

PNP SWITCHING SILICON TRANSISTOR

Qualified per MIL-PRF-19500/290

DESCRIPTION

This family of 2N2904 and 2N2905A switching transistors are military qualified up to the JANS level for high-reliability applications. These devices are also available in a TO-5 package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2904 through 2N2905A series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/290. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- General purpose transistors for high speed switching applications.
- Military and other high-reliability applications.

Qualified Levels:

JAN, JANTX, JANTXV

and JANS

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N2904AL & 2N2905AL

MAXIMUM RATINGS

		Value		
Parameters / Test Conditions	Symbol	2N2904 2N2905	2N2904A 2N2905A	Unit
Collector-Emitter Voltage	V _{CEO}	40	60	V
Collector-Base Voltage	V _{CBO}	60		V
Emitter-Base Voltage	V _{EBO}	5.0		V
Thermal Resistance Junction-to-Ambient	R _{ØJA}	195		°C/W
Thermal Resistance Junction-to-Case	R _{eJC}	50		°C/W
Collector Current	lc	600		mA
Total Power Dissipation	Ρτ	0.8 3.0		W
Operating & Storage Junction Temperature Range	T」& T _{stg}	-65 to	+200	°C

Notes: 1. For derating, see figures 1 and 2.

2. For thermal impedance, see figures 3 and 4.

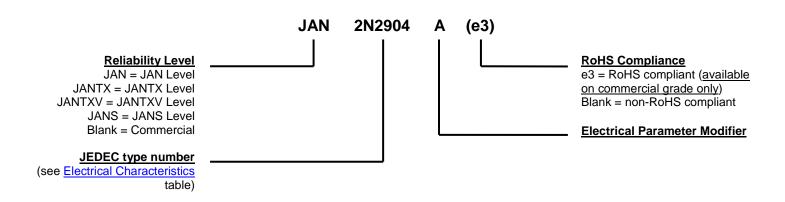
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: PNP (see package outline).
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
C _{obo}	Common-base open-circuit output capacitance.				
I _{CEO}	Collector cutoff current, base open.				
I _{CEX}	Collector cutoff current, circuit between base and emitter.				
I _{EBO}	Emitter cutoff current, collector open.				
h _{FE}	Common-emitter static forward current transfer ratio.				
V _{CEO}	Collector-emitter voltage, base open.				
V _{CBO}	Collector-emitter voltage, emitter open.				
V_{EBO}	Emitter-base voltage, collector open.				

Parameters / 1	est Conditions	Symbol	Min.	Max.	Unit		
OFF CHARACTERISTICS							
Collector-Emitter Breakdown $I_C = 10 \text{ mA}$	Current 2N2904, 2N2905 2N2904A, 2N2905A	V _{(BR)CEO}	40 60		V		
Collector-Emitter Cutoff Volta $V_{CE} = 40 V$ $V_{CE} = 60 V$ Collector-Base Cutoff Current $V_{CB} = 60 V$ $V_{CB} = 50 V$ $V_{CB} = 50 V$ @ T _A = +150 °C	2N2904, 2N2905 2N2904A, 2N2905A	I _{CES} I _{CBO1} I _{CBO2} I _{CBO3}		1.0 10 20 10 20 10	μA μA nA nA μA		
Emitter-Base Cutoff Current $V_{EB} = 3.5 V$ $V_{EB} = 5.0 V$		I _{EBO}		50 10	nΑ μΑ		
ON CHARACTERISTICS (1)							
Forward-Current Transfer Ra	tio						
$I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A		20 35 40 75				
$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904 2N2905 2N2904A 2N2905A		25 50 40 100	175 450 175 450			
I _C = 10 mA, V _{CE} = 10 V	2N2904 2N2905 2N2904A 2N2905A	h _{FE}	35 75 40 100				
I_{C} = 150 mA, V_{CE} = 10 V	2N2904, 2N2904A 2N2905, 2N2905A		40 100	120 300			
$I_{\rm C}$ = 500 mA, $V_{\rm CE}$ = 10 V	2N2904 2N2905 2N2904A 2N2905A		20 30 40 50				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

ELECTRICAL CHARACTERISTICS @ T _A = +25 °C, un	nless otherwise noted (continued)
--	-----------------------------------

Parameters / Test Conditions	Symbol	Min.	Max.	Unit		
ON CHARACTERISTICS ⁽¹⁾ (continued)						
Collector-Emitter Saturation Voltage						
I _C = 150 mA, I _B = 15 mA	V _{CE(sat)}		0.4	V		
$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	01(04)		1.6			
Base-Emitter Saturation Voltage						
I _C = 150 mA, I _B = 15 mA	V _{BE(sat)}		1.3	V		
I _C = 500 mA, I _B = 50 mA	、 <i>/</i>		2.6			

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

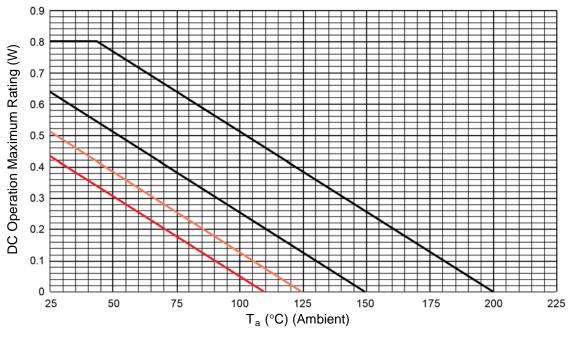
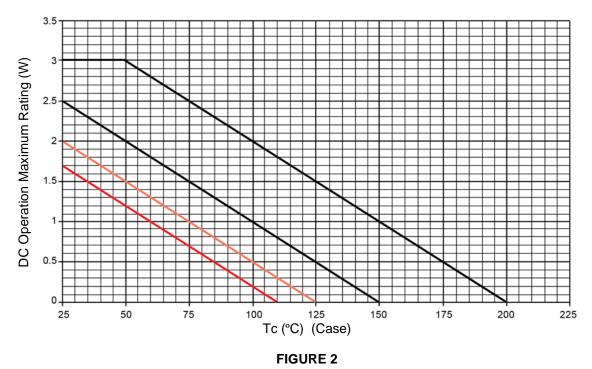
DYNAMIC CHARACTERISTICS

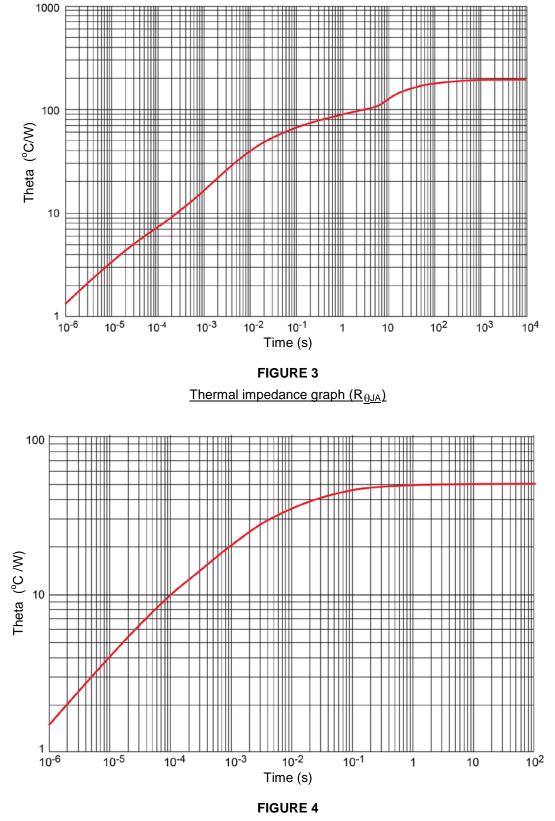
Parameters / Test Condition	Symbol	Min.	Max.	Unit	
Small-Signal Short-Circuit F					
Transfer Ratio					
$I_{\rm C} = 1.0 \text{ mA}, V_{\rm CE} = 10$	2N2904			25	
V, f = 1.0 kHz	2N2905	h _{fe}		50	
	2N2904A, 2N2905A			40	
Small-Signal Short-Circuit F					
Transfer Ratio	11- I		0.0		
$I_{\rm C} = 50 \text{ mA}, V_{\rm CE} = 20 \text{ V},$	h _{fe}		2.0		
f = 100 MHz					
Output Capacitance					
$V_{CB} = 10 \text{ V}, I_E = 0,$	C _{obo}		8.0	pF	
$100 \text{ kHz} \le f \le 1.0 \text{MHz}$					
lutput Capacitance					
$V_{EB} = 2.0 \text{ V}, I_{C} = 0,$	Cibo		30	pF	
$100 \text{ kHz} \le f \le 1.0 \text{MHz}$					

SWITCHING CHARACTERISTICS

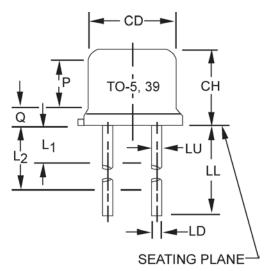
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	ton		45	ns
Turn-Off Time	^t off		300	ns

GRAPHS

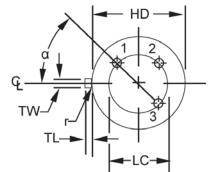




FIGURE 1 Derating (R_{0JA}) PCB

Derating (R_{0JA}) PCB


GRAPHS (continued)

<u>Thermal impedance graph (R_{0JA})</u>



PACKAGE DIMENSIONS

Symbol	Inch		Millimeters		Note
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
LC	0.20	0 TP	5.08	B TP	6
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8, 12
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	0.100		2.54		
Q		0.050		1.27	5
TL	0.029	0.045	0.74	1.14	4
TW	0.028	0.034	0.71	0.86	3
r		0.010		0.25	10
α	45	' TP	45°	TP	6

Dimensions

NOTES:

- Dimensions are in inches. 1.
- Millimeters are given for general information only. 2.
- Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm). 3.
- 4. Dimension TL measured from maximum HD.
- Body contour optional within zone defined by HD, CD, and Q. 5.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch 6. (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is 7. uncontrolled in L1 and beyond LL minimum.
- All three leads. 8.
- The collector shall be internally connected to the case. 9.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.