

200 and 500 mA Schottky Barrier Rectifier

Qualified per MIL-PRF-19500/610

Qualified Levels *: JAN, JANTX, JANTXV and JANS

DESCRIPTION

The 1N6675UR-1 through 1N6677UR-1 series of Schottky barrier rectifiers provides a selection of 200 or 500 mA ratiings in surface mount, hard glass DO-213AA MELF package. The 1N6677UR-1 is also available in JAN, JANTX, JANTXV, and JANS military qualifications.

DO-213AA MELF

Package

Also available in:

🔁 DO-35 (DO-204AH) package

(axial-leaded) 1N6675-1 - 1N6677-1

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N6675 through 1N6677 number series.
- Hermetically sealed.
- Metallurgically bonded.
- Double plug construction.
- *JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/610 on 1N6677UR-1 only.
- RoHS compliant versions are available on all commercial types.

APPLICATIONS / BENEFITS

- Leadless package for surface mounting.
- Ideal for high-density situations.
- Non-sensitive to ESD per MIL-STD-750 method 1020.

MAXIMUM RATINGS @ TA = 25 °C unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction Temperature	TJ	-65 to +125	٥C
Storage Temperature	T _{STG}	-65 to +150	∘C
Thermal Resistance, Junction-to-End Cap	R _{OJEC}	100	°C/W
Surge Peak Forward Current at 8.3 ms half-sine wave for 1N6677UR-1	I _{FSM}	5	A (pk)
Average Rectified Output Current: 1N6675UR-1 – 1N6677UR-1 (1) CDLL0.5A20 – CDLL0.5A40	Io	200 500	mA
Solder Temperature @ 10 s		260	°C

NOTES: 1. See Figure 1 for derating.

MSC - Lawrence

6 Lake Street,

Lawrence, MA 01841 1-800-446-1158

Tel: (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass case package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode end is banded.
- MOUNTING: The axial coefficient of expansion (COE) of this device is approximately +6PPM/°C. The COE of the mounting surface system should be selected to provide a suitable match with this device.
- MARKING: Part number.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: Approximately 0.04 grams.
- See <u>Package Dimensions</u> on last page.

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.					
f	frequency					
I _R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R .					
I _{FSM}	Surge Peak Forward Current: The forward current including all nonrepetitive transient currents but excluding all repetitive transients (ref JESD282-B)					
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.					
$V_{(BR)}$	Breakdown Voltage: A voltage in the breakdown region.					
V_{F}	V _F Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.					
V_R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.					
V_{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.					

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise specified

200 mA options:

TYPE NUMBER (Note 1)	WORKING PEAK REVERSE VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	LEAKAGE CURRENT CAPACITAN $I_{RM} @ V_{RM}$ $@ V_R = 0$ VOLTS		MAXIMUM CAPACITANCE @ V _R = 0 VOLTS f = 1.0 MHz
(11010-1)	V _{RWM}	V _F @ 20 mA	V _F @ 200 mA	V _F @ 630 mA	T _J = +25 °C	T _J = 100 °C	Ст
	V (pk)	Volts	Volts	Volts	μА	mA	pF
1N6675UR-1	20	0.37	0.50	0.70	5.0	0.60	50
1N6676UR-1	30	0.37	0.50	0.70	5.0	0.60	50
1N6677UR-1	40	0.37	0.50	0.70	5.0	0.60	50

NOTE: 1. These numbers can also be ordered as CDLL6675 or CDLL0.2A20, CDLL6676 or CDLL0.2A30, and CDLL6677 or CDLL0.2A40.

500 mA options:

	WORKING	MAXIMUM	MAXIMUM	MAXIMUM		MAXIMUM
	PEAK	FORWARD	FORWARD	REVERSE		CAPACITANCE
	REVERSE	VOLTAGE	VOLTAGE	LEAKAGE		$@V_R = 0$
TYPE	VOLTAGE			CURRENT		VOLTS
NUMBER				$I_{RM} @ V_{RM}$		f = 1.0 MHz
	V _{RWM}	V _F @ 100 mA	V _F @ 500 mA	T」= +25 ℃	T _J = 100 °C	Ст
	V (pk)	Volts	Volts	μΑ	mA	pF
CDLL0.5A20	20	0.50	0.65	10.0	1.0	50
CDLL0.5A30	30	0.50	0.65	10.0	1.0	50
CDLL0.5A40	40	0.50	0.65	10.0	1.0	50

GRAPHS

FIGURE 1
Temperature power derating for 1N6677UR-1

NOTES:

- Maximum theoretical derate design curve. This is the true inverse of the worst case thermal resistance value. All
 devices are capable of operating at ≤ TJ specified on this curve. Any parallel line to this curve will intersect the
 appropriate power for the desired maximum TJ allowed.
- Derate design curve constrained by the maximum junction temperatures and power rating specified. (See <u>Maximum Ratings</u>.)
- Derate design curve chosen at TJ≤ 110 °C to show power rating where most users want to limit TJ in their application.

GRAPHS

FIGURE 2
Thermal impedance curve for 1N6677UR-1

PACKAGE DIMENSIONS

DIM	INC	CH	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
BD	0.063	0.067	1.60	1.70	
BL	0.130	0.146	3.30	3.71	
ECT	0.016	0.022	0.41	0.56	
S	0.001	-	0.03	-	

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Dimensions are pre-solder dip.
- 3. Referencing to dimension S, minimum clearance of glass body to mounting surface on all orientations.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

PAD LAYOUT

	INCH	mm
Α	0.200	5.08
В	0.055	1.40
С	0.080	2.03