

SILICON SWITCHING DIODES

Screening in reference to available

DESCRIPTION

This 1N643, 1N662 and 1N663 series of JEDEC registered switching/signal diodes are metallurgically bonded and hermetically sealed. These low capacitance diodes feature double-plug construction in a DO-35 package. They are particularly suited to applications where medium speed switching is required. Microsemi also offers a variety of other switching/signal diodes.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N643, 1N662 and 1N663.
- Metallurgically bonded.
- Hermetically sealed.
- Double-plug construction.
- Up-screening available in reference to MIL-PRF-19500. (See part nomenclature for all available options.)
- RoHS compliant versions available.

APPLICATIONS / BENEFITS

- Flexible axial-lead mounting terminals.
- High frequency data lines:
 - RS-232 & RS-422 interface networks
 - Ethernet 10 Base T links
 - Switching core drivers
 - Local area networks
 - Computers

MAXIMUM RATINGS

Parameters/Test Conditions		Symbol	Value	Unit
Junction Temperature		TJ	-65 to +150	°C
Storage Temperature		T_{STG}	-65 to +175	°C
Thermal Impedance		$Z_{\Theta JX}$	70	°C/W
Reverse Voltage, RMS Value	1N643	V_r	200	V(pk)
	1N662 & 1N663		100	
Reverse Voltage, Working Peak	1N643	V_{RWM}	175	V(pk)
			80	
Forward Current, Surge Peak	1N662 & 1N663	I _{FSM}	500	mA
@ 8.3 ms				
Average Forward Current	1N643 & 1N662 (1)	Io	40	mA
	1N663 ⁽²⁾		100	
Solder Pad Temperature @ 10 s m	T_SP	260	°C	

Notes: 1. Derate 1N643 and 1N662 at 0.32 mA/ $^{\circ}$ C above T_A = 25 $^{\circ}$ C.

2. Derate 1N663 at 0.48 mA/ $^{\circ}$ C above T_A = 25 $^{\circ}$ C.

MIL-PRF-19500

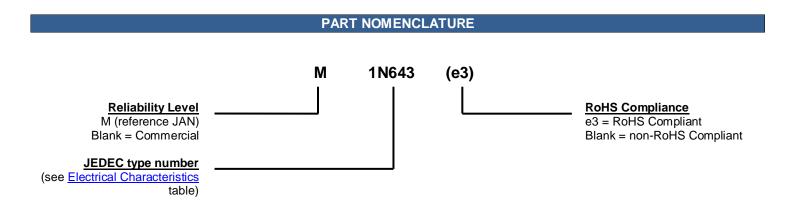
DO-35 Package

MSC - Lawrence

6 Lake Street. Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298


Website:

www.microsemi.com

MECHANICAL and PACKAGING

- · CASE: Hermetically sealed glass case.
- TERMINALS: Tin/lead finished copper clad steel or RoHS compliant matte-tin finish available.
- MARKING: Alphanumeric.
- POLARITY: Cathode end is banded.
- TAPE & REEL option: Standard per EIA-296 (add "TR" suffix to part number). Consult factory for quantities.
- WEIGHT: 0.2 grams.
- See <u>Package Dimensions</u> on last page.

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _F	Forward Current.			
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.			
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.			
T_{SP}	Temperature Solder Pad: The maximum solder temperature that can be safely applied to the terminal.			
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.			
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.			
V_{WM}	Working Peak Voltage: The maximum peak voltage that can be applied over the operating temperature range. This is also referred to as Standoff Voltage.			
$Z_{\Theta JX}$	Thermal Impedance: The thermal impedance junction to reference point.			

ELECTRICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise specified)

TYPE NUMBER	Forward Voltage V _F (See Note 1)	Reverse Current I _R @ V _R = 10 V		Capacitance C	Reverse Recovery Time T _{rr}
		T _A @ 25 ℃	T _A @ 100 °C		(See Note 2)
		(I _R @ 25 ℃)			
	V (max)	nA (max)	μΑ (max)	pF (max)	ns (max)
1N643	1.0	25 (100 μA @ 200 V)	15 @ 100 V	3 @ 175 V	300
1N662	1.0	25 (100 μA @ 100 V)	100 @ 50 V	3 @ 80 V	500
1N663	1.0	25 (100 μA @ 100 V)	50 @ 75 V	3 @ 80 V	500

NOTES: 1. I_F = 10 mA for 1N643 and 1N662; I_F = 100 mA for 1N663.

^{2.} Test condition B: I_F = 5 mA; I_R = 17.5 mA; R_L = 2300 ohms +/- 10 %; C = 40 pF, max.

GRAPHS

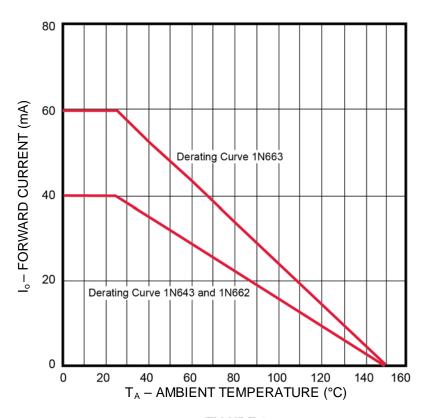
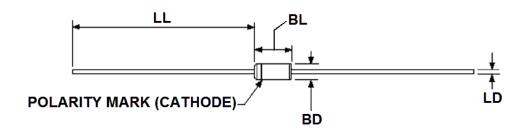



FIGURE 1
Average Rectified Current vs Ambient Temperature

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inch		Millimeters		
	Min	Max	Min	Max	
BD	.056	075	1.42	1.90	
BL	.140	.180	3.56	4.57	
LD	.018	.022	.046	.056	
LL	1.000	1.500	25.40	38.10	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. The minimum body diameter shall be maintained over .15 inch (3.81 mm) inch of body length.
- 4. The specified lead diameter applies in the zone between .050 inch (1.27 mm) and the end of the lead. Outside of this zone the lead diameter shall not exceed LD.
- 5. Both leads shall be within the specified dimension.
- 6. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.