Technology Inc.

NOTES:

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 19. Inter-Integrated Circuit™ (l²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (l^2C) module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

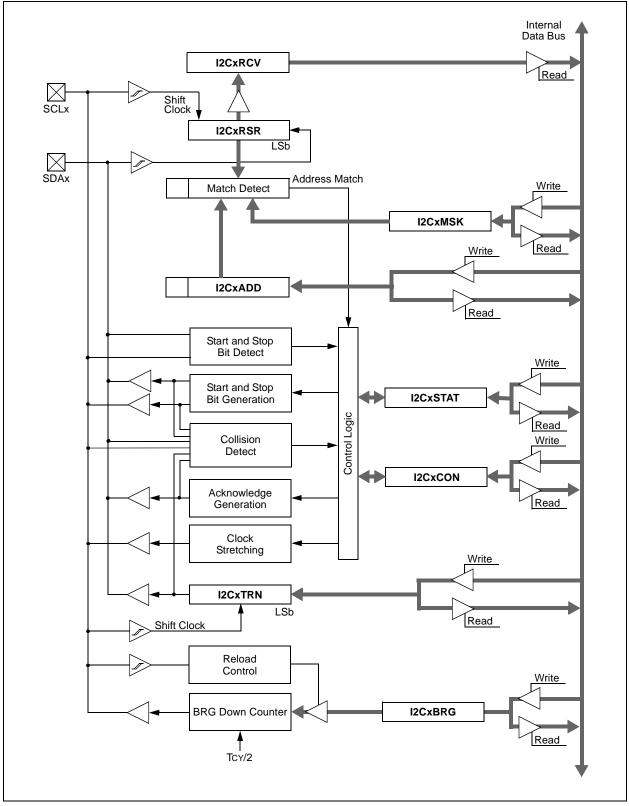
17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7- or 10-bit address


For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated. FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1)

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER										
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	Onten	NonDT	NOREN	ROEN		ROLIN	bit 0			
Legend:		•	nented bit, rea							
R = Readabl		W = Writable		HS = Set in h		HC = Cleared				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 15	12CEN: 12Cx	Enable bit								
	1 = Enables t 0 = Disables t	he I2Cx modul the I2Cx modu	e and configur le. All l ² C™ pir	es the SDAx ans are controll	and SCLx pins a ed by port func	as serial port pir tions	าร			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	I2CSIDL: Sto	p in Idle Mode	bit							
		ue module ope module operat			n Idle mode					
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)									
	1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch)									
		e., software car			nd write '1' to re d of slave rece	elease clock). H ption.	ardware clea			
	If STREN = 0 Bit is R/S (i.e. transmission.	., software can	only write '1' to	o release cloc	k). Hardware cl	ear at beginning	g of slave			
bit 11	IPMIEN: Intel	lligent Peripher	al Managemer	nt Interface (IF	MI) Enable bit					
		le is enabled; a	-	-	,					
bit 10	A10M: 10-bit	Slave Address	bit							
	1 = I2CxADD	is a 10-bit slav is a 7-bit slave	e address							
bit 9	DISSLW: Disa	able Slew Rate	e Control bit							
		control disable								
bit 8	SMEN: SMbus Input Levels bit									
		O pin threshold Mbus input thr		th SMbus spe	cification					
bit 7	GCEN: Gene	ral Call Enable	bit (when ope	rating as I ² C s	slave)					
	(module is	terrupt when a s enabled for re call address dis	eception)	ddress is recei	ved in the I2Cx	RSR				
bit 6		x Clock Stretch		hen operating	as l ² C slave)					
	Used in conju	Inction with SC	LREL bit.							
		oftware or rece								

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	 Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC			
ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10			
bit 15	•					•	bit 8			
		D 0 USO			D A LICO	D 0 UCC				
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC			
IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF			
bit 7							bit (
Legend:		U = Unimpler	mented bit, rea	ad as '0'		C = Clea	r only bit			
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardware set/cle				
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	(when operati 1 = NACK rec 0 = ACK rece Hardware set	ceived from sla ived from slav or clear at end	aster, applical ave e d of slave Ack	nowledge.	ransmit operati					
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	ogress (8 bits - 1 progress	+ ACK)		e to master trans and of slave Ack				
bit 13-11	Unimplemen	ted: Read as	ʻ0'							
bit 10	BCL: Master Bus Collision Detect bit									
	0 = No collisio			ing a master o	peration					
bit 9	GCSTAT: Ger	AT: General Call Status bit								
	0 = General c	all address wa all address wa when address	as not received		ess. Hardware o	clear at Stop det	ection.			
bit 8	ADD10: 10-B	it Address Sta	tus bit							
	0 = 10-bit add	Iress was mate Iress was not i at match of 2i	matched	ched 10-bit ad	ldress. Hardwa	re clear at Stop	detection.			
bit 7	IWCOL: Write	e Collision Det	ect bit							
	0 = No collisio	on	-		ause the I ² C mo ousy (cleared by	-				
bit 6		ive Overflow F				y sonware).				
	1 = A byte wa 0 = No overflo	is received wh	ile the I2CxRC		still holding the					
bit 5		dress bit (whe		-	·	-				
	0 = Indicates		te received w	as device add	ress by reception of	slave byte.				
bit 4	P: Stop bit									
	1 = Indicates 0 = Stop bit w	that a Stop bit		ected last						

© 2009 Microchip Technology Inc.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

S: Start bit
 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
R_W: Read/Write Information bit (when operating as I ² C slave)
1 = Read – indicates data transfer is output from slave
0 = Write – indicates data transfer is input to slave
Hardware set or clear after reception of I ² C device address byte.
RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
0 = Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
TBF: Transmit Buffer Full Status bit
 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	AMSK9	AMSK8
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7					·	bit 0
oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cle	ared		
	R/W-0 AMSK6			R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3	R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK6 W = Writable bit U = Unimplemented bit, read	— — — — AMSK9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 Dit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

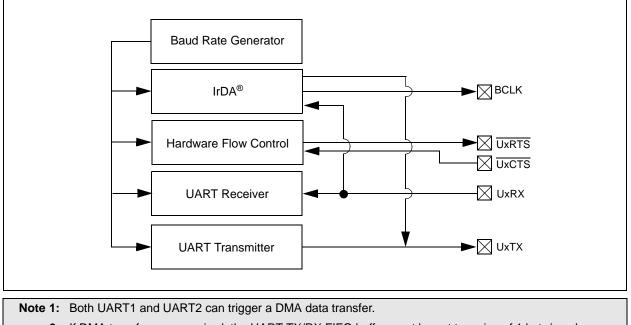
0 = Disable masking for bit x; bit match required in this position

NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 17. UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40
 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive interrupts
- A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD		UEN<1:0>	
bit 15							bit 8
	R/W-0		DAM 0	R/W-0	R/W-0	R/W-0	
R/W-0 HC WAKE	1	R/W-0 HC	R/W-0 URXINV	1			R/W-0 STSEL
bit 7	LPBACK	ABAUD URXINV BRGH PDSEL<1:0>				EL<1.0>	bit
Legend:		HC = Hardwa	re cleared				
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	1 = UARTx is		ARTx pins are			fined by UEN<1: UARTx power co	
bit 14	Unimplemented: Read as '0'						
bit 13	USIDL: Stop in Idle Mode bit						
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 						
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾						
	1 = $IrDA^{(m)}$ encoder and decoder enabled 0 = $IrDA^{(m)}$ encoder and decoder disabled						
bit 11	RTSMD: Mode Selection for UxRTS Pin bit						
	$1 = \overline{\text{UxRTS}} \text{ pin in Simplex mode}$ 0 = UxRTS pin in Flow Control mode						
bit 10	Unimplemented: Read as '0'						
bit 9-8	UEN<1:0>: UARTx Enable bits						
	10 = UxTX, U 01 = UxTX, U	lxRX, <u>UxCTS</u> a lxRX and UxR⊺ nd UxRX pins a	nd UxRTS pir	ns are enabled abled an <u>d use</u>	and used d; UxCTS pin	controlled by port controlled by po /BCLK pins conti	rt latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit						
	 1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled 						
bit 6	LPBACK: UARTx Loopback Mode Select bit						
	1 = Enable Loopback mode 0 = Loopback mode is disabled						
bit 5	ABAUD: Auto-Baud Enable bit						
	before ot	aud rate meas her data; clear e measuremen	ed in hardwar	e upon comple		reception of a Sy	/nc field (55h
	efer to Section ation on enablir					ly Reference Ma	<i>nual"</i> for info
2 • Th	nis feature is on	ly available for	the 16x BRG	mode (BRGH	= 0)		

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1				
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT				
bit 15	O T/AITV	OTAIOEEO		OTABLE	OTALIN	біхы	bit				
DAM 0	D/M/ 0	D/M/ O	D 1		- D O		D 0				
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0				
bit 7	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA bit				
							DIL				
Legend:		HC = Hardwa	e cleared			C = Clea	r only bit				
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15,13	UTXISEL<1:	0>: Transmissio	n Interrupt N	lode Selection b	oits						
, -		ed; do not use									
				erred to the Tran	nsmit Shift Regis	ster, and as a r	esult, the				
		t buffer become		shifted out of the	e Transmit Shift	Register: all tr	ansmit				
		ons are complete				Register, all th	ansmit				
	00 = Interrup	t when a charac	ter is transfe		nsmit Shift Regis	ter (this implie	s there is				
		one character o		ansmit buffer)							
oit 14		nsmit Polarity In	version bit								
	$\frac{\text{If IREN} = 0}{1 = \text{UxTX IdI}}$	1 = UxTX Idle state is '0'									
	0 = UxTX Idle state is '1'										
	If IREN = 1:										
		ncoded UxTX Id ncoded UxTX Id									
bit 12	Unimplemen	ted: Read as ')'								
bit 11		ansmit Break bi									
		nc Break on ne> by hardware upo			lowed by twelve	'0' bits, follow	ed by Stop b				
		eak transmission									
bit 10	-	nsmit Enable bit		·							
	1 = Transmit enabled, UxTX pin controlled by UARTx										
	0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlle										
		by port									
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full										
	0 = Transmit buffer is not full, at least one more character can be written										
bit 8	TRMT: Trans	mit Shift Registe	er Empty bit	(read-only)							
		•	• •		empty (the last is in progress or		as complete				
bit 7-6		0>: Receive Inte									
	11 = Interrup		-		ve buffer full (i e	has 4 data c	haractors)				
		LIS SEL ON UXRO		laking the lecel	ve buner run (i.e	., 1140 1 4414 0	naracters)				
	10 = Interrup	t is set on UxRS	R transfer m	naking the recei	ve buffer 3/4 full I transferred fro	(i.e., has 3 da	ta character				

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

nis does not take effect
cter at the top of the receive FIFO)
character at the top of the receive
DERR bit (1 \rightarrow 0 transition) resets
ead

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. NOTES:

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 21. Enhanced Controller Area Network (ECAN™)" (DS70185) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter

- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

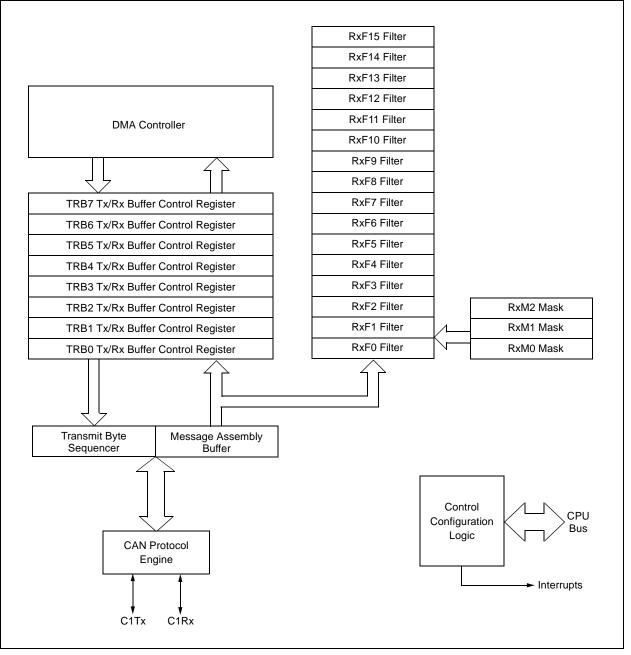
The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

- Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

19.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- · Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

19.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0				
—		CSIDL	ABAT			REQOP<2:0>					
bit 15							bit 8				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0	>	—	CANCAP	—	—	WIN				
oit 7							bit (
Legend:		r = Bit is rese	rved								
R = Readabl	e hit	W = Writable		II – Unimpler	mented bit, rea	ad as 'O'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15-14	Unimplemer	nted: Read as '	0'								
bit 13	CSIDL: Stop	in Idle Mode bi	t								
		ue module ope			lle mode						
		module operat									
bit 12		All Pending Tra									
	-	I transmit buffer			bortod						
-:- 44		vill clear this bit	when all tran	smissions are a	aborted						
bit 11	Reserved: D		unting Mada	h ita							
oit 10-8	REQOP<2:0>: Request Operation Mode bits										
	000 = Set Normal Operation mode 001 = Set Disable mode										
		opback mode									
		sten Only Mode									
		onfiguration mo	de								
	101 = Reser										
	110 = Reser	vea sten All Messag	es mode								
bit 7-5		:0>: Operation I									
		-		de							
	000 = Module is in Normal Operation mode 001 = Module is in Disable mode										
	010 = Module is in Loopback mode										
		e is in Listen Or									
		e is in Configura	ation mode								
101 = Reserved 110 = Reserved											
		e is in Listen Al	Messages m	node							
bit 4		nted: Read as '	-								
bit 3	=	AN Message R		Capture Event	Enable bit						
		nput capture bas	sed on CAN r	nessage receiv	'e						
	0 = Disable (
bit 2-1	-	nted: Read as '									
bit 0		ap Window Sel	ect bit								
	1 = Use filter										

REGISTER 19	-2: CiCTF	RL2: ECAN™	CONTROL	REGISTER 2	2		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	—	DNCNT<4:0>				
bit 7							bit 0
Legend:		C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit W = Writable b		bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-5	Unimplemented: Read as '0'
bit 4-0	DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits
	10010-11111 = Invalid selection
	10001 = Compare up to data byte 3, bit 6 with EID<17>
	•
	•
	•
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	_				FILHIT<4:0>						
oit 15							bit				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
		IX-0	IX-0	ICODE<6:0>	11-0	11-0	IX-0				
oit 7							bit				
_egend:		C = Writable I	oit, but only '	0' can be written	to clear the bi	t					
R = Readable	e bit	W = Writable	-	U = Unimplem							
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	wn				
bit 15-13	Unimplemen	ted: Read as '	0'								
oit 12-8	-	Filter Hit Num									
	10000-1111	1 = Reserved									
	01111 = Filte	r 15									
	•										
	•										
	00001 = Filter 1										
	00000 = Filte										
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-0	ICODE<6:0>:	Interrupt Flag	Code bits								
		11111 = Rese									
		IFO almost full eceiver overflo	•								
	1000010 = W	/ake-up interru	-								
	1000001 = E										
	1000000 = N	omenupi									
	•										
	•										
	0010000-0111111 = Reserved										
	0001111 = RB15 buffer Interrupt										
	•										
	•										
	• 0001001 = RB9 buffer interrupt										
	0001000 = RB8 buffer interrupt										
		RB7 buffer inte									
		RB6 buffer inte RB5 buffer inte									
		RB4 buffer inte									
	0000011 = T	RB3 buffer inte	errupt								
		RB2 buffer inte RB1 buffer inte									
	0000001 = T 0000000 = T										

REGISTER 19-4: CIFCTRL: ECAN[™] FIFO CONTROL REGISTER

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 DMABS<2:0> — … … … … … … <								
bit 15 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 - - - FSA<4:0> bit 7 - - FSA<4:0> Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS DMABS 2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 8 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM bit 12-5 Unimplemented: Read as '0' FSA<4:0>: FIFO Area Starts with Buffer bits 1111 = Read buffer RB31 1111 = Read buffer RB31 1111	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 - - - FSA<4:0> bit 7 - - FSA<4:0> Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 101 = 24 buffers in DMA RAM 010 = 16 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 1111 = Read as '0' bit 12-5 Unimplemented: Read as '0' bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 1111 = Read buffer RB31 1111 = Read buffer RB31	DMABS<2:0>			—	—	—	—	
- - FSA<4:0> bit 7 Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 010 = 8 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 011 = 12 buffers in DMA RAM <td< td=""><td>bit 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 8</td></td<>	bit 15							bit 8
bit 7 Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 001 = 8 buffers in DMA RAM 000 = 4 buffers in DMA RAM 011 = 12 buffers in	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 6 buffers in DMA RAM 010 = 6 buffers in DMA RAM 010 = 4 buffers in DMA RAM 011 = 12 buffers in DMA RAM 011 = Reserved 112 buffers in DMA RAM 011 = 8 buffers in DMA RAM 012 = 8 buffers in DMA RAM 013 = 8 buffers in DMA RAM 014 = 0 FSA<4:0>: FIFO Area Starts with Buffer bits 1111 = Read buffer RB31	—					FSA<4:0>		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 101 = 12 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 100 = 16 buffers in DMA RAM bit 12-5 Unimplemented: Read as '0' Etad as '0' bit 12-5 Unimplemented: Read as '0' Etad as '0' bit 12-5 I1111 = Read buffer RB31 Etad as '0'	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 101 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 100 = 16 buffers in DMA RAM bit 12-5 Unimplemented: Read as '0' 514-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = Read buffer RB31 1111 = Read buffer RB31 1111 1111								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 112-5 bit 12-5 Unimplemented: Read as '0' 1111 = Read buffer RB31								
bit 15-13 DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM bit 12-5 Unimplemented: Read as '0' bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = Read buffer RB31	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 010 = 6 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 000 = 4 buffers in DMA RAM 011 = 6 buffers in DMA RAM 011 = 75 Unimplemented: Read as '0' bit 12-5 Unimplemented: Read as '0' bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits 11111 = Read buffer RB31	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		110 = 32 buffe 101 = 24 buffe 100 = 16 buffe 011 = 12 buffe 010 = 8 buffe 001 = 6 buffe 000 = 4 buffer Unimplement FSA<4:0>: FI 11111 = Read	ers in DMA RA ers in DMA RA ers in DMA RA rs in DMA RA rs in DMA RAM rs in DMA RAM rs in DMA RAM rs in DMA RAM ted: Read as ' IFO Area Starts d buffer RB31	M M M 1 1 1 0	its			
•								

00001 = Tx/Rx buffer TRB1 00000 = Tx/Rx buffer TRB0

© 2009 Microchip Technology Inc.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				FBF	°<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FNR	B<5:0>		
bit 7							bit (
Legend:		C = Writable b	oit, but only '0	' can be writter	n to clear the	bit	
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	• • • • • • • • • • • • • • • • • • •	RB30 buffer TRB1 buffer TRB0 buffer					
bit 7-6	-	ented: Read as '					
bit 5-0	011111 = F 011110 = F • • 0000001 = -	>: FIFO Next Rea RB31 buffer RB30 buffer TRB1 buffer TRB1 buffer	ad Butter Poin	iter bits			

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit (
Legend:		C = Writable	bit, but only '0	' can be writter	n to clear the bi	t	
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as	0'				
bit 13		smitter in Error		bit			
		ter is in Bus Of					
		tter is not in Bu					
bit 12	1 = Transmit	smitter in Error ter is in Bus Pa ter is not in Bus	ssive state				
bit 11		iver in Error St					
	1 = Receiver	is in Bus Pass	ive state				
bit 10	TXWAR: Tra	Insmitter in Erro	or State Warnii	ng bit			
		ter is in Error V ter is not in Err	-	ite			
bit 9	RXWAR: Re	ceiver in Error	State Warning	bit			
		is in Error Wai is not in Error	•				
bit 8	1 = Transmit	ansmitter or Re ter or Receiver ter or Receiver	is in Error Sta	te Warning sta	te		
bit 7	1 = Interrupt	d Message Reo Request has o Request has n	ccurred	ot Flag bit			
bit 6		Wake-up Activ		ag bit			
	1 = Interrupt	Request has o	ccurred	•			
	-	Request has n					
bit 5		r Interrupt Flag		ources in CiINT	F<13:8> regis	ter)	
		Request has o					
	•	Request has n					
bit 4	-	nted: Read as					
bit 3		D Almost Full Ir Request has o		IT			
		Request has o					
bit 2	-	Buffer Overflo		ag bit			
		Request has o		.g			
		Request has n					
bit 1		uffer Interrupt F					
		Request has o					
	0 = Interrupt	Request has n	ot occurred				
		<i>"</i> · · · · · · · · · · · · · · · · · · ·					
bit 0		ffer Interrupt Fl Request has o					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_					_	_	
bit 15	I						bit 8
		5 444 6		D 444 a	-	-	5 444.4
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit
Legend:		C = Writable	bit, but only 'C)' can be writter	to clear the bit		
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	-	nted: Read as '					
bit 7		d Message Rec		ot Enable bit			
		Request Enabl					
		Request not er					
bit 6		Wake-up Activ		lag bit			
	•	Request Enabl					
		Request not er					
bit 5		r Interrupt Enat					
		Request Enabl					
	•	Request not er					
bit 4	-	nted: Read as '					
bit 3		D Almost Full In	•	e bit			
		Request Enabl					
	-	Request not er					
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit						
	 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled 						
bit 1	•	Iffer Interrupt E					
		Request Enabl					
		Request not er					
	$\sigma = m contupt$						
bit 0	•	ffer Interrunt Er	hahle hit				
bit 0	TBIE: TX Bu	ffer Interrupt Er Request Enabl					

REGISTER 19-8: C	CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER
------------------	---

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRO	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRO	CNT<7:0>			
bit 7							bit 0
Legend:		C = Writable bit	, but only '(D' can be written to	clear the b	pit	
R = Readable b	it	W = Writable bi	t	U = Unimplemen	ted bit, rea	ad as '0'	
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cleared	ł	x = Bit is unknown	

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—	_		—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW<1:0>				BRP	°<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = TQ = 2 x 3 x 1/FCAN
	00 0001 = TQ = 2 x 2 x 1/FCAN
	00 0000 = TQ = 2 x 1 x 1/FCAN

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
	WAKFIL					SEG2PH<2:0>			
bit 15							bit		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SEG2PHTS	SAM		SEG1PH<2:0:	>		PRSEG<2:0>			
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'			
-n = Value at I	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkno	own		
bit 15	-	nted: Read as							
bit 14		elect CAN bus I		Vake-up bit					
		N bus line filter s line filter is no							
bit 13-11		nted: Read as		e-up					
bit 10-8	•	:0>: Phase Sec							
DIL 10-8	111 = Lengt	-							
		IIISOXIQ							
	•								
	•								
	000 = Lengt	h is 1 x To							
bit 7	-	: Phase Segme	ent 2 Time Sele	ect bit					
		rogrammable							
			oits or Informat	ion Processing	g Time (IPT), v	vhichever is greate	er		
bit 6	SAM: Samp	le of the CAN b	ous Line bit						
	1 = Bus line	1 = Bus line is sampled three times at the sample point							
	0 = Bus line	is sampled one	ce at the sampl	e point					
bit 5-3		: 0>: Phase Seg	ment 1 bits						
	111 = Lengt	h is 8 x Tq							
	•								
	•								
	•								
	000 = Lengt								
bit 2-0		>: Propagation	Time Segmen	t bits					
	111 = Lengt	h is 8 x Tq							
	•								
	•								
	• • 000 = Lengt								

REGISTER IS		I. LUAN A	COLF TANC		NADLE NEG	SILK	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
							-

REGISTER 19-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

Legend:	C = Writable bit, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP<3:0>				F2BP	<3:0>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP<3:0>					F0BP	<3:0>	

bit 7

Legend:	C = Writable bit, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	
DIL 11-0	F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)

bit 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F7BF	P<3:0>			F6BI	P <3:0>			
bit 15	pit 15			·			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BF	P<3:0>			F4BI	P <3:0>			
bit 7							bit 0		
Legend:		C = Writable b	oit, but only '0'	' can be written to clear the bit					
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-12	F7BP<3:0>: RX Buffer mask for Filter 7								
	1111 = Filter hits received in RX FIFO buffer								
	1110 = Filter hits received in RX Buffer 14								
	•								
	•								
	•								
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0								
	F6BP<3:0>: RX Buffer mask for Filter 6 (same values as bit 15-12)								
bit 11-8	F6BP<3:0>:	RX Buffer masl	k for Filter 6 (s	ame values as	bit 15-12)				

REGISTER 19-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0	F4BP<3:0>: RX Buffer mask for Filter 4 (same values as bit 15-12)

REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F11BP<3:0>				F10BP<3:0>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F9BP	<3:0>			F8BF	P<3:0>			
bit 7							bit 0		
Logondu		C Writable	hit hut only ")' oon ho writton	to close the hi	4			
Legend: C = Writable bit, but only '0'									
R = Readabl		W = Writable		-	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	1111 = Filter 1110 = Filter • • • • • • • • • • • • • • • • • • •	F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • • • • • • • • • • • •							
bit 11-8				0 (same values	-				
bit 7-4	F9BP<3:0>:	RX Buffer mas	k for Filter 9 (same values as	; bit 15-12)				
bit 3-0	F8BP<3:0>:	RX Buffer mas	k for Filter 8 (same values as	bit 15-12)				

	FINIA. LOAN					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15BF	°<3:0>			F14B	P<3:0>	
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F13BP<3:0>				F12B	P<3:0>	
						bit 0
	C = Writable b	it, but only '0'	can be written	to clear the bi	it	
oit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
E4EBD (2:0)	- DV Duffer mee	k for Filtor 15				
•						
•						
•						
	F15BF R/W-0 F13BF oit DR F15BP<3:0> 1111 = Filter	F15BP<3:0> R/W-0 R/W-0 F13BP<3:0> C = Writable b oit W = Writable b DR '1' = Bit is set F15BP<3:0>: RX Buffer mas 1111 = Filter hits received in	F15BP<3:0> R/W-0 R/W-0 F13BP<3:0> C = Writable bit, but only '0' bit W = Writable bit DR '1' = Bit is set F15BP<3:0>: RX Buffer mask for Filter 15 1111 = Filter hits received in RX FIFO buf	F15BP<3:0> R/W-0 R/W-0 F13BP<3:0> C = Writable bit, but only '0' can be written w = Writable bit U = Unimplem	F15BP<3:0>F14BR/W-0R/W-0R/W-0R/W-0R/W-0R/W-0F13BP<3:0>F12BC = Writable bit, but only '0' can be written to clear the bibitW = Writable bitU = Unimplemented bit, reaDR'1' = Bit is set'0' = Bit is clearedF15BP<3:0>: RX Buffer mask for Filter 151111 = Filter hits received in RX FIFO buffer	F15BP<3:0> F14BP<3:0> R/W-0 R/W-0 R/W-0 R/W-0 F13BP<3:0> F12BP<3:0> C = Writable bit, but only '0' can be written to clear the bit bit W = Writable bit U = Unimplemented bit, read as '0' DR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr F15BP<3:0>

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

F14BP<3:0>: RX Buffer mask for Filter 14 (same values as bit 15-12)

F13BP<3:0>: RX Buffer mask for Filter 13 (same values as bit 15-12)

F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

© 2009 Microchip	Technology Inc.
------------------	-----------------

bit 11-8

bit 7-4

bit 3-0

	n (n =	: 0-15)							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16		
bit 7							bit 0		
Legend:		C = Writable b	oit, but only '0	' can be writter	n to clear the b	it			
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-5	1 = Message 0 = Message	Standard Identifi e address bit SIE e address bit SIE	Dx must be '1 Dx must be '0						
bit 4	Unimpleme	Unimplemented: Read as '0'							
bit 3	EXIDE: Exte	ended Identifier E	Enable bit						
	If MIDE = 1	then:							
	1 = Match only messages with extended identifier addresses								

0 = Match only messages with standard identifier addresses

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

If MIDE = 0 then: Ignore EXIDE bit.

Unimplemented: Read as '0'

EID<17:16>: Extended Identifier bits

bit 2

bit 1-0

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

	n (n =)	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

REGISTER 19-17: CIRXFnEID: ECAN[™] ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSł	F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		<<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSł	F3MSK<1:0>		F2MSK<1:0>		F1MSK<1:0>		F0MSK<1:0>	
bit 7							bit 0	

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit 11 = No mask
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

	13-13. OII MC									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15MSK<1:0>		F14MS	SK<1:0>	F13M5	SK<1:0>	F12MS	K<1:0>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ISK<1:0>		K<1:0>		K<1:0>		<1:0>			
bit 7		TTOIVIC	1.02	1 3100			bit C			
Legend:		C = Writable	bit, but only 'C	' can be writter	to clear the bit	:				
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14		F15MSK<1:0>: Mask Source for Filter 15 bit								
		11 = No mask								
		10 = Acceptance Mask 2 registers contain mask								
	•	01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask								
bit 13-12	-		-		as as hit 15-11)					
bit 11-10				14 bit (same values as bit 15-14) 13 bit (same values as bit 15-14)						
bit 9-8		F12MSK<1:0>: Mask Source for Filter 12			,					
bit 7-6				bit (same value	-					
bit 5-4				bit (same value						
bit 3-2				t (same values						
511 0 2										

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

	REGIS	6TER n (n = 0	-2)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
DAV		D/4/		D/M/		D ///	DAAL	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	MIDE		EID17	EID16	
bit 7							bit 0	
Legend:		C = Writable k	oit, but only '0	' can be writter	n to clear the bit			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	nt POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5	1 = Include b	Standard Identifi it SIDx in filter o s don't care in f	comparison	son				
bit 4	Unimplemen	ted: Read as '	o'					
bit 3	MIDE: Identif	ier Receive Mo	de bit					
	0 = Match eit	her standard or	extended ad	dress message	ddress) that corr e if filters match EID) = (Message	-	DE bit in filter	
bit 2	Unimplemen	ted: Read as '	כי י		-			
bit 1-0	FID-17-16-	Extended Iden	tifier hits					

REGISTER 19-20: CIRXMnSID: ECAN[™] ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER n (n = 0-2)

bit 1-0	EID<17:16>: Extended Identifier bits
	1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

		141170		14117			
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writable bit, but only '0	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0
							

REGISTER 19-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown					

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 19-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	egend: C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$				

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15	•						bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit		
R = Readable bit W = Writable b			bit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 19-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 19-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
bit 7 bit 0						bit 0	

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

© 2009 Microchip Technology Inc.

REGISTER 19-26:	CiTRmnCON: ECAN™ Tx/Rx BUFFER m CONTROL REGISTER
-----------------	--

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
TXENn	In TXABTN TXLARBN TXERRN TXREQN RTREN		RTRENn	TXnPF	RI<1:0>								
bit 15		+					bit						
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>						
bit 7							bit						
Legend:		C = Writable I	oit, but only '0'	can be writter	n to clear the bit								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown						
bit 15-8	See Definition	n for Bits 7-0, C	ontrols Buffer	n									
bit 7	TXENm: TX/	RX Buffer Sele	ction bit										
		1 = Buffer TRBn is a transmit buffer											
		0 = Buffer TRBn is a receive buffer											
bit 6		essage Aborteo	bit ⁽¹⁾										
	1 = Message			<i>с</i> и									
	•	completed tran		•									
bit 5		Vessage Lost A											
	•	lost arbitration while being sent did not lose arbitration while being sent											
bit 4	•	ror Detected D		•									
		or occurred wh			ent								
		0 = A bus error did not occur while the message was being sent											
bit 3	TXREQm: M	essage Send R	equest bit										
	1 = Requests sent	that a messag	e be sent. The	bit automatica	ally clears when	the message i	s successfull						
	0 = Clearing	the bit to '0' wh	ile set requests	s a message a	abort								
bit 2		uto-Remote Tra											
		 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 											
					unaffected								
bit 1-0		>: Message Tra		ority bits									
	11 = Highest message priority												
	•	• •			10 = High intermediate message priority 01 = Low intermediate message priority								
	10 = High inte	ermediate mes											

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

19.4 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 19-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission0 = Normal message
bit 0	IDE: Extended Identifier bit
	 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier

BUFFER 19-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
	—	—	EID17	EID16	EID15	EID14
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID12	EID11	EID10	EID9	EID8	EID7	EID6
						bit 0
		R/W-x R/W-x	R/W-x R/W-x R/W-x	- - EID17 R/W-x R/W-x R/W-x	— — — EID17 EID16 R/W-x R/W-x R/W-x R/W-x	- - EID17 EID16 EID15 R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 19-3	: ECAN	MESSAGE	E BUFFER V	VORD 2				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15							bit 8	
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	-	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7						•	bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-10		tondod Idontifi	or hite					
	EID<5:0>: Extended Identifier bits							
bit 9								
	1 = Message 0 = Normal m	will request re	mote transmis	ssion				
bit 8	RB1: Reserve	RB1: Reserved Bit 1						

BUFFER 19-3: ECAN™ MESSAGE BUFFER WORD 2

	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.

BUFFER 19-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U =			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	Bit is set '0' = Bit is cleared x = Bit is unknow			nown	

bit 15-8 **Byte 1<15:8>:** ECAN[™] Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

BUFFER 19-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 2			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	it U = Unimplemented bit, read as '0'			
-n = Value at P	/alue at POR '1' = Bit is set '0' = Bit is cleared x		x = Bit is unki	nown			

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 19-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 4			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	ble bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit is unkno			nown	

bit 15-8 **Byte 5<15:8>:** ECAN[™] Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

BUFFER 19-7:	ECAI	N™ MESSAGE E	BUFFER	WORD 6				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			В	yte 7				
bit 15							bit 8	
		-	-				D 444	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			В	yte 6				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

Byte 7<15:8>: ECAN™ Message Byte 7 bit 15-8

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

BUFFER 19-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—		—	FILHIT<4:0> ⁽¹⁾						
bit 15			bit						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_	_	—		—	_		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable I	le bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

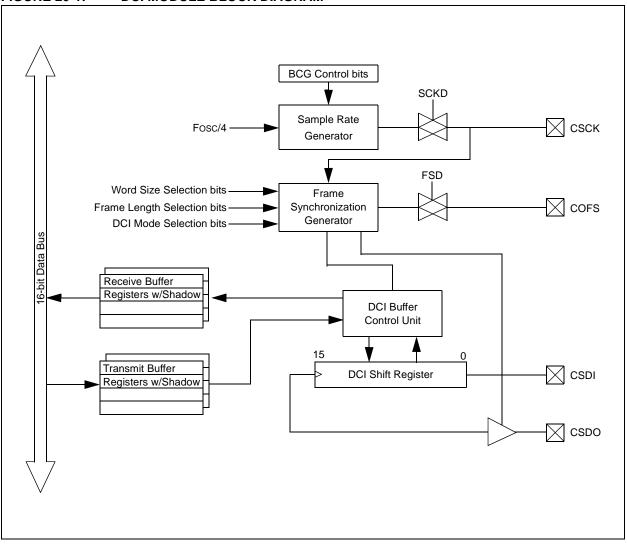
bit 15-13 Unimplemented: Read as '0'

FILHIT<4:0>: Filter Hit Code bits⁽¹⁾ bit 12-8

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.


20.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 20. Data Converter Interface (DCI)" (DS70288) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

20.1 Module Introduction

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode
- The DCI module provides the following general features:
- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 20-1: DCI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
DCIEN	—	DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD					
bit 15							bit					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0					
UNFM	CSDOM	DJST	_	—	_	COFS	M<1:0>					
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15		Module Enable	bit									
	1 = Module is											
bit 14	0 = Module is		י ר									
bit 13	-	n ted: Read as ' CI Stop in Idle C										
DIL 13		vill halt in CPU I										
		vill continue to c		U Idle mode								
bit 12		nted: Read as '										
bit 11	DLOOP: Dig	ital Loopback M	ode Control I	bit								
	1 = Digital Lo	opback mode is	s enabled. C	SDI and CSDO	pins internally	connected.						
	0 = Digital Lo	opback mode is	s disabled									
bit 10		CSCKD: Sample Clock Direction Control bit . = CSCK pin is an input when DCI module is enabled										
		n is an input wh n is an output w										
bit 9	CSCKE: San	CSCKE: Sample Clock Edge Control bit										
		nges on serial on nges on serial o										
bit 8	COFSD: Fran	COFSD: Frame Synchronization Direction Control bit										
		n is an input wh n is an output w										
bit 7	UNFM: Unde	erflow Mode bit										
		last value writte '0's on a transn		smit registers o	n a transmit un	derflow						
bit 6	CSDOM: Ser	rial Data Output	Mode bit									
		n will be tri-state n drives '0's dui	•									
bit 5	DJST: DCI D	CSDO pin drives '0's during disabled transmit time slots T: DCI Data Justification Control bit										
	synchror	nsmission/recep nization pulse	-	-		-						
		nsmission/recep	-	n one serial cloc	k cycle after fra	ame synchroniz	zation pulse					
bit 4-2	-	nted: Read as '										
bit 1-0		>: Frame Sync	Mode bits									
	11 = 20-bit A 10 = 16-bit A											
	01 = I ² S Frar	10 = 16-bit AC-Link mode $01 = I^{2}S Frame Sync mode$ 00 = Multi-Channel Frame Sync mode										

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

REGISTER 20-2: DCICON2: DCI CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0				
	—	—	—	BLEN	l<1:0>	_	COFSG3				
bit 15							bit 8				
DALO	DAM 0	DAMO		DANO		DAMO	DAMA				
R/W-0	R/W-0 COFSG<2:0>	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
bit 7	COF3G<2.0>				005		bit (
Legend:											
R = Readabl	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15-12	•	ted: Read as '0									
bit 11-10	BLEN<1:0>:	Buffer Length C	ontrol bits								
		a words will be									
				etween interrupts	S						
		a words will be b a word will be b									
bit 9		00 = One data word will be buffered between interrupts Unimplemented: Read as '0'									
bit 8-5	-	•: Frame Sync 0		netral hita							
DIL 0-0		frame has 16 w									
	•		5105								
	•										
	•										
	0010 = Data frame has 3 words										
	0001 = Data frame has 2 words										
	0000 = Data	frame has 1 wo	rd								
bit 4	Unimplemen	ted: Read as '0	,								
bit 3-0	WS<3:0>: DC	CI Data Word Siz	ze bits								
	1111 = Data y	word size is 16	bits								
	•										
	•										
	•										
		word size is 5 b									
	0011 = Data v	word size is 4 b	Its								
	0010	d Coloction D	not une 11		to mov						
				nexpected result nexpected result							

	0-3. D0100			SIGIERS					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—	—		BCG	6<11:8>			
bit 15				bi					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			BCC	6<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown		

REGISTER 20-3: DCICON3: DCI CONTROL REGISTER 3

bit 15-12 Unimplemented: Read as '0'

bit 11-0 BCG<11:0>: DCI Bit Clock Generator Control bits

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
_		_			SLOT	<3:0>						
bit 15							bit 8					
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
_			_	ROV	RFUL	TUNF	TMPTY					
bit 7							bit (
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
			- 1									
bit 15-12	•	nted: Read as '										
bit 11-8		SLOT<3:0>: DCI Slot Status bits 1111 = Slot 15 is currently active										
	•	•										
	•	•										
	•	•										
		0010 = Slot 2 is currently active										
		0001 = Slot 1 is currently active 0000 = Slot 0 is currently active										
bit 7-4		-										
bit 3	•	Unimplemented: Read as '0'										
bit 5		ROV: Receive Overflow Status bit 1 = A receive overflow has occurred for at least one receive register										
		0 = A receive overflow has not occurred										
bit 2	RFUL: Rece	RFUL: Receive Buffer Full Status bit										
		a is available in		gisters								
1.16.4		 0 = The receive registers have old data TUNF: Transmit Buffer Underflow Status bit 										
bit 1					pomit register							
		 1 = A transmit underflow has occurred for at least one transmit register 0 = A transmit underflow has not occurred 										
bit 0	TMPTY: Trai	nsmit Buffer Em	pty Status bit									
		smit registers a										
		smit registers a										

R = Readable -n = Value at F	= Readable bit W = Writable bit = Value at POR '1' = Bit is set			U = Unimpler '0' = Bit is cle	x = Bit is unkr	nown	
Legend:					nantad hit raaa		
bit 7		•				•	bit C
RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 16. Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

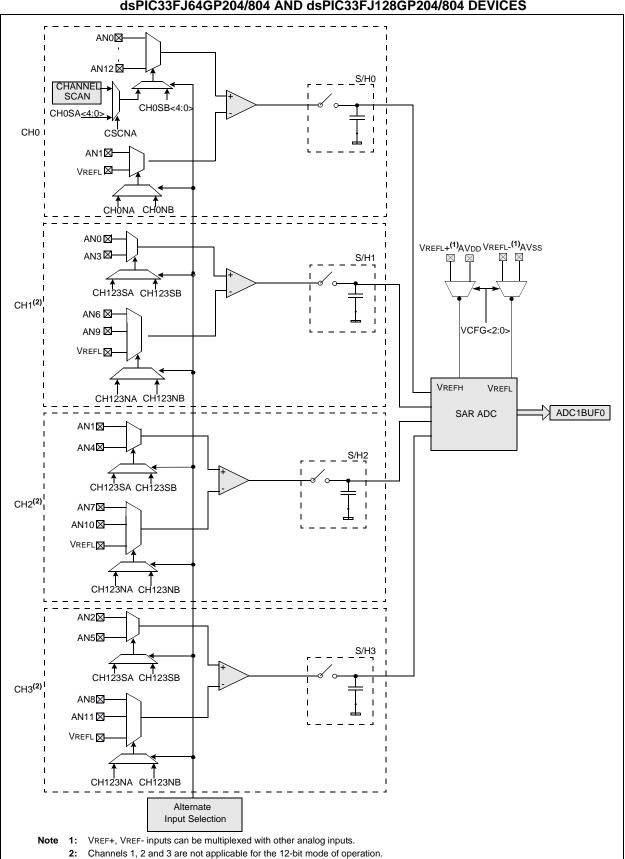
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

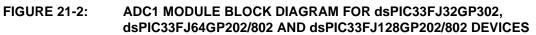
Block diagrams of the ADC module are shown in Figure 21-1 and Figure 21-2.

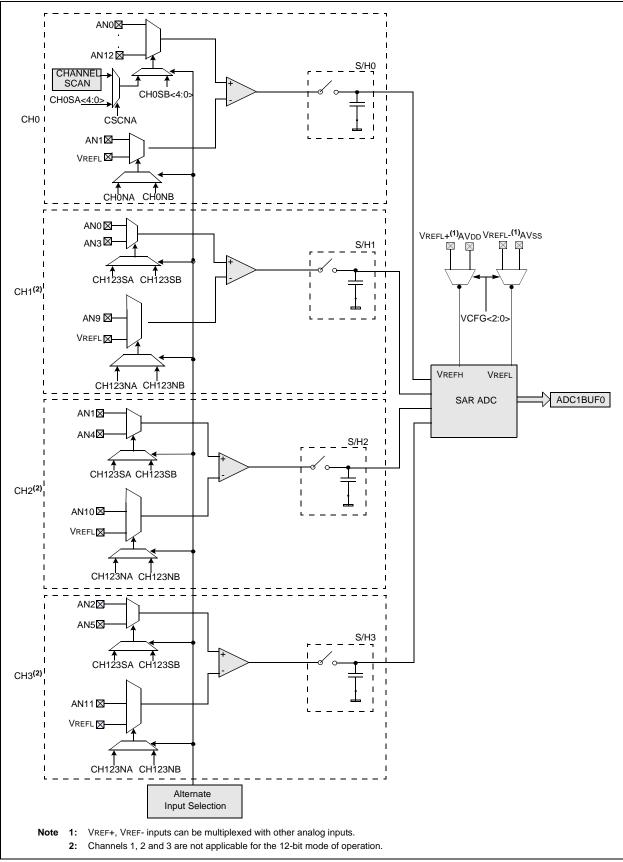
21.2 ADC Initialization

The following configuration steps should be performed.


- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

21.3 ADC and DMA


If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.


The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

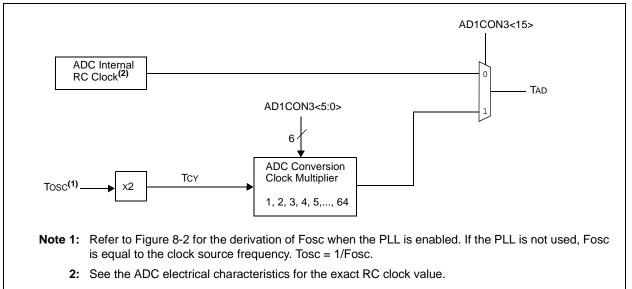


FIGURE 21-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
ADON		ADSIDL	ADDMABM	_	AD12B	FORM	1<1:0>		
bit 15	·	·		·		·	bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0		
	0000 00			0110000		HC,HS	HC, HS		
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE		
bit 7							bit (
Legend:		HC = Cleared	by hardware	HS = Set by I	nardware	C = Clea	r only bit		
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15		Operating Mod	le hit						
bit 10		dule is operati							
	0 = ADC is o	-	.9						
bit 14	Unimplemen	ted: Read as	0'						
bit 13	-	o in Idle Mode							
	1 = Discontir	nue module op	eration when de		le mode				
h it 40		-	ition in Idle mod	e					
bit 12		DMA Buffer Bu	in the order of			idaa an addraa	a ta tha DM		
			e as the addres						
	0 = DMA buf	fers are writter	n in Scatter/Gatl	her mode. The	e module provid	des a scatter/ga			
bit 11		ted: Read as							
bit 10	-		eration Mode bit	t					
	1 = 12-bit, 1-	channel ADC channel ADC	operation						
bit 9-8	FORM<1:0>:	Data Output F	ormat bits						
	For 10-bit ope	eration:							
			T=sddd dddd		, where s =.NC)T.d<9>)			
			dd dddd dd00		where NOT				
			ssss sssd c 00dd dddd d		nere s = .NOT	.0<9>)			
	For 12-bit operation:								
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)								
	10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>)								
		•		ddd dddd. V	vnere s = .NO I	.usii21			
	01 = Signed I	nteger (Dout			vnere s = .NO I	.u<112)			
bit 7-5	01 = Signed I 00 = Integer (nteger (Dout Dout = 0000	=ssss sddd o	ddd)	vnere s = .NOT	.u<112)			
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>:	nteger (Dout Dout = 0000 Sample Clock	= ssss sddd o dddd dddd d	ddd) bits					
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv	nteger (DOUT DOUT = 0000 Sample Clock I counter ends red	= ssss sddd o dddd dddd d Source Select b	ddd) bits					
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv	nteger (Dout Dout = 0000 Sample Clock I counter ends red	= ssss sddd d dddd dddd d Source Select t sampling and s	ddd) pits starts conversio	on (auto-conve	rt)			
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim	nteger (DOUT DOUT = 0000 Sample Clock I counter ends red red er (Timer5 for	= ssss sddd o dddd dddd d Source Select b	ddd) pits starts conversio	on (auto-conve	rt)			
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim 011 = Reserv	nteger (DOUT DOUT = 0000 Sample Clock Il counter ends red er (Timer5 for red	= ssss sddd o dddd dddd d Source Select b sampling and s ADC1) compare	ddd) bits tarts conversion e ends samplir	on (auto-conve	rt) onversion			
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim 011 = Reserv 010 = GP tim 011 = Active	nteger (DOUT DOUT = 0000 Sample Clock I counter ends red er (Timer5 for red er (Timer3 for transition on II	= ssss sddd d dddd dddd d Source Select b sampling and s ADC1) compare ADC1) compare	ddd) bits starts conversion e ends samplir e ends samplir mpling and sta	on (auto-conve ng and starts co ng and starts co arts conversion	rt) onversion onversion			
bit 7-5	01 = Signed I 00 = Integer (SSRC<2:0>: 111 = Interna 110 = Reserv 101 = Reserv 100 = GP tim 011 = Reserv 010 = GP tim 011 = Active	nteger (DOUT DOUT = 0000 Sample Clock I counter ends red er (Timer5 for red er (Timer3 for transition on II	= ssss sddd d dddd dddd d Source Select b sampling and s ADC1) compare ADC1) compare	ddd) bits starts conversion e ends samplir e ends samplir mpling and sta	on (auto-conve ng and starts co ng and starts co arts conversion	rt) onversion onversion			

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	 DONE: ADC Conversion Status bit 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in
	progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 21-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	R/V	V-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	VCFG	<2:0>				CSCNA	CHPS	6<1:0>	
bit 15								bit 8	
R-0	U-	0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUFS	_	_		SMPI	<3:0>		BUFM	ALTS	
bit 7								bit 0	
Legend:									
R = Readable	bit		W = Writab	e bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at F	POR		'1' = Bit is s	et	'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-13	VCFG	2:0>:	Converter V	oltage Reference	Configuration	bits			
			DREF+	ADREF-					
	000		Avdd	Avss	_				
	001	Exter	nal VREF+	Avss					
	010		Avdd	External VREF-					
	011	Exter	nal VREF+	External VREF-					
	1xx		Avdd	Avss					
bit 12-11	Unimp	lemen	ted: Read as	s 'O'					
bit 10	CSCN	A: Scar	n Input Seleo	tions for CH0+ d	uring Sample	A bit			
	1 = Sc 0 = Dc	•	uts an inputs						
bit 9-8	CHPS-	<1:0>:	Selects Cha	nnels Utilized bits	5				
				<1:0> is: U-0, Un	implemente	d, Read as '0'			
			S CH0, CH1, S CH0 and C	CH2 and CH3 H1					
	00 = C								
bit 7	BUFS:	Buffer	Fill Status b	t (only valid wher	n BUFM = 1)				
				g buffer 0x8-0xF, g buffer 0x0-0x7,					
bit 6	Unimp	lemen	ted: Read as	s'0'					
bit 5-2			Selects Incre r interrupt	ment Rate for DN	IA Addresses	bits or number	of sample/conv	version	
	1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/								
	conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/ conversion operation								
	•	CONVE	ision operati	on					
	•								
				/A address after /A address after					
bit 1			Fill Mode S		completion of	every sample/e			
	1 = Sta	arts bul	fer filling at a	address 0x0 on fil Iffer at address 0		nd 0x8 on next i	nterrupt		
bit 0		-	-	nple Mode Select					

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	—	—			SAMC<4:0>	(1)			
bit 15	·	•					bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ADCS	<7:0> ⁽²⁾					
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	1 = ADC inter	Conversion Cloo nal RC clock ived from system							
bit 14-13	Unimplemen	ted: Read as '0	,						
bit 12-8	SAMC<4:0>: Auto Sample Time bits ⁽¹⁾								
	11111 = 31 T	AD							
	•								
	•								
	• 00001 = 1 TA	D							
	00000 = 0 TA								
bit 7-0	ADCS<7:0>:	ADC Conversio	on Clock Sele	ct bits ⁽²⁾					
	11111111 =	Reserved							
	•								
	•								
	•								
	• 01000000 = Reserved 00111111 Tax (ADOO 7.0 + 4) 04 Tax Tax								
	$00111111 = Tcy \cdot (ADCS < 7:0 > + 1) = 64 \cdot Tcy = TAD$								
	•								
	•								
		Тсү · (ADCS<7 Тсү · (ADCS<7							
	00000000 =								

REGISTER 21-3: AD1CON3: ADC1 CONTROL REGISTER 3

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_		_		_
bit 15		·			·		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—		—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

REGISTER 21-4: AD1CON4: ADC1 CONTROL REGISTER 4

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	_		CH123	VB<1:0>	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		0-0	0-0	0-0		NA<1:0>	CH123SA
bit 7					0111201	W(<1.0>	bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-11	Unimplement	ed: Read as ')'				
bit 10-9							
DIL 10-9	CH123NB<1:0	I>: Channel 1,	2, 3 Negative	Input Select for	or Sample B bit	S	
bit 10-9	When AD12B	= 1, CHxNB i	s: U-0, Unimp	plemented, Re	ad as '0'		
511 10-9	When AD12B 11 = CH1 nega	= 1, CHxNB i ative input is A	s: U-0, Unimp N9, CH2 nega	blemented, Re ative input is A	ad as '0' N10, CH3 nega	ative input is A	
bit 10-9	When AD12B 11 = CH1 neg 10 = CH1 neg	= 1, CHxNB i ative input is A ative input is A	s: U-0, Unimp N9, CH2 nega N6, CH2 nega	blemented, Re ative input is A ative input is A	ad as '0'	ative input is A	
	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE	blemented, Re ative input is A ative input is A F-	ad as '0' N10, CH3 nega N7, CH3 negat	ative input is A	
bit 8	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: Ch	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S	blemented, Re ative input is A ative input is A F- Select for Sam	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit	ative input is A	
	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: Ch When AD12B	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is	s: U-0, Unimp N9, CH2 nega N6, CH2 nega /e input is VRE Positive Input S s: U-0, Unimp	Diemented, Re ative input is A ative input is A F- Select for Samp Diemented, Re	ead as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0'	ative input is A ive input is AN	
	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE vositive Input S s: U-0, Unimp 3, CH2 positive	Diemented, Re ative input is A ative input is A F- Select for Samp Diemented, Re e input is AN4,	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i	ative input is A ive input is AN nput is AN5	
bit 8	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ve input is AN	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive	Diemented, Re ative input is A ative input is A F- Select for Samp Diemented, Re e input is AN4,	ead as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0'	ative input is A ive input is AN nput is AN5	
bit 8 bit 7-3	When AD12B 11 = CH1 neg. 10 = CH1 neg. 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi Unimplement	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ve input is AN ed: Read as (s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive	Demented, Re ative input is A ative input is A F- Select for Samp Demented, Re e input is AN4, e input is AN1,	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i , CH3 positive i	ative input is A ive input is AN nput is AN5 nput is AN2	
bit 8	When AD12B 11 = CH1 neg. 10 = CH1 neg. 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:C	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ve input is AN ed: Read as '0 >: Channel 1,	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 0, 2, 3 Negative	blemented, Re ative input is A ative input is A F- Select for Samp blemented, Re e input is AN4, e input is AN1,	ad as 'o' N10, CH3 nega N7, CH3 negat ple B bit ad as 'o' , CH3 positive i , CH3 positive i	ative input is A ive input is AN nput is AN5 nput is AN2	
bit 8 bit 7-3	When AD12B 11 = CH1 neg. 10 = CH1 neg. 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi 0 = CH1 positi CH123NA<1:0	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ve input is AN ed: Read as '()>: Channel 1, = 1, CHxNA i	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 2, 3 Negative s: U-0, Unimp	blemented, Re ative input is A ative input is A F- Select for Samp blemented, Re e input is AN4, e input is AN1, Input Select fo blemented, Re	ad as 'o' N10, CH3 nega N7, CH3 negat ple B bit ad as 'o' , CH3 positive i , CH3 positive i	ative input is A ive input is AN nput is AN5 nput is AN2 s	₁₈ (1)
bit 8 bit 7-3	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:C	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ed: Read as '(D>: Channel 1, = 1, CHxNA i ative input is A ative input is A	s: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE cositive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 2, 3 Negative s: U-0, Unimp N9, CH2 nega N6, CH2 nega	blemented, Re ative input is A ative input is A F- Select for Samp blemented, Re e input is AN1, Input Select for blemented, Re ative input is A ative input is A	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i , CH3 positive i or Sample A bit ad as '0'	ative input is A ive input is AN nput is AN5 nput is AN2 s ative input is A	N <u>11</u>
bit 8 bit 7-3	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:0	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ed: Read as '(D>: Channel 1, = 1, CHxNA i ative input is A ative input is A	s: U-0, Unimp N9, CH2 nega N6, CH2 nega e input is VRE cositive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 2, 3 Negative s: U-0, Unimp N9, CH2 nega N6, CH2 nega	blemented, Re ative input is A ative input is A F- Select for Samp blemented, Re e input is AN1, Input Select for blemented, Re ative input is A ative input is A	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i , CH3 positive i or Sample A bit ead as '0' N10, CH3 nega	ative input is A ive input is AN nput is AN5 nput is AN2 s ative input is A	N <u>11</u>
bit 8 bit 7-3	When AD12B 11 = CH1 neg: 10 = CH1 neg: 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:C	= 1, CHxNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHxSA is ve input is AN ed: Read as (0) channel 1, = 1, CHxNA i ative input is A ative input is A 2, CH3 negative	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 3, 3 Negative s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE	Demented, Re ative input is A ative input is A F- Select for Samp Demented, Re e input is AN4, e input Select for Demented, Re ative input is A ative input is A ative input is A	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i , CH3 positive i or Sample A bit ad as '0' N10, CH3 negat	ative input is A ive input is AN nput is AN5 nput is AN2 s ative input is A	N <u>11</u>
bit 8 bit 7-3 bit 2-1	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:C	= 1, CHXNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHXSA is ve input is AN ve input is AN ed: Read as (D): Channel 1, = 1, CHXNA i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHXSA is	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 3, 3 Negative s: U-0, Unimp N9, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp	Demented, Re ative input is A ative input is A F- Select for Samp Demented, Re e input is AN4, e input is AN4, e input is AN4, for a select for Demented, Re ative input is A ative input is A	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i or Sample A bit ad as '0' N10, CH3 negat N7, CH3 negat ple A bit ad as '0'	ative input is A ive input is AN nput is AN5 nput is AN2 s ative input is AN	N <u>11</u>
bit 8 bit 7-3 bit 2-1	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: Ch When AD12B 1 = CH1 positi 0 = CH1 positi 0 = CH1 positi Unimplement CH123NA<1:C	= 1, CHXNB i ative input is A ative input is A 2, CH3 negativ annel 1, 2, 3 F = 1, CHXSA is ve input is AN ed: Read as '(0) Channel 1, = 1, CHXNA i ative input is A ative input is A ative input is A 1, CH3 negativ annel 1, 2, 3 F = 1, CHXSA is	s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive 1, 3 Negative s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S s: U-0, Unimp 3, CH2 positive	Demented, Re ative input is A ative input is A F- Select for Samp Demented, Re e input is AN4, e input is AN4, input Select for Demented, Re ative input is A ative input is A Select for Samp Demented, Re e input is AN4,	ad as '0' N10, CH3 nega N7, CH3 negat ple B bit ad as '0' , CH3 positive i or Sample A bit ad as '0' N10, CH3 negat N7, CH3 negat	ative input is A ive input is AN nput is AN5 nput is AN2 s ative input is AN ive input is AN	N <u>11</u>

REGISTER 21-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

Note 1: This bit setting is Reserved in dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJGPX02 (28pin) devices.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		—			CH0SB<4:0>		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA					CH0SA<4:0>		
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unki	nown
bit 15	CH0NB: Cha	annel 0 Negativ	e Input Select	for Sample B	bit		
	Same definit	ion as bit 7.					
bit 14-13	Unimpleme	nted: Read as '	0'				
bit 12-8		>: Channel 0 Po	•	•	le B bits		
		annel 0 positive					
	01011 = Cha	annel 0 positive	input is AN11				
	•						
	•			、			
		annel 0 positive					
		annel 0 positive annel 0 positive					
	•		Input is Alvo	,			
	•		Input is Ano.	,			
	• •	·)			
	• • 00010 = Cha	annel 0 positive	input is AN2)			
	• • 00010 = Cha 00001 = Cha	annel 0 positive annel 0 positive	input is AN2 input is AN1	,			
bit 7	• 00010 = Cha 00001 = Cha 00000 = Cha	annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0		bit		
bit 7	• • • • • • • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative	input is AN2 input is AN1 input is AN0 e Input Select		bit		
bit 7	• 00010 = Cha 00001 = Cha 00000 = Cha CHONA: Cha 1 = Channel	annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select It is AN1		bit		
	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negativ 0 negative inpu	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 it is VREF-		bit		
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu nted: Read as '	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0'	for Sample A			
	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu nted: Read as '	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 It is VREF- 0' positive Input Se	for Sample A			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu nted: Read as '	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 It is VREF- 0' ositive Input Se input is AN12	for Sample A			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 Po annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 It is VREF- 0' ositive Input Se input is AN12	for Sample A			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 Po annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 It is VREF- 0' ositive Input Se input is AN12	for Sample A			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 Positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select It is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11	for Sample A			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11	for Sample A elect for Samp)			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 Positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11	for Sample A elect for Samp)			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11	for Sample A elect for Samp)			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11	for Sample A elect for Samp)			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11 input is AN8 ⁽¹⁾ input is AN6 ⁽¹⁾	for Sample A elect for Samp)			
bit 6-5	• • • • • • • • • • • • • •	annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu 0 negative inpu nted: Read as ' >: Channel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0 e Input Select it is AN1 it is VREF- 0' ositive Input Se input is AN12 input is AN11 input is AN8 ⁽¹⁾ input is AN6 ⁽¹⁾	for Sample A elect for Samp)			

REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

Note 1: These bit settings (AN6, AN7 and AN8) are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJ32GPX02 (28-pin) devices.

R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
Legend:							
bit 7							bit C
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	_	—	CSS12	CSS11	CSS10	CSS9	CSS8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 21-7: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-12 Unimplemented: Read as '0'

-n = Value at POR

bit 11-0 CSS<11:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

'1' = Bit is set

0 = Skip ANx for input scan

Note 1: On devices without 13 analog inputs, all AD1CSSL bits can be selected by the user application. However, inputs selected for scan without a corresponding input on device converts VREFL.

0' = Bit is cleared

x = Bit is unknown

2: CSSx = ANx, where x = 0 through 12.

REGISTER 21-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15				·		·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-0 **PCFG<12:0>:** ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 13 analog inputs, all PCFG bits are R/W by user software. However, the PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** PCFGx = ANx, where x = 0 through 12.
 - **3:** PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx Register. In this case all port pins multiplexed with ANx will be in Digital mode.

22.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 33. Audio Digital-to-Analog Converter (DAC)", (DS70211) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage dsPIC33FJ64GP804 output for the and dsPIC33FJ128GP804 devices. The dsPIC33FJ64GP802 dsPIC33FJ128GP802 and devices provide positive DAC output and negative DAC output voltages.

22.1 Key Features

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 ksps Maximum Sampling Rate
- User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

22.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 22-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a "safe" output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide "noise shaping" to move the converter noise above 20 kHz (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required peak-to-peak voltage swing.

Note: The DAC module is designed specifically for audio applications and is not recommended for control type applications.

22.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control (FORM<8>) bit in the DAC1CON register. The supported formats are:

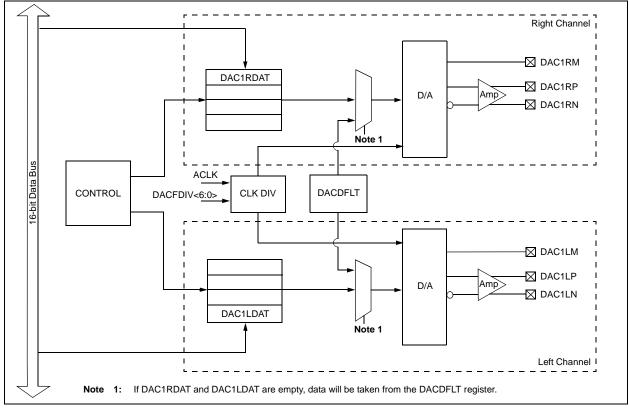
- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for "Unsigned data" then the user input data yields the following behavior:

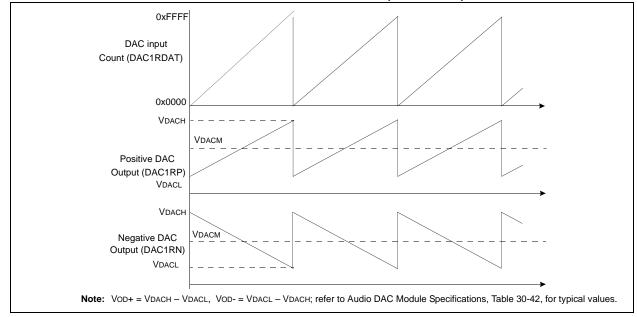
- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for "signed data" then the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage


The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100 ksps) update rate provides good quality audio reproduction.

22.4 DAC Clock


The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator.

The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

	REGISTER 22-1:	DAC1CON: DAC CONTROL REGISTER
--	----------------	-------------------------------

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
DACEN		DACSIDL	AMPON	_	_	_	FORM			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1			
_				DACFDIV<6:0	>					
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	DACEN: DAC	1 Enable bit								
	1 = Enables n 0 = Disables r									
bit 14	Unimplemen	ted: Read as ')'							
bit 13	DACSIDL: St	op in Ideal Moo	le bit							
		ue module oper module operati		levice enters Id de	le mode					
bit 12	AMPON: Ena	ble Analog Out	tput Amplifier	in Sleep Mode	/Stop-in Idle Mo	ode				
				uring Sleep Moo uring Sleep Moo						
bit 11-9	Unimplemen	ted: Read as ')'							
bit 8	FORM: Data	Format Select I	oit							
	1 = Signed int 0 = Unsigned									
bit 7	Unimplemen	ted: Read as '	י'							
bit 6-0	DACFDIV<6:	0>: DAC Clock	Divider							
	1111111 = D	Divide input clo	ck by 128							
	•									
	•									
	•									
	$0000101 = \Box$	0000101 = Divide input clock by 6 (default)								
	•									
	•									
	•	Notata ta ini i	- I. I 0							
		Divide input cloo Divide input cloo								
			ck by 2 ck by 1 (no di							

REGISTER	22-2: DAC1	STAT: DAC S	TATUS REG	GISTER						
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0			
LOEN		LMVOEN	_	—	LITYPE	LFULL	LEMPTY			
bit 15							bit 8			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0			
ROEN		RMVOEN	_		RITYPE	RFULL	REMPTY			
bit 7		RINOER					bit C			
Legend:										
R = Readabl	e bit	W = Writable I	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl		x = Bit is unk	nown			
bit 15	1 = Positive	Channel DAC ou and negative Da tputs are disable	AC outputs a	re enabled.						
bit 14		nted: Read as '(
bit 13	•	eft Channel Midr		itput voltage er	nable					
	1 = Midpoin	t DAC output is o t output is disabl	enabled.							
bit 12-11	Unimpleme	nted: Read as 'o)'							
bit 10	LITYPE: Left Channel Type of Interrupt									
	1 = Interrupt if FIFO is EMPTY.									
1.11.0	 0 = Interrupt if FIFO is NOT FULL. LFULL: Status, Left Channel Data input FIFO is FULL 									
bit 9	1 = FIFO is		Data Input F	-IFO IS FULL						
	0 = FIFO is									
bit 8	LEMPTY: Sta 1 = FIFO is 0 = FIFO is		iel Data input	t FIFO is EMP	ΤY					
bit 7		t Channel DAC	output enable	e						
	1 = Positive	and negative Dative Dational to the second s	AC outputs a							
bit 6	Unimpleme	nted: Read as 'o)'							
bit 5	RMVOEN: Right Channel Midpoint DAC output voltage enable									
	•	t DAC output is e t output is disabl								
bit 4-3	Unimpleme	nted: Read as 'o)'							
bit 2	RITYPE: Right Channel Type of Interrupt									
		t if FIFO is EMP ⁻ t if FIFO is NOT								
bit 1	-	us, Right Chann		t FIFO is FULL	_					
	1 = FIFO is									
	0 = FIFO is	s not full.								
bit 0		atus, Right Char	nnel Data inp	out FIFO is EM	PTY					
	1 = FIFO is 0 = FIFO is									
		not Empty.								

DECISTED 22-2. DACISTAT: DAC STATUS DECISTED

REGISTER 22-3: DAC1DFLT: DAC DEFAULT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACDF	LT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACD	FLT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 DACDFLT<15:0>: DAC Default Value

REGISTER 22-4: DAC1LDAT: DAC LEFT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACLE	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACLI	DAT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

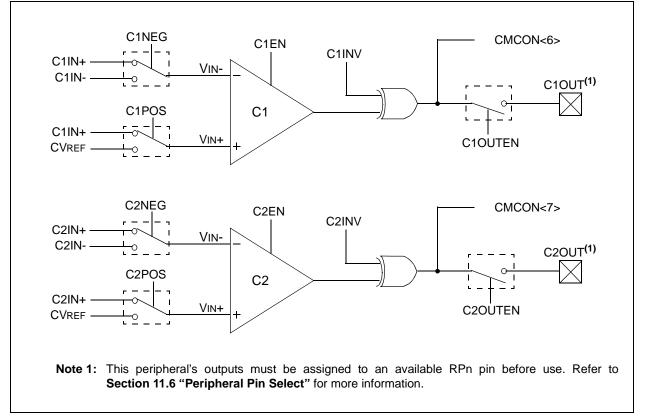
bit 15-0 DACLDAT<15:0>: Left Channel Data Port

REGISTER 22-5: DAC1RDAT: DAC RIGHT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACRE	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACR	DAT<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 DACRDAT<15:0>: Right Channel Data Port

NOTES:


23.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of dsPIC33FJ32GP302/304, the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 34. Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

R/W-0 CMIDL	U-0	R/W-0 C2EVT	R/W-0	R/W-0	R/W-0	R/W-0 C2OUTEN ⁽¹⁾	R/W-0 C1OUTEN ⁽²				
bit 15	—	C2EVI	C1EVT	C2EN	C1EN	C200TEIN,	bit				
							Dit				
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	CMIDL: Stop	in Idle Mode									
					nerate interrup	ots. Module is sti	ll enabled.				
	 1 = When device enters Idle mode, module does not generate interrupts. Module is still enabled. 0 = Continue normal module operation in Idle mode 										
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	C2EVT: Comparator 2 Event										
	 Comparator output changed states Comparator output did not change states 										
bit 12	0 = Comparator output did not change states C1EVT: Comparator 1 Event										
	1 = Comparator output changed states										
	0 = Comparator output did not change states										
bit 11	C2EN: Comparator 2 Enable										
	1 = Comparator is enabled										
	0 = Comparator is disabled										
bit 10	C1EN: Comparator 1 Enable										
	 1 = Comparator is enabled 0 = Comparator is disabled 										
bit 9	•			1)							
bit 0	C2OUTEN: Comparator 2 Output Enable ⁽¹⁾ 1 = Comparator output is driven on the output pad										
	0 = Comparator output is not driven on the output pad										
bit 8	C10UTEN: Comparator 1 Output Enable ⁽²⁾										
	1 = Comparator output is driven on the output pad										
	0 = Comparator output is not driven on the output pad										
bit 7		parator 2 Outp	out bit								
	$\frac{\text{When C2INV}}{1 = C2 \text{VIN+}}$										
	0 = C2 VIN+										
	When C2INV										
	0 = C2 VIN + 1										
	1 = C2 VIN+	< C2 VIN-									

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER

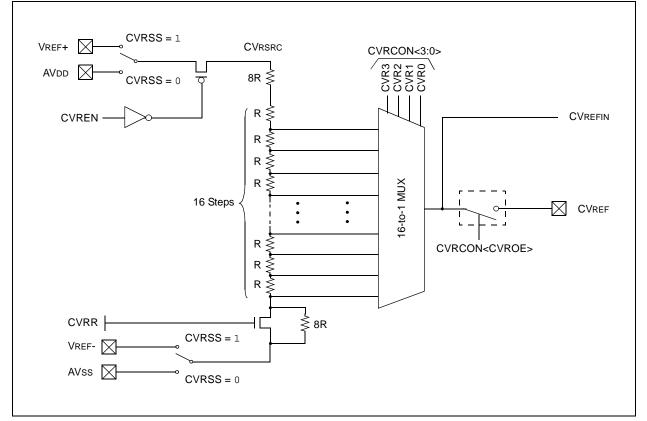
- Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit
	When $C1INV = 0$:
	1 = C1 VIN + > C1 VIN -
	0 = C1 VIN + < C1 VIN -
	When $C1INV = 1$:
	0 = C1 VIN+ > C1 VIN- 1 = C1 VIN+ < C1 VIN-
bit 5	
DILS	C2INV: Comparator 2 Output Inversion bit
	 1 = C2 output inverted 0 = C2 output not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit
	1 = C1 output inverted
	0 = C1 output not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to VIN-
	See Figure 23-1 for the comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 23-1 for the comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	 1 = Input is connected to VIN+ 0 = Input is connected to VIN-
	See Figure 23-1 for the comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 23-1 for the comparator modes.
Note 1:	If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See
	Section 11.6 "Peripheral Pin Select" for more information.

2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

23.1 Comparator Voltage Reference


23.1.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 23-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 23-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

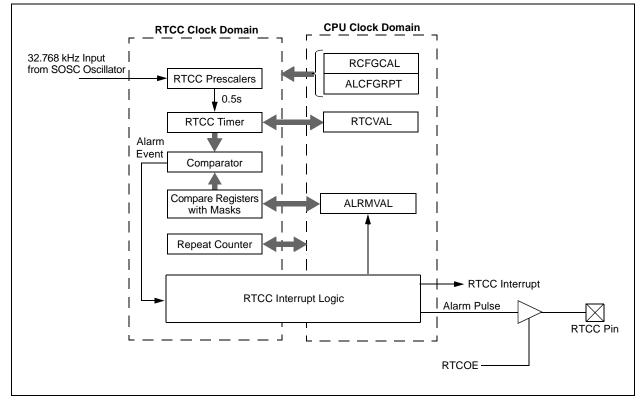
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—	_	—	_	—	—	
bit 15				·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRR	CVRSS		CVI	R<3:0>		
bit 7							bit (
Logondi								
Legend: R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at	t POR	'1' = Bit is set	t	•			x = Bit is unknown	
bit 6	0 = CVREF ci CVROE: Com 1 = CVREF vo	rcuit powered rcuit powered nparator VREF oltage level is o	down Output Enable output on CVR	EF pin				
bit 5	CVRR: Comp 1 = CVRSRC 0 = CVRSRC	 0 = CVREF voltage level is disconnected from CVREF pin CVRR: Comparator VREF Range Selection bit 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size 						
bit 4	1 = Compara		source CVRSR	ion dit C = Vref+ – Vr C = AVdd – AVs				
bit 3-0	<u>When CVRR</u> CVREF = (CV <u>When CVRR</u>	<u>= 1:</u> R<3:0>/ 24) • ((CVRSRC)	ction 0 ≤ CVR<) ● (CVRsRc)	3:0> ≤ 15 bits			

© 2009 Microchip Technology Inc.

NOTES:

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04. and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 37. Real-Time Clock (RTCC)" and Calendar of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices, and its operation. The following are some of the key features of this module:

- Time: hours, minutes, and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 24-1: RTCC BLOCK DIAGRAM

24.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

24.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 24-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 24-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window					
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	—	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 24-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 24-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11		_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

24.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 24-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 24-1.

EXAMPLE 24-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>			
bit 15						L	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CAL	<7:0>						
bit 7							bit			
Legend:										
R = Readable b		W = Writable		U = Unimplem						
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
		CC Enable bit ⁽²⁾								
bit 15		odule is enable								
		odule is disable								
bit 14	Unimplemer	ted: Read as '	0'							
bit 13	RTCWREN:	RTCC Value Re	egisters Write	Enable bit						
				an be written to b						
			-	re locked out from	-	n to by the use				
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit									
	1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data									
	-	issumed to be v								
				registers can be	e read without	concern over a	rollover ripple			
bit 11	HALFSEC: Half-Second Status bit ⁽³⁾									
	 1 = Second half period of a second 0 = First half period of a second 									
bit 10		-								
bit TO	RTCOE: RTCC Output Enable bit 1 = RTCC output enabled									
		utput disabled								
bit 9-8	RTCPTR<1:0	0>: RTCC Value	e Register Wi	ndow Pointer bit	S					
	Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.									
	RTCVAL<15:8>:									
	00 = MINUTE 01 = WEEKD									
	10 = MONTH									
	11 = Reserve	ed								
	RTCVAL<7:0									
	00 = SECON 01 = HOURS									
	10 = DAY									

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 24-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment
	11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	_	—		_	_	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			0' = Bit is cleared $x = Bit is unknown$			wn		

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

	R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	Ξ	AMA	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 15 bit 14	1 = Alarn CHIN 0 = Alarn	I: Alarm Enable bit n is enabled (clear /IE = 0) n is disabled Chime Enable bit	ed automatio	cally after an ala	arm event whe	never ARPT<7:	:0> = 00h an
	1 = Chim	ne is enabled; ARP ne is disabled; ARF				n to FFh	
bit 13-10	AMASK<	3:0>: Alarm Mask	Configuration	n bits			
		very half second					
		very second					
		very 10 seconds very minute					
		very 10 minutes					
	0101 = E	very hour					
		nce a day					
	() = 0	nce a week					
		nce a month					
	1000 = O	once a month Noce a year (except	t when config	ured for Februa	ry 29th, once e	every 4 years)	
	1000 = O 1001 = O	Dince a month Dince a year (except Reserved – do not u	-	ured for Februa	ry 29th, once e	every 4 years)	
	1000 = O 1001 = O 101x = R	nce a year (except	ise	ured for Februa	ry 29th, once e	every 4 years)	
bit 9-8	1000 = 0 1001 = 0 101x = R 11xx = R ALRMPT	nce a year (except eserved – do not u eserved – do not u R<1:0>: Alarm Val	ise ise ue Register V	Vindow Pointer	bits		
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t	Dince a year (except leserved – do not u leserved – do not u R<1:0>: Alarm Val the corresponding /	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM	once a year (except leserved – do not u leserved – do not u R<1:0>: Alarm Val the corresponding <i>i</i> IPTR<1:0> value d	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRW ALRMVA	Dince a year (except leserved – do not u leserved – do not u leserved – do not u (R<1:0>: Alarm Val the corresponding / IPTR<1:0> value d L<15:8>:	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM	Dince a year (except esserved – do not u esserved – do not u (R<1:0>: Alarm Val the corresponding <i>i</i> (IPTR<1:0> value d (L<15:8>: (MMIN	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM <u>ALRMVA</u> 00 = ALR	Dince a year (except esserved – do not u esserved – do not u (R<1:0>: Alarm Val the corresponding <i>J</i> (PTR<1:0> value d (<u>L<15:8>:</u> (MMIN (MWD)	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM ALRMVA 00 = ALR 01 = ALR 10 = ALR 11 = Unir	Ance a year (except eserved – do not u eserved – do not u r R<1:0>: Alarm Val the corresponding / MPTR<1:0> value d L<15:8>: MMIN MWD MMNTH mplemented	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRW <u>ALRMVA</u> 00 = ALR 10 = ALR 10 = ALR 11 = Unir <u>ALRMVA</u>	Pince a year (except leserved – do not u leserved – do not u $(\mathbf{R} < 1:0)$: Alarm Val the corresponding / (PTR < 1:0) value d (L < 15:8): (MMIN) (MMNTH) mplemented (L < 7:0):	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRW <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR	Pince a year (except leserved – do not u leserved – do not u like corresponding / IPTR<1:0> value d L<15:8>: MMIN MMNTH mplemented L<7:0>: MSEC	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRW <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 01 = ALR 01 = ALR	Pince a year (except leserved – do not u leserved – do not u like corresponding / IPTR<1:0> value d L<15:8>: MMIN MWD MMNTH mplemented L<7:0>: MSEC MHR	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
bit 9-8	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRW <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 11 = ALR 10 = ALR 10 = ALR 10 = ALR	Pince a year (except leserved – do not u leserved – do not u like corresponding / IPTR<1:0> value d L<15:8>: MMIN MWD MMNTH mplemented L<7:0>: MSEC MHR	ise ise ue Register V Alarm Value re	Vindow Pointer egisters when re	bits ading ALRMVA	LH and ALRMV	
	1000 = O $1001 = O$ $101x = R$ $11xx = R$ ALRMPT Points to 1 the ALRM $ALRMVAI$ $00 = ALR$ $01 = ALR$ $11 = Unir$ $ALRMVAI$ $00 = ALR$ $11 = ALR$ $10 = ALR$ $10 = ALR$ $11 = Unir$	Pince a year (except teserved – do not u teserved – do not u transformed responding / (PTR<1:0> value d (PTR<1:0> value d (L<15:8>: MMIN MMNTH mplemented (L<7:0>: MSEC MHR MDAY	ise ise Alarm Value ro ecrements on	Vindow Pointer egisters when re every read or w	bits ading ALRMVA	LH and ALRMV	
	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 11 = Unir 11 = Unir ARPT<7:	Pince a year (except esserved – do not u esserved – do not u $(\mathbf{R} < 1:0>:$ Alarm Val the corresponding / $(\mathbf{PTR} < 1:0>$ value d $(\mathbf{L} < 15:8>:$ $(\mathbf{MMIN}$ $(\mathbf{R} WD)$ $(\mathbf{MMNTH}$ mplemented) $(\mathbf{L} < 7:0>:$ (\mathbf{MSEC}) (\mathbf{MDAY}) mplemented	ise ue Register V Alarm Value re ecrements on	Vindow Pointer egisters when re every read or w	bits ading ALRMVA	LH and ALRMV	
	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 11 = Unir 11 = Unir ARPT<7:	Pince a year (except leserved – do not u leserved – do not u $(\mathbf{R} < 1:0)$: Alarm Val the corresponding / (PTR < 1:0) value d (L < 15:8): (MMIN) (MWD) (MMNTH) mplemented L < 7:0): (MSEC) (MSEC) (MMR) (MDAY) mplemented (0): Alarm Repeat	ise ue Register V Alarm Value re ecrements on	Vindow Pointer egisters when re every read or w	bits ading ALRMVA	LH and ALRMV	
bit 9-8 bit 7-0	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to t the ALRM <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 11 = Unir 11 = Unir ARPT<7:	Pince a year (except leserved – do not u leserved – do not u $(\mathbf{R} < 1:0)$: Alarm Val the corresponding / (PTR < 1:0) value d (L < 15:8): (MMIN) (MWD) (MMNTH) mplemented L < 7:0): (MSEC) (MSEC) (MMR) (MDAY) mplemented (0): Alarm Repeat	ise ue Register V Alarm Value re ecrements on	Vindow Pointer egisters when re every read or w	bits ading ALRMVA	LH and ALRMV	
	1000 = O 1001 = O 101x = R 11xx = R ALRMPT Points to f the ALRM <u>ALRMVAI</u> 00 = ALR 10 = ALR 11 = Unir <u>ALRMVAI</u> 00 = ALR 11 = Unir ALRMVAI 00 = ALR 10 = ALR	Pince a year (except leserved – do not u leserved – do not u $(\mathbf{R} < 1:0)$: Alarm Val the corresponding / (PTR < 1:0) value d (L < 15:8): (MMIN) (MWD) (MMNTH) mplemented L < 7:0): (MSEC) (MSEC) (MMR) (MDAY) mplemented (0): Alarm Repeat	ise ue Register V Alarm Value re ecrements on Counter Valu at 255 more	Vindow Pointer egisters when re every read or w	bits ading ALRMVA	LH and ALRMV	

DECISTED 24-3. ALCEODED ALADM CONFIGURATION DECISTED

REGISTER 24-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—	—	—	—	—	—	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
YRTEN<3:0>				YRONE<3:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkı	nown		

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 24-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15				bit 8			

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>			DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2009 Microchip Technology Inc.

REGISTER 24-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	_	—	_	—	WDAY<2:0>		
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
-	_		HRTEN<1:0>		HRONE<3:0>		
bit 7							bit 0
Legend:							
R = Readable bit $W = Writable bit$			bit	U = Unimplemented bit, read as '0'			
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 24-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN<2:0>			MINONE<3:0>			
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECTEN<2:0>				SECON	IE<3:0>	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 24-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>			DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 24-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>		HRONE<3:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2009 Microchip Technology Inc.

REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN<2:0>			MINONE<3:0>			
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>			SECONE<3:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown			

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9 bit 7 Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

25.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304, of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 36. Programmable Cyclic Redundancy Check (CRC)" (DS70298) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

25.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively.

EQUATION 25-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

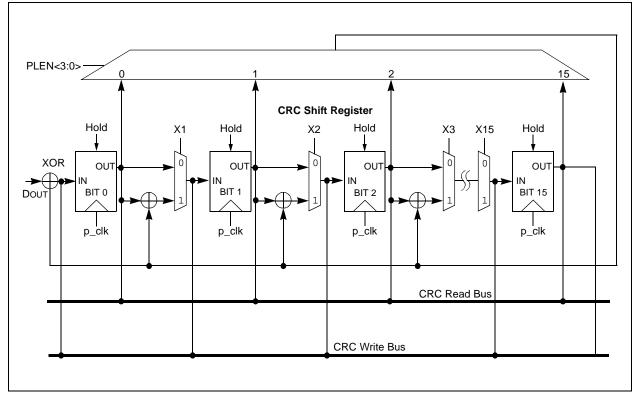
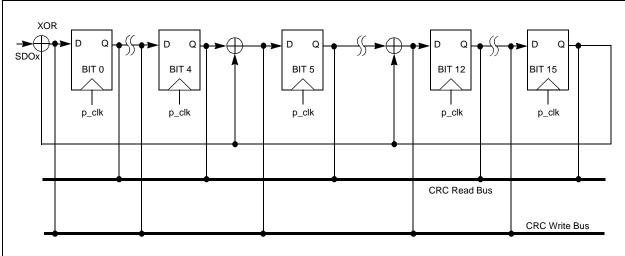

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 25-1.

TABLE 25-1:	EXAMPLE CRC SETUP
-------------	-------------------


Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 25-2.

FIGURE 25-1: CRC SHIFTER DETAILS

FIGURE 25-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

25.2 User Interface

25.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<(24:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 25.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

25.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

25.3 Operation in Power Save Modes

25.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

25.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

25.4 Registers

The CRC module provides the following registers:

- CRC Control Register
- CRC XOR Polynomial Register

REGISTER 25-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0	
—	—	CSIDL	VWORD<4:0>					
bit 15							bit 8	

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN<3:0>			
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

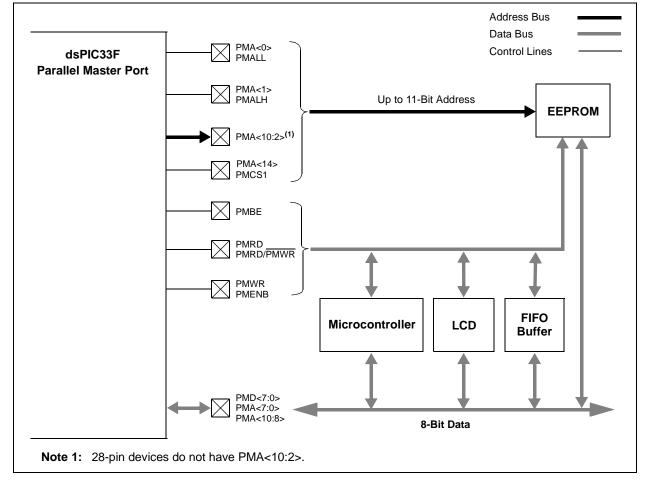
bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is greater than 7, or 16 when PLEN<3:0> is less than or equal to 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = Turn off CRC serial shifter after FIFO is empty
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is ur		x = Bit is unkr	nown		
•							

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

26.0 PARALLEL MASTER PORT (PMP)


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04. and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 35. Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory

devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single chip select
 - up to 12 address lines without chip select
- · One Chip Select Line
- Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- Selectable Input Voltage Levels

FIGURE 26-1: PMP MODULE OVERVIEW

	26-1: PMCO									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PMPEN		PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0			
CSF1	CSF0	ALP	0-0	CS1P	BEP	WRSP	RDSP			
bit 7	0010			0011	DEI	Witter	bit C			
Legend:										
R = Readable		W = Writable	bit	U = Unimplem						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15	PMPEN: Para	allel Master Por	t Enable bit							
	1 = PMP ena		:							
hit 1 4		abled, no off-ch	•	ormed						
bit 14	-	ited: Read as '								
bit 13	•	PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode								
		e module operat			le mode					
bit 12-11		-			tion bits ⁽¹⁾					
511 12 11	ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved									
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins									
			s are multiple	exed on PMD<	7:0> pins, up	per 3 bits are n	nultiplexed o			
	PMA<1		ar on conarat	o nins						
bit 10		 00 = Address and data appear on separate pins PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 								
	1 = PMBE po									
	0 = PMBE pc									
bit 9	PTWREN: W	TWREN: Write Enable Strobe Port Enable bit								
		rite Enable Stro	be Port Enab	le bit						
	0 = PMWR/PMENB port disabled									
	0 = PMWR/F	MENB port en	abled	le bit						
bit 8	PTRDEN: Re	PMENB port en PMENB port dis ead/Write Strobe	abled abled e Port Enable							
bit 8	PTRDEN: Re 1 = PMRD/P	PMENB port en PMENB port dis ead/Write Strobe	abled abled e Port Enable bled							
bit 8 bit 7-6	PTRDEN: Re 1 = PMRD/ <u>P</u> 0 = PMRD/P	PMENB port ena PMENB port dis ead/Write Strobe MWR port enal MWR port disa	abled abled e Port Enable bled bled							
	PTRDEN: Re 1 = PMRD/ <u>P</u> 0 = PMRD/P	PMENB port ena PMENB port dis ead/Write Strobe MWR port enal MWR port disa Chip Select Fu	abled abled e Port Enable bled bled							
	PTRDEN: Re 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port disa Chip Select Fu ed functions as ch	abled abled e Port Enable bled bled nction bits							
bit 7-6	PTRDEN: Re 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port disa Chip Select Fu ed functions as ch functions as ad	abled abled e Port Enable bled bled nction bits hip select ddress bit 14							
bit 7-6	PTRDEN: Re 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address	PMENB port ena PMENB port dis ead/Write Strobe MWR port enal MWR port disa Chip Select Fu ed functions as ch functions as ac s Latch Polarity	abled abled e Port Enable bled nction bits hip select ldress bit 14 bit ⁽¹⁾							
bit 7-6	PTRDEN: Re 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi	PMENB port ena PMENB port dis ead/Write Strobe MWR port enal MWR port disa Chip Select Fu ed functions as ch functions as ac s Latch Polarity gh (PMALL and	abled abled e Port Enable bled nction bits hip select ddress bit 14 bit ⁽¹⁾							
bit 7-6 bit 5	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port disa Chip Select Fu d functions as ch functions as ac s Latch Polarity gh (PMALL and w (PMALL and	abled abled e Port Enable bled bled nction bits dress bit 14 bit ⁽¹⁾ d PMALH) PMALH)							
bit 7-6 bit 5 bit 4	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserver 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo Unimplement	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port enal MWR port disa Chip Select Fu d functions as ch functions as ac s Latch Polarity gh (PMALL and w (PMALL and ated: Read as '0	abled abled e Port Enable bled bled nction bits dress bit 14 bit ⁽¹⁾ <u>I PMALH</u>) pMALH)							
	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserver 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo Unimplement CS1P: Chip S	PMENB port ena PMENB port dis ead/Write Strobe MWR port enal MWR port disa Chip Select Fue d functions as ch functions as ac s Latch Polarity gh (PMALL and w (PMALL and ted: Read as '0 Select 1 Polarity	abled abled e Port Enable bled nction bits hip select ddress bit 14 bit ⁽¹⁾ <u>H PMALH</u>) pMALH) p, bit ⁽¹⁾							
bit 7-6 bit 5 bit 4	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserve 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo Unimplement CS1P: Chip S 1 = Active-hi	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port enal MWR port disa Chip Select Fu d functions as ch functions as ac s Latch Polarity gh (PMALL and w (PMALL and ated: Read as '0	abled abled e Port Enable bled nction bits dress bit 14 bit ⁽¹⁾ <u>H PMALH</u>) <u>PMALH</u>) o' bit ⁽¹⁾							
bit 7-6 bit 5 bit 4	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserver 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo Unimplement CS1P: Chip S 1 = Active-hi 0 = Active-lo	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port disa Chip Select Fu d functions as ch functions as ac s Latch Polarity gh (PMALL and w (PMALL and ted: Read as '0 Select 1 Polarity gh (PMCS1/PM	abled abled Port Enable bled nction bits hip select ddress bit 14 bit ⁽¹⁾ PMALH) PMALH) o' bit ⁽¹⁾ (CS1)							
bit 7-6 bit 5 bit 4 bit 3	PTRDEN: Ref 1 = PMRD/P 0 = PMRD/P CSF1:CSF0: 11 = Reserver 10 = PMCS1 0x = PMCS1 ALP: Address 1 = Active-hi 0 = Active-lo Unimplement CS1P: Chip S 1 = Active-lo BEP: Byte Er 1 = Byte ena	PMENB port ena PMENB port dis ad/Write Strobe MWR port enal MWR port enal MWR port disa Chip Select Fu ed functions as ac s Latch Polarity gh (PMALL and w (PMALL and select 1 Polarity gh (PMCS1/PM w (PMCS1/PM	abled abled e Port Enable bled nction bits hip select ddress bit 14 bit ⁽¹⁾ H PMALH) PMALH) o' h bit ⁽¹⁾ CS1) it (PMBE)							

REGISTER 26-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 26-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
	1 = Write strobe active-high (PMWR)
	$0 = Write strobe active-low (\overline{PMWR})$
	For Master mode 1 (PMMODE<9:8> = 11):
	1 = Enable strobe active-high (PMENB)
	0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
	1 = Read strobe active-high (PMRD)
	0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11):
	1 = Read/write strobe active-high (PMRD/PMWR)
	0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 26-2: PMMODE: PARALLEL PORT MODE REGISTER									
R-0	R/W-0	R/W-0	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0			
BUSY	IRQN	VI<1:0>	INCM<1:0>	MODE16 MOI		=<1:0>			
bit 15						bit			
R/W-0	R/W-0	R/W-0	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0			
WAIT	B<1:0> ⁽¹⁾		WAITM<3:0>		WAITE	<1:0> ⁽¹⁾			
bit 7						bit			
Legend:									
R = Readabl	e bit	W = Writable b	bit U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	BUSY: Busy	bit (Master mode	e only)						
	-		hen the processor stall is a	ctive)					
	0 = Port is no	• •							
bit 14-13	IRQM<1:0>:	Interrupt Reque	st Mode bits						
			n Read Buffer 3 is read or V						
		or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)							
	 10 = No interrupt generated, processor stall activated 01 = Interrupt generated at the end of the read/write cycle 								
		rrupt generated	le end of the read/write cyc						
bit 12-11		Increment Mode	bits						
	11 = PSP read and write buffers auto-increment (Legacy PSP mode only)								
	10 = Decrement ADDR<10:0> by 1 every read/write cycle								
	01 = Increment ADDR<10:0> by 1 every read/write cycle 00 = No increment or decrement of address								
bit 10		Bit/16-Bit Mode I							
			r is 16 bits, a read or write t	o the data regist	er invokes two	8-hit transfe			
			is 8 bits, a read or write to t						
bit 9-8		MODE<1:0>: Parallel Port Mode Select bits							
	11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA <x:0> and PMD<7:0>)</x:0>								
	10 = Master mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA <x:0> and PMD<7:0>)</x:0>								
	01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>) 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)								
bit 7-6	• •		Read/Write Wait State Con			0>)			
DIL 7-0									
	 11 = Data wait of 4 TCY; multiplexed address phase of 4 TCY 10 = Data wait of 3 TCY; multiplexed address phase of 3 TCY 								
	01 = Data wait of 2 Tcy; multiplexed address phase of 2 Tcy								
			iplexed address phase of 1						
bit 5-2	WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits								
	1111 = Wait of additional 15 TCY								
	•								
	•	· · · · · · · · · · · · · · · · · · ·							
		of additional 1 To dditional wait cy	CY cles (operation forced into o	ne Tcv)					
bit 1-0		-	r Strobe Wait State Configu						
	11 = Wait of								
	10 = Wait of								
	01 = Wait of								
	00 = Wait of	1 TCY							

DECISTED 26 2 DMMODE, DADALLEL DODT MODE DECISTED

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 26-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADDR15	CS1		ADDR<13:8>						
bit 15		•					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ADD	R<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unkr	x = Bit is unknown			

bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 26-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	—	—	F	PTEN<10:8> ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTEN<7:2> ⁽¹⁾						
bit 7					bit 0		

Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				
bit 15	15 Unimplemented: Read as '0'						
bit 14	PTEN14:	PTEN14: PMCS1 Strobe Enable bit					
	 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O 						
bit 13-11	Unimple	Unimplemented: Read as '0'					
bit 10-2	PTEN<10	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾					
	 1 = PMA<10:2> function as PMP address lines 0 = PMA<10:2> function as port I/O 						
bit 1-0	PTEN<1:	0>: PMALH/PMALL Strobe	I/PMALL Strobe Enable bits				
	1 = PMA	IA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL					

0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

© 2009 Microchip Technology Inc.

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0		
IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F		
bit 15							bit a		
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1		
OBE	OBUF	0-0	0-0	OB3E	OB2E	OB1E	OB0E		
bit 7									
							bit		
Legend:		HS = Hardwa	re Set bit						
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 14	1 = A write a	IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred							
bit 13-12	Unimplemen	ted: Read as '	0'						
bit 11-8	-	nput Buffer x St							
		 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data 							
bit 7	OBE: Output	Buffer Empty S	Status bit						
		ble output buffe all of the reada		ire empty uffer registers a	re full				
bit 6	OBUF: Outpu	BUF: Output Buffer Underflow Status bits							
		 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred 							
bit 5-4	Unimplemen	ted: Read as '	0'						
bit 3-0	OB3E:OB0E	Output Buffer	x Status Em	pty bit					
		 = Output buffer is empty (writing data to the buffer will clear this bit) = Output buffer contains data that has not been transmitted 							

REGISTER 26-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	_	—	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknowr			wn	

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

^{© 2009} Microchip Technology Inc.

NOTES:

27.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

27.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 27-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The Device Configuration register map is shown in Table 27-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	RBS<1:0>		_	BSS<2:0> B\		BWRP	
0xF80002	FSS ⁽¹⁾	RSS<	RSS<1:0>		—	SSS<2:0> SW		SWRP	
0xF80004	FGS	—	_	_	—	_	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO —		_	_		FNOSC<2:0>		
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	—	—	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	FWDTEN WINDIS		WDTPRE		WDTPOST<3:0>		
0xF8000C	FPOR		Reserved ⁽²⁾		ALTI2C	_	FPW	/RT<2:0>	
0xF8000E	FICD	Reserv	Reserved ⁽³⁾ JT		—	_	—	ICS<	<1:0>
0xF80010	FUID0				User Unit ID) Byte 0			
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2	User Unit ID Byte 2							
0xF80016	FUID3		User Unit ID Byte 3						

TABLE 27-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on dsPIC33FJ32GP302/304 devices.

2: These bits are reserved and always read as '1'.

3: These bits are reserved for use by development tools and must be programmed as '1'.

FBS	Boot Segment Program Flash Write Protection1 = Boot segment can be written0 = Boot segment is write-protectedBoot Segment Program Flash Code Protection SizeX11 = No Boot program Flash segmentBoot space is 1K Instruction Words (except interrupt vectors)110 = Standard security; boot program Flash segment ends at 0x0007FE010 = High security; boot program Flash segment ends at 0x0007FEBoot space is 4K Instruction Words (except interrupt vectors)101 = Standard security; boot program Flash segment, ends at 0x001FFE001 = High security; boot program Flash segment, ends at 0x001FFE001 = High security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFE001 = Kandard security; boot program Flash segment ends at 0x001FFEBoot space is 8K Instruction Words (except interrupt vectors)
FBS	 X11 = No Boot program Flash segment Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE 001 = High security; boot program Flash segment ends at 0x001FFE
	 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE 001 = High security; boot program Flash segment ends at 0x001FFE
	Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE 001 = High security; boot program Flash segment ends at 0x001FFE
	0x001FFE 001 = High security; boot program Flash segment ends at 0x001FFE
	Boot space is 8K Instruction Words (except interrupt vectors)
	100 = Standard security; boot program Flash segment ends at 0x003FFE
FBS	000 = High security; boot program Flash segment ends at 0x003FFE Boot Segment RAM Code Protection Size
	11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes
FSS ⁽¹⁾	00 = Boot RAM is 1024 bytes Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
FSS ⁽¹⁾	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
	Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End
	of BS, ends at 0x001FFE 010 = High security; secure program flash segment starts at End of BS ends at 0x001FFE
	Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
	001 = High security; secure program flash segment starts at End of BS ends at 0x003FFE
	Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
	000 = High security; secure program flash segment starts at End of BS ends at 0x007FFE
FSS ⁽¹⁾	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM
	FSS ⁽¹⁾

Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

Bit Field	Register	Description
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

TABLE 27-2:	dsPIC CONFIGURATION BITS DESCRIPTION (

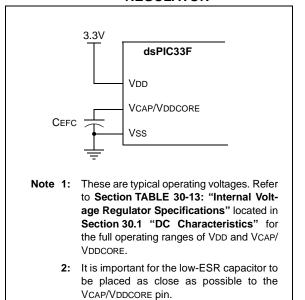
Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.

Bit Field	Register	Description
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
ALTI2C	FPOR	Alternate $I^2 C^{TM}$ pins 1 = $I^2 C$ mapped to SDA1/SCL1 pins 0 = $I^2 C$ mapped to ASDA1/ASCL1 pins
JTAGEN	FICD	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2: dsPIC CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1:	This Configuration register is not available on dsPIC33FJ32GP302/304 devices.
---------	---

27.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP/VDDCORE pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-13 located in **Section 30.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to					
	be placed as close as possible to the					
	VCAP/VDDCORE pin.					

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

27.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

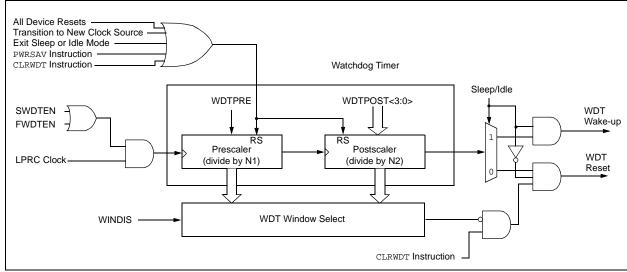
Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

27.4 Watchdog Timer (WDT)

For dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.4.1 PRESCALER/POSTSCALER


The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.
-------	--

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5 JTAG Interface

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the "dsPIC33F/PIC24H Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

27.6 In-Circuit Serial Programming

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS, PGC, PGD and the PGECx and PGEDx pin pairs. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

27.8 Code Protection and CodeGuard[™] Security

The dsPIC33FJ64GPX02/X04 and dsPIC33FJ128GPX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32GP302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64GPX02/X04 and dsPIC33FJ128GPX02/X04 devices. The dsPIC33FJ32GP302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

TABLE 27-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh	VS = 256 IW 0x00000h 0x0001FEh
	0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x000200h 0x0007FEh 0x000800h	BS = 3840 IW 0x000200h 0x0007FEh 0x000800h	BS = 7936 IW 0x000200h 0x0007FEh 0x000800h
SSS<2:0> = x11	0x0001FFEh 0x002000h	0x001FFEh 0x002000h	0x001FFEh 0x002000h	0x001FFEh 0x002000h
ОК	GS = 11008 IW 0x003FFEh 0x004000h 0x0057FEh	GS = 10240 IW 0x003FFEh 0x004000h 0x0057FEh	GS = 7168 IW 0x003FFEh 0x004000h 0x0057FEh	GS = 3072 IW 0x003FFEh 0x004000h 0x0057FEh
	0,003/1 Ell	0,00371 EII	0,003/1 Ell	0x0037FEI
	0x0157FEh	0x0157FEh	0x0157FEh	0x0157FEh

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x003FFEh 0x002000h 0x003FFEh 0x00400h 0x007FFEh 0x00800h 0x007FFEh GS = 21760 IW 0x0157FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x00000h 0x0007FEh 0x00200h 0x003FFEh 0x0000h 0x003FFEh 0S = 20992 IW 0x00400h 0x003FFEh 0x00400h 0x00400h 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x00400h 0x00400h 0x00400h	VS = 256 IW 0x000000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x003FFEh 0x004000h 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x00800h 0x0040FFEh 0x00400FFEh 0x00400h 0x007FFEh 0x00400h 0x00407FFEh 0x00400h 0x00407FFEh 0x00400h	VS = 256 IW 0x00000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x00001FEh 0x00000h 0x001FFEh 0x00000h 0x001FFEh 0x002000h 0x003FFEh 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h
SSS<2:0> = x10 4K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x003FFEh 0x004000h 0x004000h 0x004000h 0x004000h GS = 17920 IW 0x0157FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh SS = 3072 IW 0x000800h 0x002FEh 0x00200h 0x0007FEh 0x00000h 0x0007FEh 0x00200h 0x0007FEh 0x0000h 0x001FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0S = 17920 IW 0x008000h 0x00ABFEh 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh BS = 3840 IW 0x00200h 0x0007FEh 0x002000h 0x003FFEh 0x00400h 0x00400h 0x00400h 0x00400h GS = 17920 IW 0x008000h 0x00ABFEh 0x0157FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 7936 IW 0x000200h 0x0007FEh 0x000200h 0x00000h 0x0001FFEh 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x003FFEh 0x004000h 0x007FFEh 0x004000h 0x008000h 0x008000h 0x008000h 0x00457FEh 0x0157FEh 0x0157FEh
SSS<2:0> = x01 8K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x003FFEh SS = 7936 IW 0x00200h 0x003FFEh 0x002000h 0x003FFEh GS = 13824 IW 0x00400h 0x004BFEh 0x00457FEh 0x00400h 0x004BFEh	VS = 256 IW 0x000000h BS = 768 IW 0x0001FEh 0x0007FEh 0x0007FEh 0x000800h 0x0007FEh 0x000800h 0x001FFEh 0x00200h 0x0007FEh 0x001FFEh 0x001FFEh 0x00200h 0x001FFEh 0x00200h 0x00200h 0x001FFEh 0x00200h 0x00200h 0x00000h 0x003FFEh 0x00400h 0x00400h 0x0040b	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh BS = 3840 IW 0x000200h 0x00800h 0x001FFEh SS = 4096 IW 0x00200h 0x003FFEh GS = 13824 IW 0x00400h 0x00ABFEh 0x00ABFEh 0x00400h 0x007FEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h BS = 7936 IW 0x000200h 0x000800h 0x0001FFEh 0x002000h 0x00200h 0x00200h 0x00200h 0x002FFEh 0x008000h 0x00ABFEh GS = 13824 IW 0x0157FEh 0x00157FEh
SSS<2:0> = x00 16K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x00800h 0x003FFEh 0x002000h 0x003FFEh 0x004000h 0x003FFEh 0x004000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x003FFEh SS = 16128 IW 0x04000h 0x003FFEh 0x004000h 0x007FFEh GS = 5632 IW 0x0040FEh 0x0040FFEh 0x0040FFEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x0007FEh 0x000800h 0x003FFEh 0x004000h 0x003FFEh 0x007FEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x00400h 0x00400h 0x00400h 0x007FFEh 0x00400h 0x00400h 0x00400h	VS = 256 IW 0x00000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x001FEh 0x0007FEh 0x001FFEh 0x001FFEh 0x00200h 0x003FFEh 0x007FEh 0x00400h 0x007FFEh 0x007FFEh 0x007FFEh 0x00400h 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x00400h 0x007FFEh 0x007FFEh 0x00400h 0x007FFEh	VS = 256 IW 0x000000h 0x0001FEh BS = 7936 IW 0x000200h 0x000200h 0x000200h 0x000800h 0x000200h 0x000000h 0x000300h 0x00000h 0x000300h 0x000200h 0x0003FFEh 0x002000h 0x002000h 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x008000h 0x000ABFEh 0x00457FEh

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

TABLE 27-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

TABLE 27-5: COD	DE FLASH SECURITY SEGMEN	T SIZES FOR 128 KB DEVICES	5	
CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000200h 0x0007FEh 0x000001FFEh 0x00000h 0x00007FEh 0x004000h 0x002000h 0x001FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x004000h 0x007FFEh 0x008000h 0x001000h 0x001000h 0x0157FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h BS = 768 IW 0x000800h 0x0007FEh 0x00007FEh 0x002000h 0x00200h 0x0007FEh 0x00001FFEh 0x004000h 0x002000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x004000h 0x007FFEh 0x0000FFEh 0x00000h 0x007FFEh 0x0000h 0x007FFEh 0x010000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh 0x000001FEh 0x00007FEh 0x002000h 0x0007FEh 0x001FFEh 0x0001FFEh 0x002000h 0x001FFEh 0x001FFEh 0x00000h 0x002000h 0x0037FFEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x01000h 0x01000h 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh 0x0020h BS = 7936 IW 0x0007FEh 0x0007FEh 0x000300h 0x001FFEh 0x0000h 0x003FFEh 0x00200h 0x003FFEh 0x00400h 0x003FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x007FFEh 0x00800h 0x007FFEh 0x00000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x01000h 0x0157FEh 0x0157FEh
SSS<2:0> = x10 4K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h SS = 3840 IW 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x0007FEh 0x004000h 0x00200h 0x003FFEh 0x004000h 0x00200h 0x003FFEh 0x004000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x004BFEh 0x004BFEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh BS = 768 IW 0x00020h 0x0007FEh SS = 3072 IW 0x0003FFEh 0x00200h 0x0020h 0x003FFEh 0x00030h 0x003FFEh 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00400h 0x00400h 0x00400h 0x00400h 0x004BFEh 0x004BFEh 0x004BFEh 0x00457FEh 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x00020h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x001FFEh 0x002000h 0x001FFEh 0x002000h 0x003FFEh 0x004000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h GS = 39936 IW 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h BS = 7936 IW 0x0007FEh 0x000800h 0x001FFEh 0x000800h 0x001FFEh 0x000800h 0x00200h 0x001FFEh 0x000800h 0x00200h 0x001FFEh 0x002000h 0x0003FFEh 0x004000h 0x00400h 0x007FFEh 0x008000h 0x00400h 0x000ABFEh 0x00157FEh
SSS<2:0> = x01 8K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x00200h 0x0007FFEh 0x004000h 0x003FFEh 0x004000h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh GS = 35840 IW 0x01000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x0007Eh 0x0007FEh 0x000800h 0x003FFEh 0x00400h 0x003FFEh 0x00400h 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00400h 0x007FFEh 0x00800h 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00800h 0x007FFEh 0x00000h 0x007FFEh 0x00000h 0x007FFEh 0x0000h 0x007FFEh 0x00000h 0x007FFEh 0x00000h 0x007FFEh 0x01000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 3840 IW 0x000200h 0x0007FEh SS = 4096 IW 0x00200h 0x003FFEh 0x00200h 0x00000h 0x001FFEh 0x00000h 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x00200h 0x003FFEh 0x00400h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x01000h 0x0157FEh 0x0157FEh 0x0157FEh	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x000800h 0x003FFEh 0x004000h 0x003FFEh GS = 35840 IW 0x0157FEh 0x0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x003FFEh 0x00200h 0x003FFEh 0x004000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh GS = 27648 IW 0x010000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh BS = 768 IW 0x000200h 0x0007FEh 0x000200h 0x001FEh 0x00007FEh 0x00200h 0x00200h 0x003FFEh 0x00400h 0x003FFEh 0x004000h 0x007FFEh 0x00400h 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x010000h 0x0157FEh	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x00200h SS = 12288 IW 0x004000h 0x007FFEh 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h 0x007FFEh 0x008000h GS = 27648 IW 0x010000h 0x0157FEh	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

TABLE 27-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES

28.0 INSTRUCTION SET SUMMARY

Note:	This data sheet summarizes the features					
	of the dsPIC33FJ32GP302/304,					
	dsPIC33FJ64GPX02/X04, and					
	dsPIC33FJ128GPX02/X04 families of					
	devices. It is not intended to be a compre-					
	hensive reference source. To complement					
	the information in this data sheet, refer to					
	the "dsPIC33F/PIC24H Family Reference					
	Manual". Please see the Microchip web					
	site (www.microchip.com) for the latest					
	dsPIC33F/PIC24H Family Reference					
	Manual sections.					

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 28-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The ${\tt MAC}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register \in {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register \in { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers \in {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA		Branch Unconditionally	1	2	None
		BRA	Expr Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BRA	f,#bit4	Bit Set f	1	2 1	None
7	1301	BSET		Bit Set Ws	1	1	None
		1360	Ws,#bit4	Write C bit to Ws <wb></wb>			
8	BGW	BCW C	We Wh		1	1	Nono
8	BSW	BSW.C	Ws,Wb		1	1	None
8	BSW BTG	BSW.C BSW.Z BTG	Ws,Wb Ws,Wb f,#bit4	Write Z bit to Ws <wb> Bit Toggle f</wb>	1	1 1 1	None None None

TABLE 28-2: INSTRUCTION SET OVERVIEW

TABLE 28-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)	

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
	0210	CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT	Acc, wa, wau, wy, wyu, Awb	Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
17	COM						
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	Wd = Ws	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

© 2009 Microchip Technology Inc.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
05		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f f NDEC	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
66	DDMC	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z N,Z
00	RRNC	RRNC	f,WREG	f = Rotate Right (No Carry) f WREG = Rotate Right (No Carry) f	1	1	N,Z N,Z
							IN.Z

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit™ 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

29.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

29.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

29.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

29.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

29.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Voltage on VCAP/VDDCORE with respect to VSS	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD		PINT + PI/0)	W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θ.	A	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θја	30		°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	40	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	—	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50		°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θја	30		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
Operati	ng Voltag	9						
DC10	Supply V	oltage						
	Vdd —		3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	—	
DC16	VPOR	VDD Start Voltage ⁽⁴⁾ to ensure internal Power-on Reset signal	_	_	Vss	V	_	
DC17	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	_	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	_	2.75	V	Voltage is dependent on load, temperature and VDD	

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions			
Operating Current (IDD) ⁽²⁾								
DC20d	19	30	mA	-40°C				
DC20a	19	30	mA	+25°C	2.21/			
DC20b	19	30	mA	+85°C	- 3.3V	10 MIPS		
DC20c	19	35	mA	+125°C				
DC21d	29	40	mA	-40°C				
DC21a	29	40	mA	+25°C	2.21/			
DC21b	28	45	mA	+85°C	- 3.3V	16 MIPS		
DC21c	28	45	mA	+125°C				
DC22d	33	50	mA	-40°C				
DC22a	33	50	mA	+25°C	2.01/			
DC22b	33	55	mA	+85°C	- 3.3V	20 MIPS		
DC22c	33	55	mA	+125°C				
DC23d	47	70	mA	-40°C				
DC23a	48	70	mA	+25°C	2.21/			
DC23b	48	70	mA	+85°C	- 3.3V	30 MIPS		
DC23c	48	70	mA	+125°C	7			
DC24d	60	90	mA	-40°C				
DC24a	60	90	mA	+25°C	2.21/			
DC24b	60	90	mA	+85°C	- 3.3V	40 MIPS		
DC24c	60	90	mA	+125°C	1			

TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Idle Current (I	DLE): Core OF	F Clock ON	Base Curren	t ⁽²⁾						
DC40d	4	25	mA	-40°C						
DC40a	4	25	mA	+25°C						
DC40b	4	25	mA	+85°C	3.3V	10 MIPS				
DC40c	4	25	mA	+125°C						
DC41d	6	25	mA	-40°C						
DC41a	6	25	mA	+25°C	- 3.3V	16 MIPS				
DC41b	6	25	mA	+85°C	3.3 V	10 1011-5				
DC41c	6	25	mA	+125°C						
DC42d	9	25	mA	-40°C						
DC42a	9	25	mA	+25°C	- 3.3V	20 MIPS				
DC42b	9	25	mA	+85°C	3.3V	20 101195				
DC42c	9	25	mA	+125°C						
DC43a	16	25	mA	+25°C						
DC43d	16	25	mA	-40°C	3.3V	30 MIPS				
DC43b	16	25	mA	+85°C	3.3V	30 IVIIP3				
DC43c	16	25	mA	+125°C]					
DC44d	18	25	mA	-40°C						
DC44a	18	25	mA	+25°C		40 MIPS				
DC44b	19	25	mA	+85°C	3.3V	40 101175				
DC44c	19	25	mA	+125°C]					

TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 30-7:	DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
-------------	--

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CORRENT (IPD)											
DC CHARACT	ERISTICS		(unless oth	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions							
Power-Down Current (IPD) ⁽²⁾											
DC60d	24	500	μΑ	-40°C							
DC60a	28	500	μA	+25°C	2.21/	Base Power-Down Current ^(3,4)					
DC60b	124	750	μΑ	+85°C	3.3V	Base Power-Down Current					
DC60c	350	1000	μΑ	+125°C							
DC61d	8	13	μA	-40°C							
DC61a	10	15	μΑ	+25°C	2.21/	Watchdog Timer Current: ∆IwDT ⁽³⁾					
DC61b	12	20	μA	+85°C	3.3V						
DC61c	13	25	μA	+125°C							

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 30-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Parameter No. Typical ⁽¹⁾ Max				Units		Conditions			
DC73a	42	50	1:2	mA					
DC73f	23	30	1:64	mA	-40°C	3.3V	40 MIPS		
DC73g	23	30	1:128	mA					
DC70a	42	50	1:2	mA		3.3V	40 MIPS		
DC70f	26	30	1:64	mA	+25°C				
DC70g	25	30	1:128	mA					
DC71a	41	50	1:2	mA					
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS		
DC71g	24	30	1:128	mA					
DC72a	42	50	1:2	mA					
DC72f	26	30	1:64	mA	+125°C	3.3V	40 MIPS		
DC72g	25	30	1:128	mA					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

	ARACTER		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
	ARACIE		Operating temp		-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O pins	Vss	—	0.2 Vdd	V				
DI11		PMP pins	Vss	—	0.15 Vdd	V	PMPTTL = 1			
DI15		MCLR	Vss	—	0.2 Vdd	V				
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V				
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMbus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.2 Vdd	V	SMbus enabled			
	Viн	Input High Voltage								
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V				
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	5.5	V				
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	Vdd	V				
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	5.5	V				
	ICNPU	CNx Pull-up Current								
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS			
	lı∟	Input Leakage Current ⁽²⁾⁽³⁾								
DI50		I/O pins 5V Tolerant ⁽⁴⁾	—	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance			
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μA	$VSS \leq VPIN \leq VDD$,			
							Pin at high-impedance $40^{\circ}C \le TA \le +85^{\circ}C$			
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Shared with external reference pins, 40°C ≤ TA ≤ +85°C			
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	$\label{eq:VSS} \begin{array}{l} Vss \leq V \text{PIN} \leq V \text{DD}, \mbox{ Pin} \\ at \mbox{ high-impedance}, \\ -40^{\circ} C \leq Ta \leq +125^{\circ} C \end{array}$			
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾		_	±8	μΑ	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$			
DI55		MCLR	—	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
DI56		OSC1	_	—	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } {\sf HS} \text{ modes} \end{split}$			

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25° C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for the 5V tolerant I/O pins.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHA	RACTER	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
DO10		I/O ports	—	—	0.4	V	IOL = 2 mA, VDD = 3.3V	
DO16		OSC2/CLKO	—	—	0.4	V	Iol = 2 mA, Vdd = 3.3V	
	Voн	Output High Voltage						
DO20		I/O ports	2.40	—	—	V	IOH = -2.3 mA, VDD = 3.3V	
DO26		OSC2/CLKO	2.41	—	—	V	IOH = -1.3 mA, VDD = 3.3V	

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		(unless otherw	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHA	(unless	-	ise state	nditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max		Units	Conditions	
		Program Flash Memory					
D130a	Eр	Cell Endurance	10,000	—		E/W	-40°C to +125°C
D131	Vpr	VDD for Read	Vmin	_	3.6	V	VMIN = Minimum operating voltage
D132B	Vpew	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	—	mA	
D136a	Trw	Row Write Time	1.32	—	1.74	ms	TRW = 11064 FRC cycles, TA = +85°C, See Note 2
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2
D137a	Тре	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, See Note 2
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2

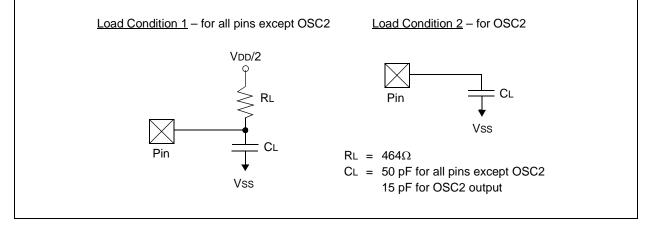
TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 30-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol Characteristics Min Typ Max Units Comments									
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 Ohms)			


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 AC characteristics and timing parameters.

TABLE 30-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)							
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							

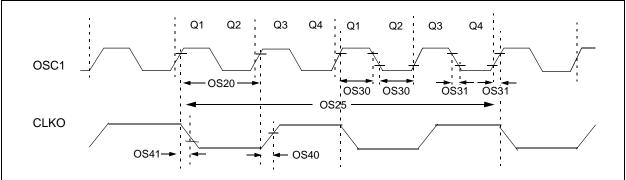

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_		15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C™ mode

FIGURE 30-2: EXTERNAL CLOCK TIMING

TABLE 30-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾		Units	Conditions		
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns			
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	_	ns	_		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns	_		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

TABLE 30-17:	PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)
--------------	--

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No. Symbol Characteristic			stic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8	MHz	ECPLL, HSPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO Syster Frequency	m	100	—	200	MHz	_		
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—		
OS53	DCLK	CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units Conditions					
	Internal FRC Accuracy @	9 7.3728	MHz ^(1,2)							
F20a	FRC -2 - +2 % $-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = $3.0-3.6V$									
F20b	FRC -5 +5 % $-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = $3.0-3.6V$									

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

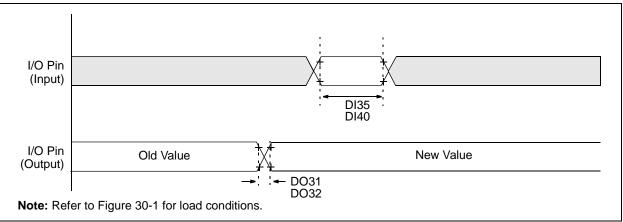
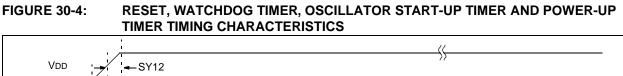

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 30-19: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Characteristic Min Typ Max Units Conditions									
	LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-20	±6	+20	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C VDD = 3.0-3.6V$				
F21b	LPRC	-70	_	+70	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C \text{ VDD} = 3.0\text{-}3.6V$				

Note 1: Change of LPRC frequency as VDD changes.


FIGURE 30-3: CLKO AND I/O TIMING CHARACTERISTICS

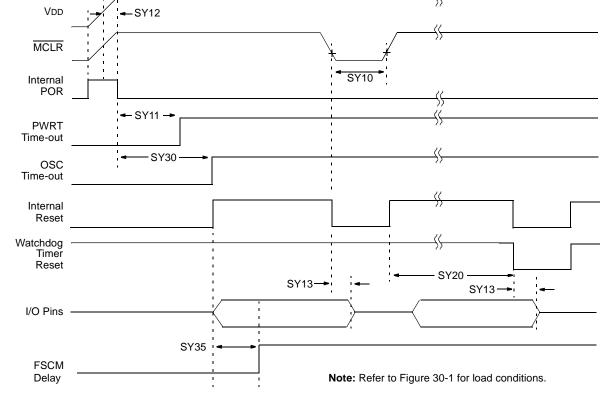
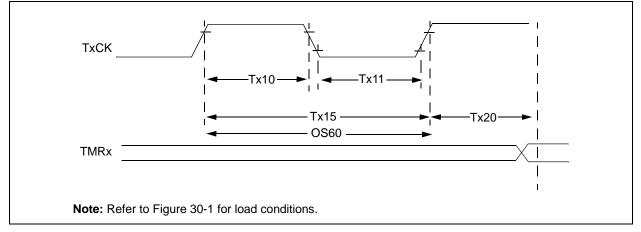


TABLE 30-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	vise state	ed) -40°C ≤	Ta ≤ +8	5°C for I	ndustrial Extended
Param No. Symbol Characteris			istic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	е		10	25	ns	—
DO32	TIOF	F Port Output Fall Time		_	10	25	ns	_
DI35	TINP	INTx Pin High or Low Time (output)		20		_	ns	
DI40	DI40 TRBP CNx High or Low Time (input)			2	—	_	Тсү	—

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


TABLE 30-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

АС СНА	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units				Conditions				
SY10	TMCL	MCLR Pulse-Width (low)	2	_		μS	-40°C to +85°C				
SY11	Tpwrt	Power-up Timer Period		2 4 8 16 32 64 128	_	ms	-40°C to +85°C User programmable				
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C				
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS					
SY20	Twdt1	Watchdog Timer Time-out Period		_	_		See Section 27.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 30-19)				
SY30	Tost	Oscillator Start-up Timer Period		1024 Tosc	_	—	Tosc = OSC1 period				
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 30-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHA	RACTERIST		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchror no presca		0.5 Tcy + 20			ns	Must also meet parameter TA15
			Synchron with pres		10			ns	
			Asynchro	nous	10	—	—	ns	
TA11	ΤτxL	TxCK Low Time	Synchronous, no prescaler		0.5 Tcy + 20	_	_	ns	Must also meet parameter TA15
			Synchronous, with prescaler		10			ns	
			Asynchro	nous	10		_	ns	
TA15	ΤτχΡ	TxCK Input Period	Synchron no presca		Tcy + 40	_	_	ns	—
			Synchronous, with prescaler		Greater of: 20 ns or (TcY + 40)/N	_	—	—	N = prescale value (1, 8, 64, 256)
			Asynchro	nous	20	—	—	ns	_
OS60	Ft1	SOSCI/T1CK Oscil frequency Range (o by setting bit TCS (oscillator enabled		DC		50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY		—

Note 1: Timer1 is a Type A.

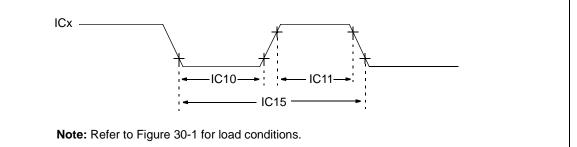

AC CHA	AC CHARACTERISTICS			(unles	ard Operating s otherwise st ting temperatu	t ated) re -40°	°C ≤ Ta ≤	+85°C 1	or Industrial for Extended
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro no prese		0.5 TCY + 20			ns	Must also meet parameter TB15
			Synchronous, with prescaler		10		—	ns	
TB11	TtxL	TxCK Low Time	Synchro no prese		0.5 TCY + 20			ns	Must also meet parameter TB15
			Synchro with pre		10		—	ns	
TB15	TtxP	TxCK Input Period	Synchro no prese		Tcy + 40			ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		Clock	0.5 TCY		1.5 TCY	—	—

TABLE 30-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS Г

TABLE 30-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Symbol Characteristic			Min	Тур	Max	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15	
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15	
TC15	TtxP	TxCK Input Period	Synchro no presc		Tcy + 40			ns	N = prescale value	
			Synchronous, with prescaler		Greater of: 20 ns or (TcY + 40)/N				(1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY	—	1.5 Тсү	—	—	

FIGURE 30-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

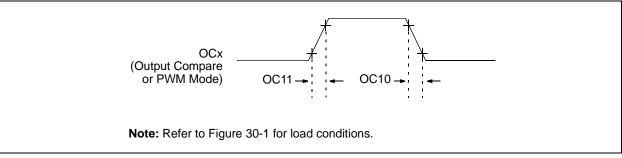


TABLE 30-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless otherwis	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No. Symbol Character			ristic ⁽¹⁾	Min	Мах	Units	Conditions				
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	_				
			With Prescaler	10	_	ns					
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns					
			With Prescaler	10	_	ns					
IC15	TccP	ICx Input Period	•	(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)				

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

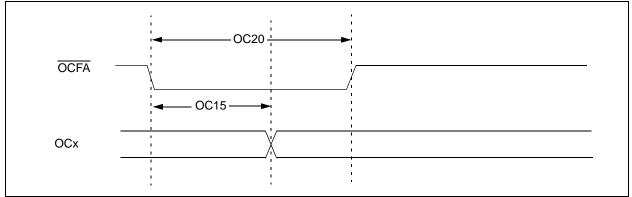


TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC10	TccF	OCx Output Fall Time	— — ns See parameter D032							
OC11	TccR	OCx Output Rise Time	— — — ns See parameter D031							

Note 1: These parameters are characterized but not tested in manufacturing.

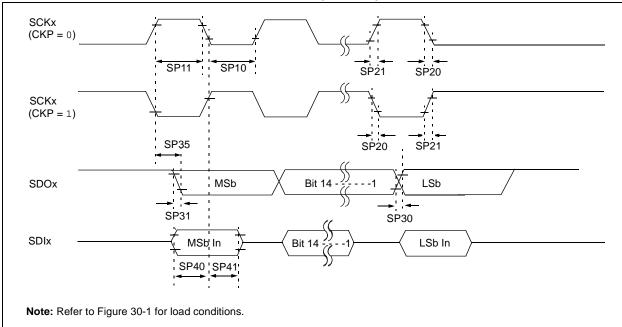

FIGURE 30-8: OC/PWM MODULE TIMING CHARACTERISTICS

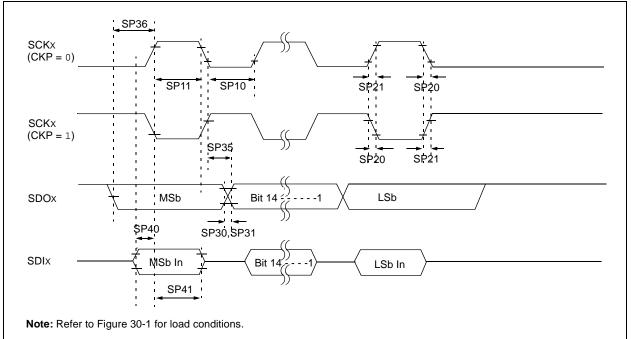
TABLE 30-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	50 ns					
OC20	TFLT	Fault Input Pulse-Width	50	—	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time	Tcy/2	_		ns	See Note 3		
SP11	TscH	SCKx Output High Time	Tcy/2	_		ns	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See parameter D032 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—		


TABLE 30-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

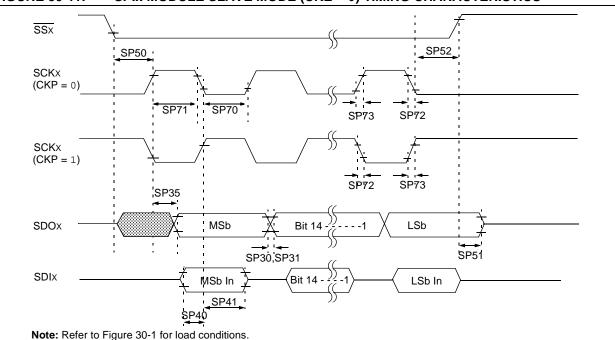


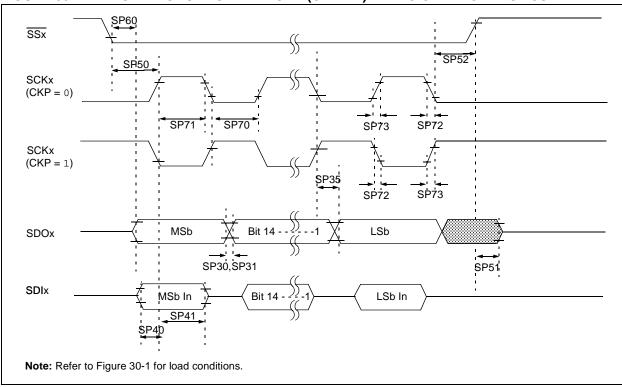
TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditi						
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	_		ns	See Note 3		
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2			ns	See Note 3		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_		ns	See parameter D032 and Note 4		
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter D031 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	—	_	ns	See parameter D032 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	_	—	_	ns	See parameter D031 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_		ns	_	
SP71	TscH	SCKx Input High Time	30			ns	—	
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	_	_	ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	See Note 3	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

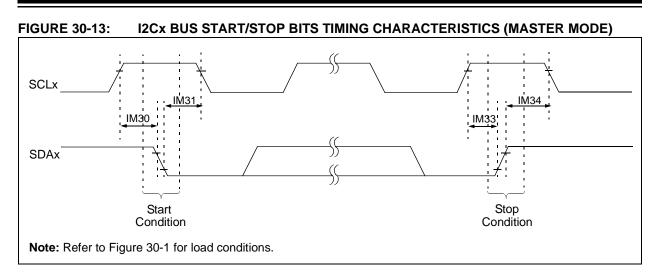
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

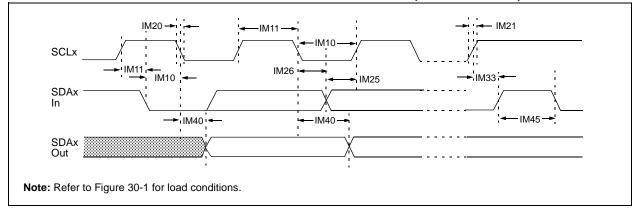
FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	_		ns	—		
SP71	TscH	SCKx Input High Time	30	_		ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_		_	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_			ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20		_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	Ι	_	ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx	1.5 TCY + 40	—	_	ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_		

TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

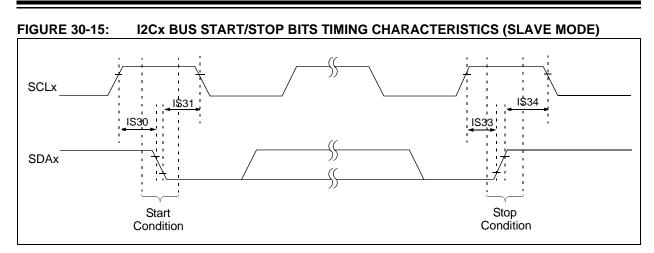
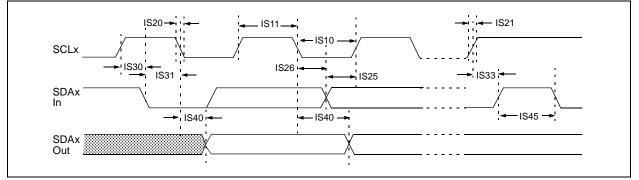
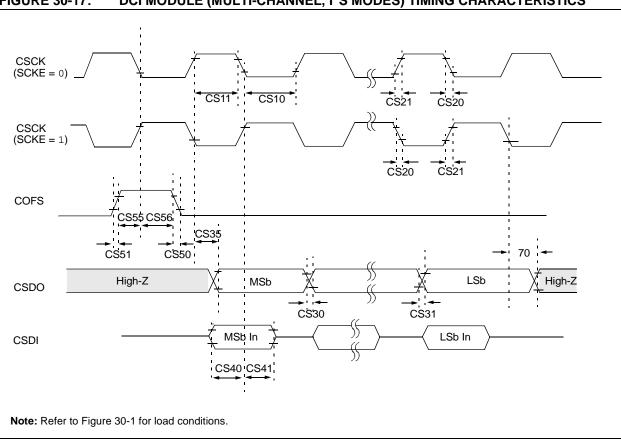

AC CHAI	RACTER	ISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)		μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_		
		Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	40	_	ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		μS	_		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2		μs	-		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	—		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns			
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	—		
		From Clock	400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾	—	400	ns	—		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can star		
IM50	Св	Bus Capacitive L	oading	—	400	pF	—		
M51	Tpgd	Pulse Gobbler De	elay	65	390	ns	See Note 3		
	Cb Tpgd	Bus Capacitive L		65	400 390	pF ns	See N		

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.



АС СНА	RACTER	STICS		(unless other	wise sta	a ted) e -40°C	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for					
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions					
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz					
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz					
			1 MHz mode ⁽¹⁾	0.5		μS	—					
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz					
			400 kHz mode	0.6	-	μS	Device must operate at a minimum of 10 MHz					
			1 MHz mode ⁽¹⁾	0.5		μs	_					
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from					
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF					
			1 MHz mode ⁽¹⁾	—	100	ns						
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from					
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF					
			1 MHz mode ⁽¹⁾	—	300	ns						
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—					
		Setup Time	400 kHz mode	100	_	ns						
			1 MHz mode ⁽¹⁾	100	_	ns						
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μS	—					
		Hold Time	400 kHz mode	0	0.9	μS						
			1 MHz mode ⁽¹⁾	0	0.3	μS						
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated					
		Setup Time	400 kHz mode	0.6	_	μS	Start condition					
			1 MHz mode ⁽¹⁾	0.25	_	μS						
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μS	After this period, the first					
		Hold Time	400 kHz mode	0.6	_	μS	clock pulse is generated					
			1 MHz mode ⁽¹⁾	0.25	_	μS						
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	_	μS	—					
		Setup Time	400 kHz mode	0.6	_	μS						
			1 MHz mode ⁽¹⁾	0.6	_	μs						
IS34	THD:ST	Stop Condition	100 kHz mode	4000	_	ns	_					
	0	Hold Time	400 kHz mode	600	_	ns						
			1 MHz mode ⁽¹⁾	250		ns						
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—					
		From Clock	400 kHz mode	0	1000	ns						
			1 MHz mode ⁽¹⁾	0	350	ns						
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free					
			400 kHz mode	1.3	_	μS	before a new transmission					
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start					
IS50	Св	Bus Capacitive Lo			400	pF						

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-17: DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING CHARACTERISTICS

АС СНА	ARACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾		Units	Conditions		
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	—	_	ns	_		
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30	—	—	ns	—		
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20	—	—	ns	—		
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	—	—	ns	—		
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—		
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—		
CS30	TCSDOF	CSDO Data Output Fall Time ⁽⁴⁾	—	10	25	ns	—		
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	—	10	25	ns	—		
CS35	Tdv	Clock Edge to CSDO Data Valid	—	—	10	ns	—		
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	—	20	ns	—		
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_		
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_		
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	—	10	25	ns	Note 1		
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	—	10	25	ns	Note 1		
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	_	ns	—		
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	—	ns	—		

TABLE 30-34: DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all DCI pins.

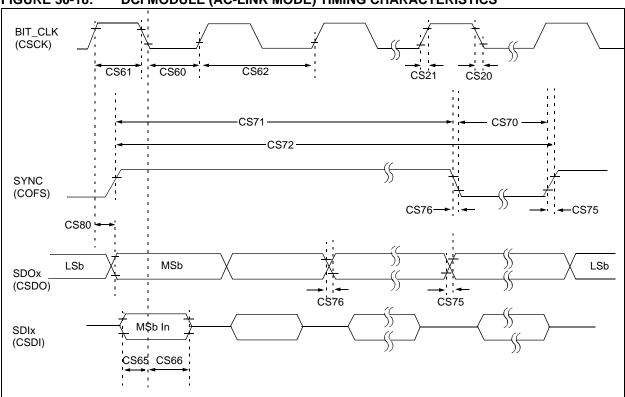
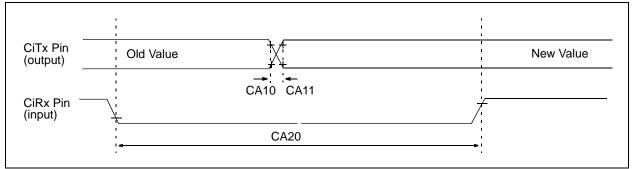


FIGURE 30-18: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Units	Conditions		
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	—		
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—		
CS62	TBCLK	BIT_CLK Period	_	81.4	_	ns	Bit clock is input		
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK		—	10	ns	_		
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	_	_	10	ns	_		
CS70	TSYNCLO	SYNC Data Output Low Time	_	19.5		μs	Note 1		
CS71	TSYNCHI	SYNC Data Output High Time	_	1.3	_	μs	Note 1		
CS72	TSYNC	SYNC Data Output Period	_	20.8		μs	Note 1		
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	_	—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	_	—	30	ns	CLOAD = 50 pF, VDD = 3V		
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	—	—	15	ns	_		


TABLE 30-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-19: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 30-36: ECAN™ MODULE I/O TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Condition				
CA10	TioF	Port Output Fall Time	_	—	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	—	—	ns	See parameter D031
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120			ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
	Device Supply											
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_					
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	—					
			Reference	ce Inpu	ts							
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVdd	V	See Note 1					
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0					
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.7	V	See Note 1					
AD06a			0		0	V	Vrefh = AVdd Vrefl = AVss = 0					
AD07	Vref	Absolute Reference Voltage	2.7	_	3.6	V	Vref = Vrefh - Vrefl					
AD08	IREF	Current Drain			10	μA	ADC off					
AD09	Iad	Operating Current	—	7.0	9.0	mA	ADC operating in 10-bit mode, see Note 1					
			—	2.7	3.2	mA	ADC operating in 12-bit mode, see Note 1					
			Analog	g Input								
AD12	Vinh	Input Voltage Range Vinн	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input					
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input					
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	—		200 200	$\Omega \Omega$	10-bit ADC 12-bit ADC					

TABLE 30-37: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

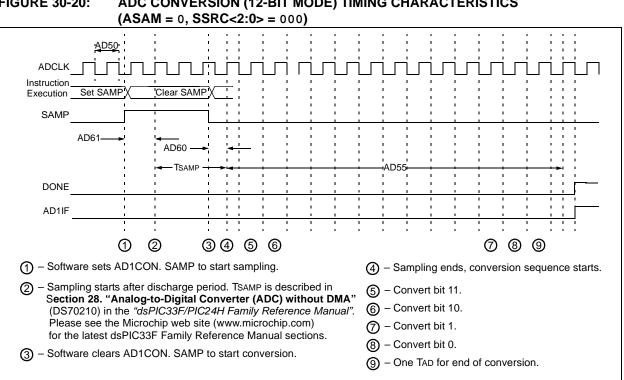

AC CHA	RACTERIS	TICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (12-bit Mode) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20a	Nr	Resolution	1:	2 data bi	its	bits		
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
AD23a	Gerr	Gain Error	1.25	3.4	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
AD24a	EOFF	Offset Error	-0.2	0.9	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
AD25a	—	Monotonicity			—		Guaranteed	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	nternal V	VREF+/VREF-	
AD20a	Nr	Resolution	1:	2 data bi	its	bits		
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25a	—	Monotonicity		—	—		Guaranteed	
		Dynamic I	Performa	nce (12	-bit Mod	e)		
AD30a	THD	Total Harmonic Distortion		_	-75	dB	—	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	—	
AD32a	SFDR	Spurious Free Dynamic Range	80		—	dB	_	
AD33a	Fnyq	Input Signal Bandwidth	_	_	250	kHz		
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	—	

TABLE 30-38: ADC MODULE SPECIFICATIONS (12-BIT MODE)

АС СНА	RACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data bi	its	bits	
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	0.4	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD24b	EOFF	Offset Error	0.2	2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD25b	—	Monotonicity	_	—	—	_	Guaranteed
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	its with i	nternal '	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data bi	its	bits	
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	—	Monotonicity	—	—	—		Guaranteed
		Dynamic	Performa	ince (10	-bit Mod	e)	
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	72	—		dB	_
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.16	9.4	—	bits	

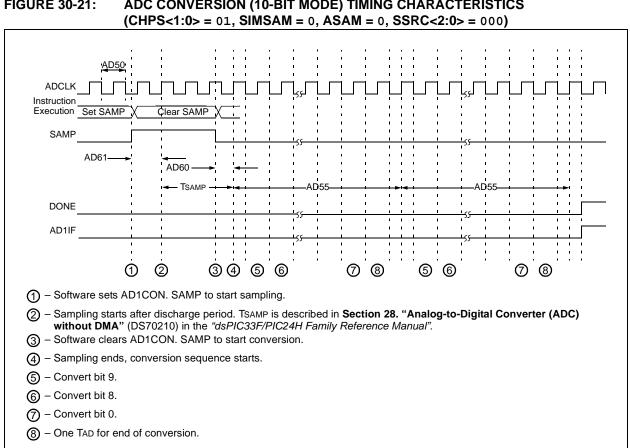
TABLE 30-39: ADC MODULE SPECIFICATIONS (10-BIT MODE)

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

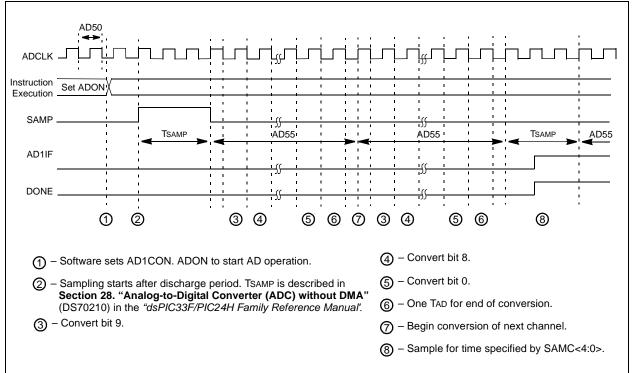
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS **FIGURE 30-20:**

© 2009 Microchip Technology Inc.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions		
	-	Clock	Paramete	ers ⁽¹⁾					
AD50	TAD	ADC Clock Period	117.6	_		ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—		
		Con	version R	ate					
AD55	tCONV	Conversion Time	—	14 Tad		ns	—		
AD56	FCNV	Throughput Rate	—	—	500	ksps	—		
AD57	TSAMP	Sample Time	3 Tad	—		—	—		
		Timir	ng Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad		3 Tad		Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		—		
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 Tad					
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μS			


TABLE 30-40: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.


2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

FIGURE 30-22: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

FIGURE 30-21: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions		
	•	Clock	Paramet	ers ⁽¹⁾		•	·		
AD50	TAD	ADC Clock Period	76	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—		
		Con	version F	Rate					
AD55	tCONV	Conversion Time	—	12 Tad	_	—	—		
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	—		
AD57	TSAMP	Sample Time	2 Tad	_	_	_	—		
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	—	3 Tad	—	Auto-Convert Trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	—	—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	—	—	_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	_		

TABLE 30-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

TABLE 30-42: AUDIO DAC MODULE SPECIFICATIONS

AC/DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
Clock Parameters								
DA01	Vod+	Positive Output Differential Voltage	1	1.15	2	V	Vod+ = VDACH – VDACL See Note 1, 2	
DA02	Vod-	Negative Output Differential Voltage	-2	-1.15	-1	V	Vod- = VDACL – VDACH See Note 1, 2	
DA03	Vres	Resolution		16	—	bits	_	
DA04	Gerr	Gain Error		3.1	—	%	_	
DA08	FDAC	Clock frequency		_	25.6	MHz	—	
DA09	FSAMP	Sample Rate	0	_	100	kHz	_	
DA10	FINPUT	Input data frequency	0	_	45	kHz	Sampling frequency = 100 kHz	
DA11	Τινιτ	Initialization period	1024	_	—	Clks	Time before first sample	
DA12	SNR	Signal-to-Noise Ratio		61		dB	Sampling frequency = 96 kHz	

Note 1: Measured VDACH and VDACL output with respect to VSS, with no load and FORM bit (DACXCON<8>) = 0.

2: This parameter is tested at $-40^{\circ}C \le TA \le 85^{\circ}C$ only.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
300	TRESP	Response Time ^(1,2)	—	150	400	ns		
301	Тмс2оv	Comparator Mode Change to Output Valid ⁽¹⁾	—	—	10	μS	_	

TABLE 30-43: COMPARATOR TIMING SPECIFICATIONS

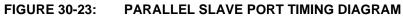
Note 1: Parameters are characterized but not tested.

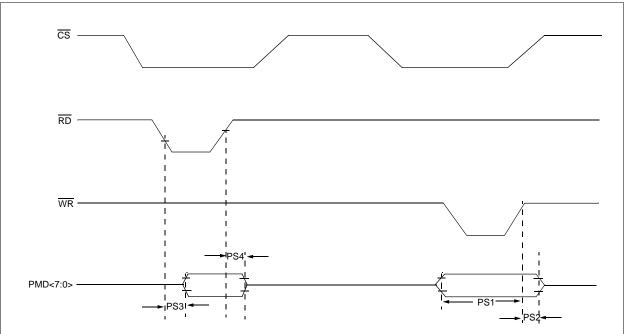
2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditio			Conditions		
D300	VIOFF	Input Offset Voltage ⁽¹⁾	—	±10	—	mV	—	
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	_	AVDD-1.5V	V		
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54	_	—	dB		

TABLE 30-44: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are characterized but not tested.


TABLE 30-45: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS


AC CHA	AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				Conditions
VR310	TSET	Settling Time ⁽¹⁾	—	-	10	μS	—

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 30-46: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

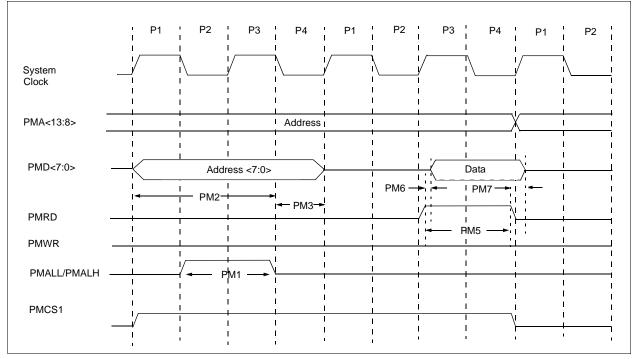

DC CHAI	DC CHARACTERISTICS		$\label{eq:constraint} \begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				Conditions	
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	_	
VRD311	CVRAA	Absolute Accuracy	_		0.5	LSb	_	
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω		

TABLE 30-47: PARALLEL SLAVE PORT TIME SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. Typ Max.		Units	Conditions	
PS1	TdtV2wrH	Data in Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	—	—	ns	_
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	20 — — ns		_		
PS3	TrdL2dtV	RD and CS to Active Data-Out Valid	t <u> </u>		_		
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	—	30	ns	_

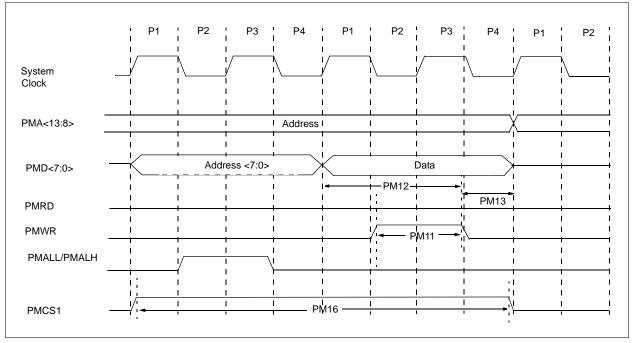


FIGURE 30-24: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 30-48: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for} \\ \mbox{Extended} \end{array}$					
Param Characteristic No.		Min.	Тур	Max.	Units	Conditions	
PM1	PMALL/PMALH Pulse-Width	_	0.5 TCY		ns	_	
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	_	ns		
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	_	ns		
PM5	PMRD Pulse-Width	—	0.5 TCY	_	ns	_	
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	_	—	—	ns		
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)		_		ns		

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

FIGURE 30-25: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 30-49: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Ind} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Example 1} \\ \end{array}$				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM11	PMWR Pulse-Width		0.5 TCY	_	ns	_
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)		—	—	ns	—
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	_	ns	—
PM16	PMCSx Pulse-Width	TCY - 5	—	_	ns	—

NOTES:

31.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +140°C.

Note: Programming of the Flash memory is not allowed above 125°C.

The specifications between -40°C to +140°C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 30.0** "Electrical Characteristics" is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +140°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(5)}$	-0.3V to 5.6V
Voltage on VCAP/VDDCORE with respect to VSS	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽²⁾	
Maximum junction temperature	+145°C
Maximum output current sunk by any I/O pin ⁽³⁾	1 mA
Maximum output current sourced by any I/O pin ⁽³⁾	1 mA
Maximum current sunk by all ports combined	
Maximum current sourced by all ports combined ⁽²⁾	

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGCx, and PGDx pins.
 - **4:** AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

31.1 High Temperature DC Characteristics

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04
	3.0V to 3.6V	-40°C to +140°C	20

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+145	°C
Operating Ambient Temperature Range	TA	-40	—	+140	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		PINT + PI/C)	W
Maximum Allowed Power Dissipation	Dissipation PDMAX (TJ - TA)/0JA			W	

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS (ur				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Parameter No. Symbol Characteristic			Min	Тур	Мах	Units	Conditions		
Operating V	Voltage								
HDC10 Supply Voltage									
	Vdd		3.0	3.3	3.6	V	-40°C to +140°C		

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	250	2000	μA	+140°C	3.3V	Base Power-Down Current ^(1,3)	
HDC61c	3	5	μΑ	+140°C 3.3V Watchdog Timer Current: ΔΙWDT ^(2,4)			

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature						
Parameter No.	Typical ⁽¹⁾	Max	Doze Ratio	Units	Conditions				
HDC72a	39	45	1:2	mA					
HDC72f	18	25	1:64	mA	+140°C	3.3V	20 MIPS		
HDC72g	18	25	1:128	mA	1				

TABLE 31-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

TABLE 31-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
HDO10		I/O ports	—	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
HDO16		OSC2/CLKO	—	—	0.4	V	IOL = 1 mA, VDD = 3.3V	
	Voн	Output High Voltage						
HDO20		I/O ports	2.40	—	—	V	Юн = -1 mA, VDD = 3.3V	
HDO26		OSC2/CLKO	2.41	—	—	V	Юн = -1 mA, VDD = 3.3V	

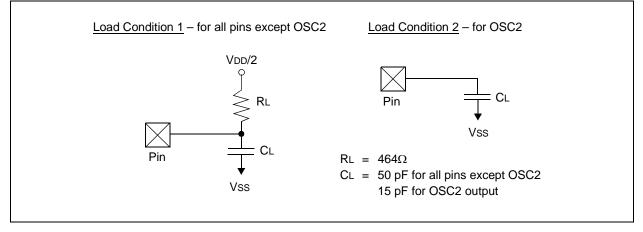
TABLE 31-7: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
		Program Flash Memory								
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +140°C ⁽²⁾			
HD134	Tretd	Characteristic Retention	20	_	_	Year	1000 E/W cycles or less and no other specifications are violated			

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above 125°C.

31.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in **Section 30.2 "AC Characteristics and Timing Parameters"**, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature Operating voltage VDD range as described in Table 31-1.						

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-9: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							,		
Param No.	Symbol	Characteristic	Characteristic Min Typ Max Units Conditions						
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5 0.5 5 % Measured over 1 period						

Note 1: These parameters are characterized, but are not tested in manufacturing.

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35		_	ns	_		

TABLE 31-10: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

	AC CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions				
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_				
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_				
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_				
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_				

Note 1: These parameters are characterized but not tested in manufacturing.

© 2009 Microchip Technology Inc.

DS70292D-page 371

TABLE 31-12:	SPIx	MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

CHARA	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions			
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		I	35	ns	_			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	—	ns	_			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	_	—	ns	—			
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15		55	ns	See Note 2			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 31-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25			ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	_	_	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		55	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 31-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature											
Param No.	Symbol	Characteristic	Min Typ Max Units Co				Conditions				
	Reference Inputs										
HAD08	IREF	Current Drain		250 —	600 μA ADC operating, See Note 1 50 μA ADC off, See Note 1						

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

-	AC TERISTICS	Standard Operating Co Operating temperature			•		•				
Param No.	Symbol	Characteristic Min Typ Max Unit				Units	Conditions				
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾											
HAD20a	Nr	Resolution	1	2 data bi	its	bits	—				
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD23a	Gerr	Gain Error	-2		10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD24a	EOFF	Offset Error	-3		5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾				
HAD20a	Nr	Resolution	1	2 data bi	its	bits	—				
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD23a	Gerr	Gain Error	2	_	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
HAD24a	Eoff	Offset Error	2		10	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
		Dynamic I	Performa	nce (12	-bit Mode	e) ⁽²⁾					
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz					

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

	AC TERISTICS	Standard Operating Conc Operating temperature -			•		•	
Param No.	Symbol	Characteristic	aracteristic Min Typ Max Units		Conditions			
ADC Accuracy (10-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾								
HAD20b	Nr	Resolution	1	0 data bi	ts	bits	—	
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD23b	Gerr	Gain Error	-5	—	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD24b	EOFF	Offset Error	-1	—	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
	AD	C Accuracy (10-bit Mode)	– Measu	irement	s with In	ernal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution	1	0 data bi	ts	bits	—	
HAD21b	INL	Integral Nonlinearity	-2	_	2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24b	EOFF	Offset Error	-1.5		7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic Pe	erformar	nce (10-k	oit Mode)	(2)		
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	—	

TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

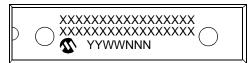
2: These parameters are characterized by similarity, but are not tested in manufacturing.

CHARAC	AC CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No. Symbol		Characteristic	Characteristic Min Typ		Max	Max Units Condition		
	Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	147	_	_	ns	_	
Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

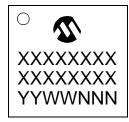
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +140^{\circ}C$ for High Temperature					
Param No. Symbol		Characteristic	Characteristic Min Typ Max Unit		Units	Conditions	
Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	—	—	ns	_
Conversion Rate							
HAD56	HAD56 FCNV Throughput Rate ⁽¹⁾ — — 800 Ksps —						—
Mate 4	4. These peremeters are characterized but not tested in manufacturing						


Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2009} Microchip Technology Inc.

NOTES:

32.0 PACKAGING INFORMATION


28-Lead SPDIP

28-Lead SOIC (.300")

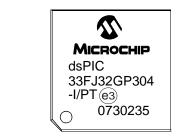
28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

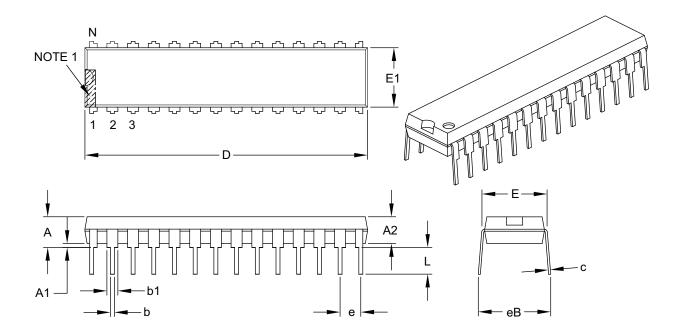
Example

Example


Example

Example

Example


Legend	1: XXX	Customer-specific information				
	Y	Year code (last digit of calendar year)				
	YY	Year code (last 2 digits of calendar year)				
	WW	Week code (week of January 1 is week '01')				
	NNN	Alphanumeric traceability code				
	e3	Pb-free JEDEC designator for Matte Tin (Sn)				
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))				
		can be found on the outer packaging for this package.				
Note:	: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.					

© 2009 Microchip Technology Inc.

32.1 Package Details

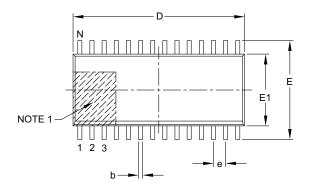
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

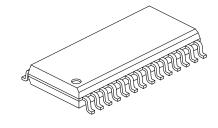
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

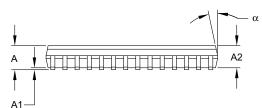
	Units			
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

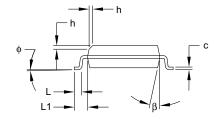
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B


28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

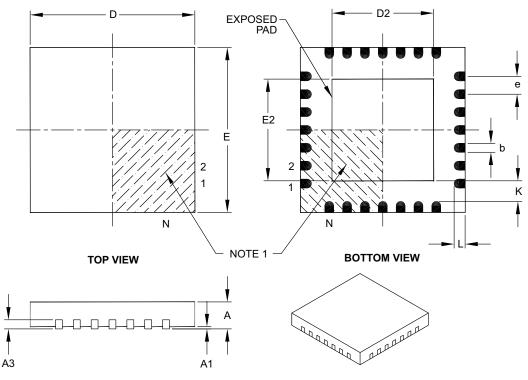
	MILLMETERS			
Dimen	sion Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		1.27 BSC	
Overall Height	А	_	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Foot Angle Top	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	_	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

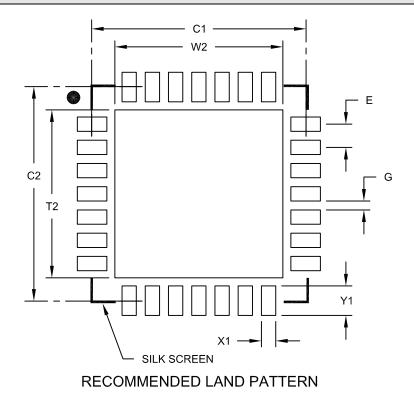
	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

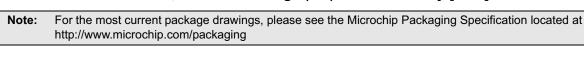

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

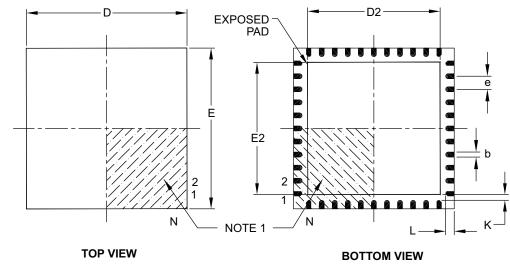
Microchip Technology Drawing C04-124B

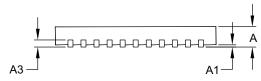
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

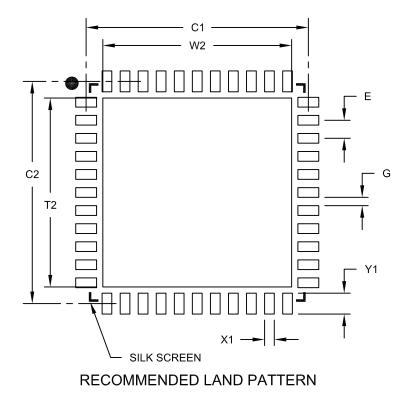
	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

D D1 Π ППП F TITTT E1 NOTE 23 NOTE 2 Α с A2·

	Units	MILLIMETERS		
Dim	ension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

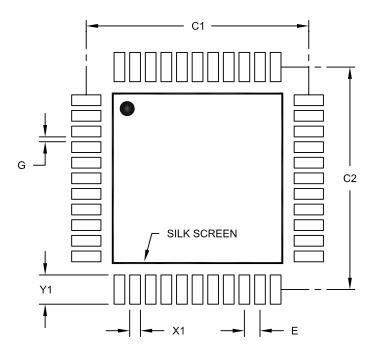
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F/PIC24H Family Reference Manual*, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

	TABLE A-1:	MAJOR SECTION UPDATES
--	------------	-----------------------

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Note 1 added to all pin diagrams (see "Pin Diagrams").
	Add External Interrupts column and Note 3 to the "dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Controller Families" table.
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1, and PMD0 through PMPD7 (Table 1-1).
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx").
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx").
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx").
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1).
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources".
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4).
Section 20.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 20-3.
Section 26.0 "Special Features"	Added Note 2 to Figure 26-1.
	Added Note after second paragraph in Section 26.2 "On-Chip Voltage Regulator".
Section 29.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 29-1.
	Updated typical values in Thermal Packaging Characteristics in Table 29-3.
	Added parameters DI11 and DI12 to Table 29-9.
	Updated minimum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 29-12.
	Added Extended temperature range to Table 29-13.
	Updated parameter AD63 and added Note 3 to Table 29-40 and Table 29-41.

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

Section Name	Update Description
High-Performance, 16-Bit Digital Signal Controllers	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
	Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-21).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-33).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Comgulation	Added Note 1 and Note 2 to the OSCON register (see Register 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 " System Clock Sources ".
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).

TABLE A-2. MAJOR SECTION OF DATES (CONTINUED)		
Section Name	Update Description	
Section 10.0 "Power-Saving	Added the following registers:	
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)	
	PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)	
	 PMD3: Peripheral Module Disable Control Register 3 (Register 10-3) 	
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality.	
	Added paragraph on ADPCFG register default values to Section 11.3 " Configuring Analog Port Pins ".	
	Added Note box regarding PPS functionality with input mapping to Section 11.6.2.1 "Input Mapping" .	
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).	
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).	
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).	
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).	
Section 21.0 "10-Bit/12-Bit Analog- to-Digital Converter (ADC)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 21-1 and Figure 21-2).	
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 21-3).	
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 21-7).	
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 21-8).	
Section 22.0 "Audio Digital-to-	Updated the midpoint voltage in the last sentence of the first paragraph.	
Analog Converter (DAC)"	Updated the voltage swing values in the last sentence of the last paragraph in Section 22.3 "DAC Output Format" .	
Section 23.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 23-2).	
Section 24.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 24-1).	
Section 27.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 27-1).	
	Updated Note 1 in the dsPIC33F Configuration Bits Description (see Table 27-2).	

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 21.0 "10-Bit/12-Bit Analog-to- Digital Converter (ADC)"	Updated the ADC block diagrams (see Figure 21-1 and Figure 21-2).
Section 22.0 "Audio Digital-to-Analog Converter (DAC)"	Removed last sentence of the first paragraph in the section. Added a shaded note to Section 22.2 "DAC Module Operation" . Updated Figure 22-2: "Audio DAC Output for Ramp Input (Unsigned)".
Section 27.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 27.1 "Configuration Bits" . Updated the Device Configuration Register Map (see Table 27-1).
Section 30.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications (see Table 30-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 30-12).
	Removed Table 30-43: Audio DAC Module Specifications. Original contents were updated and combined with Table 30-42 of the same name.
Section 31.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

NOTES:

INDEX

Α

A/D Converter
DMA253
Initialization253
Key Features253
AC Characteristics 332, 372
ADC Module
ADC Module (10-bit Mode)
ADC Module (12-bit Mode) 375
Internal RC Accuracy
Load Conditions 332, 372
ADC Module
ADC11 Register Map 51
Alternate Interrupt Vector Table (AIVT)
Arithmetic Logic Unit (ALU)
Assembler
MPASM Assembler
В
_
Barrel Shifter
Bit-Reversed Addressing
Example
Implementation
Sequence Table (16-Entry)67
Block Diagrams
16-bit Timer1 Module
A/D Module
Connections for On-Chip Voltage Regulator
DCI Module
Device Clock
DSP Engine
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,
and dsPIC33FJ128GPX02/X0416
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,
and dsPIC33FJ128GPX02/X04 CPU Core26
ECAN Module
Input Capture195
Output Compare197
PLL143
Reset System79
Shared Port Structure159
SPI
Timer2 (16-bit)189
Timer2/3 (32-bit)191
UART
Watchdog Timer (WDT) 306

С

C Compilers	
Hi-Tech C	320
MPLAB C	320
Clock Switching	
Enabling	151
Sequence	151
Code Examples	
Erasing a Program Memory Page	77
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	
PWRSAV Instruction Syntax	153
Code Protection	301, 307
Comparator Module	
Configuration Bits	
Configuration Register Map	301
Configuring Analog Port Pins	

CPU	
Control Register	
CPU Clocking System	142
PLL Configuration	143
Selection	142
Sources	142
Customer Change Notification Service	401
Customer Notification Service	401
Customer Support	401

D

Data Accumulators and Adder/Subtracter 3	34
Data Space Write Saturation 3	36
Overflow and Saturation 3	34
Round Logic 3	35
Write Back 3	35
Data Address Space 3	39
Alignment 3	39
Memory Map for dsPIC33FJ128GP202/204 and	
dsPIC33FJ64GP202/204 Devices	
with 8 KB RAM 4	1
Memory Map for dsPIC33FJ128GP802/804 and	
dsPIC33FJ64GP802/804 Devices	
with 16 KB RAM 4	12
Memory Map for dsPIC33FJ32GP302/304	
Devices with 4 KB RAM 4	10
Near Data Space	
Software Stack 6	
Width	
Data Converter Interface (DCI) Module	
DC Characteristics	
Doze Current (IDOZE)	
High Temperature	
I/O Pin Input Specifications	
I/O Pin Output	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	'0
DCI	
Introduction 24	17
DCI Module	
Register Map 5	6
Demonstration/Development Boards, Evaluation Kits,	
and Starter Kits 32	
Development Support 31	9
DMA Module	
DMA Register Map 5	52
DMAC Registers 13	31
DMAxCNT 13	
DMAxCON 13	31
DMAxPAD 13	31
DMAxREQ	
DMAxSTA	
DMAxSTB13	
Doze Mode	
DSP Engine	
Multiplier	

Е

ECAN Module	
CiBUFPNT1 register233	
CiBUFPNT2 register234	
CiBUFPNT3 register234	
CiBUFPNT4 register235	
CiCFG1 register231	
CiCFG2 register232	
CiCTRL1 register224	
CiCTRL2 register 225	
CiEC register231	
CiFCTRL register	
CiFEN1 register233	
CiFIFO register228	
CiFMSKSEL1 register237	
CiFMSKSEL2 register	
CiINTE register	
CiINTF register	
CiRXFnEID register	
CiRXFnSID register	
CiRXFUL1 register	
CiRXFUL2 register	
CiRXMnEID register	
CiRXMnSID register	
CiRXOVF1 register	
CiRXOVF2 register	
CiTRmnCON register	
CiVEC register	
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	
ECAN1 Register Map (C1CTRL1.WIN = 0)	
ECAN1 Register Map (C1CTRL1.WIN = 1)	
Frame Types	
Overview	
ECAN Registers	
Acceptance Filter Enable Register (CiFEN1)	
Acceptance Filter Extended Identifier Register n	
(CiRXFnEID)	
Acceptance Filter Mask Extended Identifier Register n	
(CiRXMnEID)	
Acceptance Filter Mask Standard Identifier Register n	
(CiRXMnSID)	
Acceptance Filter Standard Identifier Register n (CiRXF-	
nSID)	
Baud Rate Configuration Register 1 (CiCFG1)	
Baud Rate Configuration Register 2 (CiCFG2)232	
Control Register 1 (CiCTRL1)224	
Control Register 2 (CiCTRL2)	
FIFO Control Register (CiFCTRL)227	
FIFO Status Register (CiFIFO)	
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 233	
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 235	
Filter 15-8 Mask Selection Register (CiFMSKSEL2).238	
Filter 4-7 Buffer Pointer Register (CiBUFPNT2)234	
Filter 7-0 Mask Selection Register (CiFMSKSEL1)237	
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 234	
Interrupt Code Register (CiVEC)	
Interrupt Enable Register (CiINTE)230	
Interrupt Flag Register (CiINTF)229	
Receive Buffer Full Register 1 (CiRXFUL1)240	
Receive Buffer Full Register 2 (CiRXFUL2)240	
Receive Buffer Overflow Register 2 (CiRXOVF2)241	
Receive Overflow Register (CiRXOVF1)241	
ECAN Transmit/Receive Error Count Register (CiEC) 231	

ECAN TX/RX Buffer m Control Register (CiTRmnCON) 242
Electrical Characteristics 323
AC
Enhanced CAN Module 221
Equations
Device Operating Frequency 142
Errata 14
F
•
Flash Program Memory
Control Registers
Operations
RTSP Operation
Table Instructions
Flexible Configuration
н
High Temperature Electrical Characteristics
1
-
I/O Ports
Parallel I/O (PIO)
Write/Read Timing
Operating Modes
Registers
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Registers
Input Change Notification
Instruction Addressing Modes
File Register Instructions
Fundamental Modes Supported 64
MAC Instructions 64
MCU Instructions 63
Move and Accumulator Instructions
Other Instructions64
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCON2
IPCx
Interrupt Setup Procedures 128
Initialization 128
Interrupt Disable 128
Interrupt Service Routine 128
Trap Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions 154
J
JTAG Boundary Scan Interface
JTAG Interface

Μ

Memory Organization
Microchip Internet Web Site
Modes of Operation
Disable
Initialization
Listen All Messages 223
Listen Only 223
Loopback
Normal Operation
Modulo Addressing
Applicability
Operation Example65
Start and End Address65
W Address Register Selection65
MPLAB ASM30 Assembler, Linker, Librarian
MPLAB ICD 3 In-Circuit Debugger System
MPLAB Integrated Development Environment Software 319
MPLAB PM3 Device Programmer
MPLAB REAL ICE In-Circuit Emulator System
MPLINK Object Linker/MPLIB Object Librarian

Ν

NVM Module	
Register Map.	

0

•	
Open-Drain Configuration Output Compare	
P	
Packaging	270
Details	
Marking	
Peripheral Module Disable (PMD)	
Pickit 2 Development Programmer/Debugger and	134
PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express	200
PICkit 3 In-Circuit Debugger/Programmer and	322
PICkit 3 Debug Express	221
Pinout I/O Descriptions (table)	
PMD Module	17
Register Map	60
PORTA	02
	CO C4
Register Map	50, 61
	64
Register Map	
Power-on Reset (POR)	
Power-Saving Features	
Clock Frequency and Switching	
Program Address Space	
Construction	68
Data Access from Program Memory	- 4
Using Program Space Visibility	/1
Data Access from Program Memory	
Using Table Instructions	
Data Access from, Address Generation	
Memory Map	37
Table Read Instructions	
TBLRDH	
TBLRDL	-
Visibility Operation	71
Program Memory	
Interrupt Vector	
Organization	
Reset Vector	38

R

Reader Response Register Map	
CRC	60
Dual Comparator	60
Parallel Master/Slave Port	
Real-Time Clock and Calendar	
	. 00
Registers	~~~
AD1CHS0 (ADC1 Input Channel 0 Select	
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)	262
AD1CON1 (ADC1 Control 1)	257
AD1CON2 (ADC1 Control 2)	259
AD1CON3 (ADC1 Control 3)	260
AD1CON4 (ADC1 Control 4)	
AD1CSSL (ADC1 Input Scan Select Low)	
AD1PCFGL (ADC1 Port Configuration Low)	
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	233
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	234
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	
CiCFG1 (ECAN Baud Rate Configuration 1)	
CiCFG2 (ECAN Baud Rate Configuration 2)	
CiCTRL1 (ECAN Control 1)	224
CiCTRL2 (ECAN Control 2)	225
CiEC (ECAN Transmit/Receive Error Count)	
CiFCTRL (ECAN FIFO Control)	
CiFEN1 (ECAN Acceptance Filter Enable)	
CiFIFO (ECAN FIFO Status)	
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 2	237,
238	
CiINTE (ECAN Interrupt Enable)	230
CiINTF (ECAN Interrupt Flag)	
	229
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier)	237
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	236
CiRXFUL1 (ECAN Receive Buffer Full 1)	
CiRXFUL2 (ECAN Receive Buffer Full 2)	
	240
CiRXMnEID (ECAN Acceptance Filter Mask n	
Extended Identifier)	239
CiRXMnSID (ECAN Acceptance Filter Mask n	
Standard Identifier)	239
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
CiTRBnSID (ECAN Buffer n Standard Identifier)	
	243,
244, 246	
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor)	147
CORCON (Core Control)	
DCICON1 (DCI Control 1)	
DCICON2 (DCI Control 2)	
DCICON3 (DCI Control 3)	
DCISTAT (DCI Status)	
DMACS0 (DMA Controller Status 0)	136
DMACS1 (DMA Controller Status 1)	
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A).	134
DMAxSTB (DMA Channel x RAM Start Address B).	
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	211

IFS0 (Interrupt Flag Status 0)
IFS1 (Interrupt Flag Status 1)
IFS2 (Interrupt Flag Status 2) 101, 108
IFS3 (Interrupt Flag Status 3) 102, 109
IFS4 (Interrupt Flag Status 4) 103, 110
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTTREG Interrupt Control and Status Register 127
IPC0 (Interrupt Priority Control 0)111
IPC1 (Interrupt Priority Control 1)112
IPC11 (Interrupt Priority Control 11)
IPC14 (Interrupt Priority Control 14)122
IPC15 (Interrupt Priority Control 15)
IPC16 (Interrupt Priority Control 16)
IPC17 (Interrupt Priority Control 17)125
IPC18 (Interrupt Priority Control 18)126
IPC2 (Interrupt Priority Control 2)
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)
IPC5 (Interrupt Priority Control 5)
IPC6 (Interrupt Priority Control 6)
IPC7 (Interrupt Priority Control 7)
IPC8 (Interrupt Priority Control 8)
IPC9 (Interrupt Priority Control 9)
NVMCON (Flash Memory Control)
NVMKEY (Nonvolatile Memory Key)
OCxCON (Output Compare x Control)
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tuning)
PLLFBD (PLL Feedback Divisor)
PMD1 (Peripheral Module Disable
Control Register 1)
PMD2 (Peripheral Module Disable
Control Register 2)
PMD3 (Peripheral Module Disable
Control Register 3)157
PxTCON (PWM Time Base Control)
RCON (Reset Control)
RSCON (DCI Receive Slot Control)
SPIxCON1 (SPIx Control 1)
SPIxSTAT (SPIx Status and Control)
SR (CPU Status)
T1CON (Timer1 Control)
TCxCON (Input Capture x Control)
TSCON (DCI Transmit Slot Control)
TxCON (Type B Time Base Control)
TyCON (Type C Time Base Control)
UxMODE (UARTx Mode)
UxSTA (UARTx Status and Control)218
Reset
Illegal Opcode
Trap Conflict
Uninitialized W Register
Reset Sequence
Resets
S
Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	63
Special Features of the CPU	
SPI Module	
SPI1 Register Map	50
Symbols Used in Opcode Descriptions	

System Control Register Map	2
т	
Temperature and Voltage Specifications	
AC	2
Timer1	
Timer2/3	,
Timing Characteristics	
CLKO and I/O 335	
Timing Diagrams	
10-bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) 361	
10-bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
12-bit A/D Conversion	
(ASAM = 0, SSRC<2:0> = 000)	1
Brown-out Situations85	,
DCI AC-Link Mode 353	
DCI Multi -Channel, I ² S Modes	
ECAN I/O 355	
External Clock 333	,
I2Cx Bus Data (Master Mode) 347	
I2Cx Bus Data (Slave Mode) 349	1
I2Cx Bus Start/Stop Bits (Master Mode) 347	
I2Cx Bus Start/Stop Bits (Slave Mode) 349	1
Input Capture (CAPx) 340	,
OC/PWM	
Output Compare (OCx) 340)
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer 336	
SPIx Master Mode (CKE = 0) 342	
SPIx Master Mode (CKE = 1) 343	
SPIx Slave Mode (CKE = 0) 344	
SPIx Slave Mode (CKE = 1) 345	
Timer1, 2 and 3 External Clock 338	į
Timing Requirements	
ADC Conversion (10-bit mode) 377	
ADC Conversion (12-bit Mode)	
CLKO and I/O	
DCI AC-Link Mode	
DCI Multi-Channel, I ² S Modes	
External Clock	
Input Capture	
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	
SPIx Module Slave Mode (CKE = 0)	
SPIx Module Slave Mode (CKE = 1)	
Timing Specifications	
10-bit A/D Conversion Requirements	
12-bit A/D Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
PLL Clock	
QEI External Clock Requirements	
QEI External Clock Requirements	
	•
Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset	
Requirements	,
Simple OC/PWM Mode Requirements	
Simple OC/PWW Mode Requirements	
SPIX Master Mode (CKE = 0) Requirements	
SPix Master Mode (CKE = 1) Requirements	
SPIX Slave Mode (CKE = 0) Requirements	

Timer1 External Clock Requirements	. 338
Timer2 External Clock Requirements	. 339
Timer3 External Clock Requirements	. 339

U

UART Module
UART1 Register Map 49, 50
Universal Asynchronous Receiver Transmitter (UART) 215
Using the RCON Status Bits

۷

Voltage Regulator (On-Chip)	
-----------------------------	--

W

Watchdog Time-out Reset (WDTR)	85
Watchdog Timer (WDT)	301, 306
Programming Considerations	
WWW Address	
WWW, On-Line Support	14

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers receives e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent					
RE:	: Reader Response						
From	: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Application (optional):							
Would you like a reply?YN							
Devid	ce: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Data Sheet	Literature Number: DS70292D					
Questions:							
1. V	1. What are the best features of this document?						
-							
2. ⊦	2. How does this document meet your hardware and software development needs?						
_							
3. E	B. Do you find the organization of this document easy to follow? If not, why?						
-							
4. V	. What additions to the document do you think would enhance the structure and subject?						
-							
5. V	. What deletions from the document could be made without affecting the overall usefulness?						
_							
6. I:	5. Is there any incorrect or misleading information (what and where)?						
_							
7. ⊦	. How would you improve this document?						
-							

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel FI Temperature Rar	amily - y Size (ag (if a nge	(KB)		Examples: a) dsPIC33FJ32GP302-E/SP: General Purpose dsPIC33, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GP3	=	General Purpose family General Purpose family General Purpose family	
Pin Count:	02 04	=	28-pin 44-pin	
Temperature Range:	I E H	= = =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended) -40°C to+140°C (High)	
Package:	SP SO ML MM PT	= = =	Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 300 mil body (SOIC) Plastic Quad, No Lead Package - 8x8 mm body (QFN) Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)	

П

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820