ROHS
Available on commercial versions

200 and 500 mA Schottky Barrier Rectifier

Qualified per MIL-PRF-19500/610

DESCRIPTION

The 1N6675UR-1 through 1N6677UR-1 series of Schottky barrier rectifiers provides a selection of 200 or 500 mA ratiings in surface mount, hard glass DO-213AA MELF package. The 1N6677UR-1 is also available in JAN, JANTX, JANTXV, and JANS military qualifications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N6675 through 1N6677 number series.
- Hermetically sealed.
- Metallurgically bonded.
- Double plug construction.
- *JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/610 on 1N6677UR-1 only.
- RoHS compliant versions are available on all commercial types.

APPLICATIONS / BENEFITS

- Leadless package for surface mounting.
- Ideal for high-density situations.
- Non-sensitive to ESD per MIL-STD-750 method 1020.

MAXIMUM RATINGS @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction Temperature	T_{J}	-65 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-End Cap	$\mathrm{R}_{\text {ӨJEC }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Surge Peak Forward Current at 8.3 ms half-sine wave for 1N6677UR-1	$\mathrm{I}_{\text {FSM }}$	5	$\mathrm{~A}(\mathrm{pk})$
Average Rectified Output Current:			
1N6675UR-1 - 1N6677UR-1 ${ }^{(1)}$	I_{0}	200	mA
CDLL0.5A20 - CDLL0.5A40		500	
Solder Temperature @ 10 s		260	${ }^{\circ} \mathrm{C}$

NOTES: 1. See Figure 1 for derating.

Qualified Levels*: JAN, JANTX, JANTXV and JANS

DO-213AA MELF Package

Also available in:
DO-35 (DO-204AH)
package
(axial-leaded)
1N6675-1 - 1N6677-1

MSC - Lawrence
6 Lake Street,
Lawrence, MA 01841
1-800-446-1158
Tel: (978) 620-2600
Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park, Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass case package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode end is banded.
- MOUNTING: The axial coefficient of expansion (COE) of this device is approximately $+6 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. The COE of the mounting surface system should be selected to provide a suitable match with this device.
- MARKING: Part number.
- TAPE \& REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: Approximately 0.04 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

1N6675UR-1 - 1N6677UR-1:

-1 (e3)

RoHS Compliance
e3 = RoHS compliant Blank = non-RoHS compliant

Metallurgically Bonded

1N6677UR-1 only:

CDLLO.5A20 - CDLLO.5A40:

RoHS Compliance
e3 = RoHS compliant (on commercial grade only) Blank = non-RoHS compliant

Metallurgically Bonded
MELF Surface Mount

Reliability Level* JAN = JAN level JANTX = JANTX level JANTXV = JANTXV level JANS = JANS level (see Electrical CharacteristicS table)

SYMBOLS \& DEFINITIONS	
Symbol	Definition
C	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.
f	frequency
I_{R}	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V_{R}.
$\mathrm{I}_{\mathrm{FSM}}$	Surge Peak Forward Current: The forward current including all nonrepetitive transient currents but excluding all repetitive transients (ref JESD282-B)
I_{O}	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.
$\mathrm{V}_{(\text {BR })}$	Breakdown Voltage: A voltage in the breakdown region.
V_{F}	Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.
V_{R}	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.

ELECTRICAL CHARACTERISTICS @ $25{ }^{\circ} \mathrm{C}$ unless otherwise specified

200 mA options:

TYPE NUMBER (Note 1)	WORKING PEAK REVERSE VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM REVERSE LEAKAGE CURRENT I_{RM} @ V_{Rm}		$\begin{gathered} \text { MAXIMUM } \\ \text { CAPACITANCE } \\ @ V_{R}=0 \\ \text { VOLTS } \\ \mathrm{f}=1.0 \mathrm{MHz} \end{gathered}$
	$\mathrm{V}_{\text {RWM }}$	V_{F} @ 20 mA	$\begin{gathered} \mathrm{V}_{\mathrm{F}} @ 200 \\ \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{F}} @ 630 \\ \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=+25 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=100 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{C}_{\text {T }}$
	V (pk)	Volts	Volts	Volts	$\mu \mathrm{A}$	mA	pF
1N6675UR-1	20	0.37	0.50	0.70	5.0	0.60	50
1N6676UR-1	30	0.37	0.50	0.70	5.0	0.60	50
1N6677UR-1	40	0.37	0.50	0.70	5.0	0.60	50

NOTE: 1. These numbers can also be ordered as CDLL6675 or CDLL0.2A20, CDLL6676 or CDLL0.2A30, and CDLL6677 or CDLL0.2A40.

500 mA options:

TYPE NUMBER	WORKING PEAK REVERSE VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM REVERSE LEAKAGE CURRENT $I_{\text {RM }} @ V_{\text {RM }}$		$\begin{gathered} \text { MAXIMUM } \\ \text { CAPACITANCE } \\ @ V_{R}=0 \\ \text { VOLTS } \\ \mathrm{f}=1.0 \mathrm{MHz} \end{gathered}$
	$\mathrm{V}_{\text {RWM }}$	V_{F} @ 100 mA	$\begin{gathered} \mathrm{V}_{\mathrm{F}} @ 500 \\ \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{J}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=100 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{C}_{\text {T }}$
	V (pk)	Volts	Volts	$\mu \mathrm{A}$	mA	pF
CDLL0.5A20	20	0.50	0.65	10.0	1.0	50
CDLL0.5A30	30	0.50	0.65	10.0	1.0	50
CDLL0.5A40	40	0.50	0.65	10.0	1.0	50

GRAPHS

FIGURE 1
Temperature power derating for 1N6677UR-1

NOTES:

1. Maximum theoretical derate design curve. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at $\leq T_{\text {J specified }}$ on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_{J} allowed.
2. Derate design curve constrained by the maximum junction temperatures and power rating specified. (See Maximum Ratings.)
3. Derate design curve chosen at $\mathrm{T}_{\mathrm{J}} \leq 110^{\circ} \mathrm{C}$ to show power rating where most users want to limit T_{J} in their application.

GRAPHS

FIGURE 2
Thermal impedance curve for 1N6677UR-1

DIM	INCH		MILLIMETERS	
	MIN	MAX	MIN	MAX
BD	0.063	0.067	1.60	1.70
BL	0.130	0.146	3.30	3.71
ECT	0.016	0.022	0.41	0.56
S	0.001	-	0.03	-

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.
2. Dimensions are pre-solder dip.
3. Referencing to dimension S , minimum clearance of glass body to mounting surface on all orientations.
4. In accordance with ASME Y14.5M, diameters are equivalent to Φ x symbology.

PAD LAYOUT

	INCH	$\mathbf{m m}$
A	0.200	5.08
B	0.055	1.40
C	0.080	2.03

