Overvoltage tolerant bilateral switch Rev. 6 — 22 July 2015

Product data sheet

General description 1.

The 74LVCV2G66 is a low-power, low-voltage, high-speed Si-gate CMOS device.

The 74LVCV2G66 provides two single pole single throw analog or digital switches. Each switch includes an overvoltage tolerant input/output terminal (pin nZ), an output/input terminal (pin nY) and low-power active HIGH enable input (pin nE).

The overvoltage tolerant switch terminals allow the switching of signals in excess of V_{CC} . The low-power enable input eliminates the necessity of using current limiting resistors in portable applications when using control logic signals much lower than V_{CC}. These inputs are also overvoltage tolerant.

Features and benefits 2.

- Wide supply voltage range from 2.3 V to 5.5 V
- Ultra low-power operation
- Very low ON resistance:
 - 8.0 Ω (typical) at V_{CC} = 2.7 V
 - 7.5 Ω (typical) at V_{CC} = 3.3 V
 - 7.3 Ω (typical) at V_{CC} = 5.0 V.
- 5 V tolerant input for interfacing with 5 V logic
- High noise immunity
- Switch handling capability of 32 mA
- CMOS low-power consumption
- Latch-up performance exceeds 250 mA
- Incorporates overvoltage tolerant analog switch technology
- Switch accepts voltages up to 5.5 V independent of V_{CC}
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Overvoltage tolerant bilateral switch

3. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74LVCV2G66DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2					
74LVCV2G66DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1					
74LVCV2G66GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1					
74LVCV2G66GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2					
74LVCV2G66GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body $1.6 \times 1.6 \times 0.5$ mm	SOT902-2					

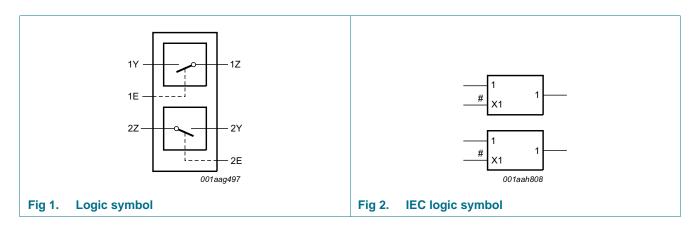
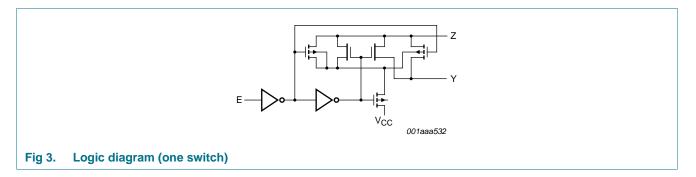

4. Marking

Table 2.Marking codes

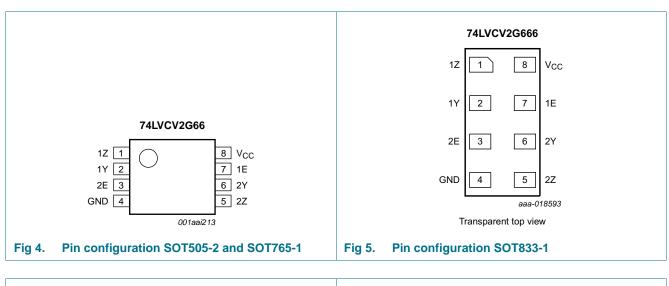
Type number	Marking code ^[1]
74LVCV2G66DP	Y66
74LVCV2G66DC	Y66
74LVCV2G66GT	Y66
74LVCV2G66GD	Y66
74LVCV2G66GM	Y66

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

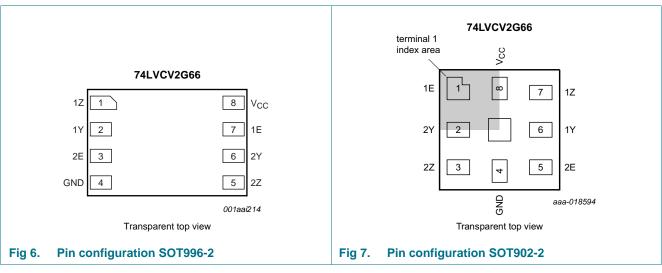
5. Functional diagram


74LVCV2G66

2 of 25


NXP Semiconductors

74LVCV2G66


Overvoltage tolerant bilateral switch

6. Pinning information

Overvoltage tolerant bilateral switch

6.2 Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT996-2 and SOT833-1	SOT902-2	
1Z	1	7	independent input or output (overvoltage tolerant)
1Y	2	6	independent input or output
2E	3	5	enable input (active HIGH)
GND	4	4	ground (0 V)
2Z	5	3	independent input or output (overvoltage tolerant)
2Y	6	2	independent input or output
1E	7	1	enable input (active HIGH)
V _{CC}	8	8	supply voltage

7. Functional description

Table 4.Function table

Input nE	Switch
L	OFF-state
Н	ON-state

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > 6.5 V		-50	-	mA
I _{SK}	switch clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > 6.5 V		-	±50	mA
V _{SW}	switch voltage	enable and disable mode		-0.5	+6.5	V
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < 6.5 V		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$	[2]	-	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP8 package: above 55 °C, the value of Ptot derates linearly with 2.5 mW/K.

For VSSOP8 package: above 110 °C, the value of P_{tot} derates linearly with 8 mW/K.

For XSON8 and XQFN8 packages: above 118 $^\circ$ C, the value of P_{tot} derates linearly with 7.8 mW/K.

4 of 25

Overvoltage tolerant bilateral switch

9. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage			2.3	-	5.5	V
VI	input voltage			0	-	5.5	V
V _{SW}	switch voltage	enable and disable mode	<u>[1]</u>	0	-	5.5	V
T _{amb}	ambient temperature			-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 2.3 V to 2.7 V	[2]	-	-	20	ns/V
		V_{CC} = 2.7 V to 5.5 V	[2]	-	-	10	ns/V

Table 6. Recommended operating conditions

[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current flows from terminal nY. In this case, there is no limit for the voltage drop across the switch.

[2] Applies to control signal levels.

10. Static characteristics

Table 7.Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

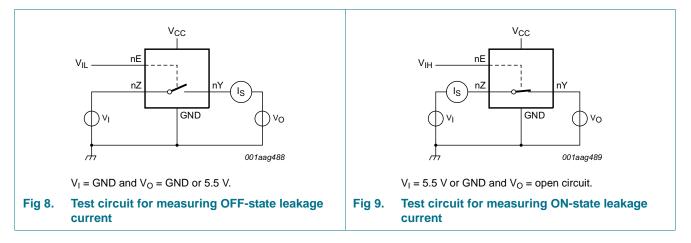
Symbol	Parameter	Conditions		-40 °	°C to +8	5 °C	–40 °C to	+125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	-
VIH	HIGH-level	V_{CC} = 2.3 V to 2.7 V		0.6V _{CC}	-	-	0.6V _{CC}	-	V
	input voltage	V _{CC} = 3.0 V to 3.6 V		2.0	-	-	2.0	-	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		$0.55V_{CC}$	-	-	$0.55V_{CC}$	-	V
VIL	LOW-level	V_{CC} = 2.3 V to 2.7 V		-	-	0.1V _{CC}	-	0.1V _{CC}	V
	input voltage	V _{CC} = 3.0 V to 3.6 V		-	-	0.5	-	0.5	V
		V_{CC} = 4.5 V to 5.5 V		-	-	$0.15V_{CC}$	-	$0.15V_{CC}$	V
I	input leakage current	pin nE; V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	[2]	-	±0.1	±5	-	±5	μA
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 2.3 V to 5.5 V; see <u>Figure 8</u>	<u>[2][3]</u>	-	±0.1	±10	-	±10	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 2.3 V to 5.5 V; see <u>Figure 9</u>	[2][3]	-	±0.1	±10	-	±10	μΑ
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{SW} = GND \text{ or } V_{CC};$ $V_{CC} = 2.3 V \text{ to } 5.5 V$	[2]	-	0.1	10	-	40	μΑ
Δl _{CC}	additional supply current	pin nE; $V_I = V_{CC} - 0.6 V$; $V_{SW} = GND \text{ or } V_{CC}$; $V_{CC} = 3.0 V \text{ to } 5.5 V$	[2]	-	0.1	5	-	50	μΑ
CI	input capacitance			-	2.5	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance			-	8.0	-	-	-	pF

Product data sheet

Overvoltage tolerant bilateral switch

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions	40 °	°C to +85	5 °C	–40 °C to	Unit	
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
C _{S(ON)}	ON-state capacitance		-	16	-	-	-	pF

[1] All typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] These typical values are measured at $V_{CC} = 3.3$ V.

[3] For overvoltage signals ($V_{SW} > V_{CC}$), the condition $V_Y < V_Z$ must be observed.

10.1 Test circuits

10.2 ON resistance

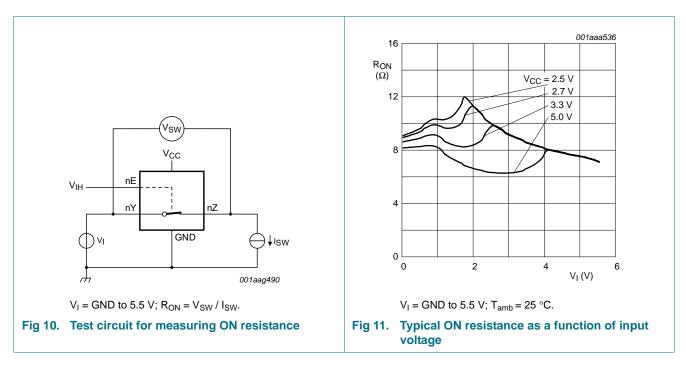
Table 8. Resistance R_{ON}

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 11 and Figure 12.

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	–40 °C to	• +125 ℃	Unit		
				Typ <mark>[1]</mark>	Max	Min	Max			
R _{ON(peak)}	ON resistance	$V_{SW} = GND$ to V_{CC} ; $V_I = V_{IH}$; see Figure 10								
	(peak)	I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	13	30	-	30	Ω		
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	10	25	-	25	Ω		
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	8.3	20	-	20	Ω		
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	7.4	15	-	15	Ω		
R _{ON(rail)}	ON resistance (rail)	$V_{SW} = GND; V_I = V_{IH}; see Figure 10$								
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	8.5	20	-	20	Ω		
		$I_{SW} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	8.0	18	-	18	Ω		
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	7.5	15	-	15	Ω		
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	7.3	10	-	10	Ω		
		$V_{SW} = V_{CC}; V_I = V_{IH}$					1			
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	8.5	20	-	20	Ω		
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	7.2	18	-	18	Ω		
		I_{SW} = 24 mA; V_{CC} = 3.0 V to 3.6 V	-	6.5	15	-	15	Ω		
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	5.7	10	-	10	Ω		

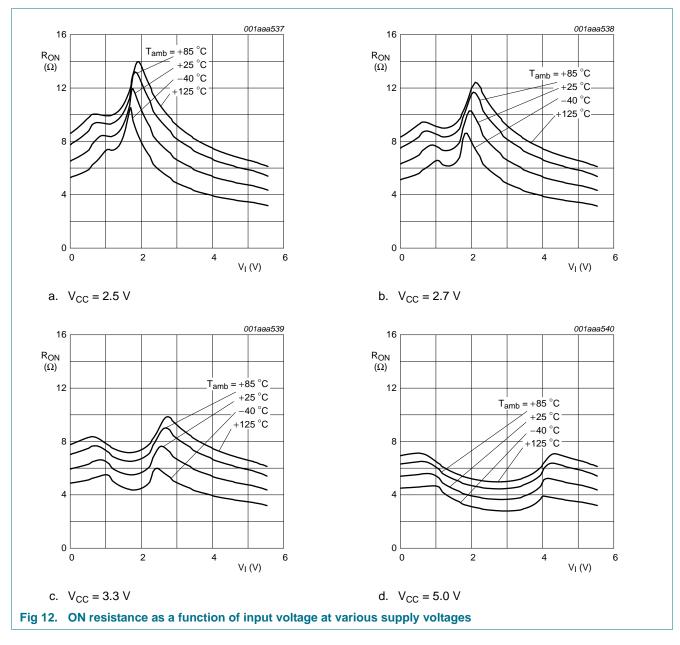
74LVCV2G66

© NXP Semiconductors N.V. 2015. All rights reserved.


Overvoltage tolerant bilateral switch

Symbol	Parameter	Conditions	–40 °C to +85 °C		–40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max	
R _{ON(flat)} ON resistance	$V_{SW} = GND$ to V_{CC} ; $V_I = V_{IH}$ [2]							
	(flatness)	$I_{SW} = 8 \text{ mA}; V_{CC} = 2.5 \text{ V}$	-	17	-	-	-	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	10	-	-	-	Ω
		$I_{SW} = 24 \text{ mA}; V_{CC} = 3.3 \text{ V}$	-	5	-	-	-	Ω
		$I_{SW} = 32 \text{ mA}; V_{CC} = 5.0 \text{ V}$	-	3	-	-	-	Ω

Table 8. Resistance Ron ... continued


[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$ and nominal V_{CC} .

Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and [2] temperature.

10.3 ON resistance test circuit and graphs

Overvoltage tolerant bilateral switch

11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 15.

Symbol	Parameter	Conditions	–40 °C to +85 °C			–40 °C to	Unit	
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nY to nZ or nZ to nY; see Figure 13	<u>3 [2][3]</u>					
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.4	1.2	-	2.0	ns
		$V_{CC} = 2.7 V$	-	0.4	1.0	-	1.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	0.3	0.8	-	1.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	0.2	0.6	-	1.0	ns

Overvoltage tolerant bilateral switch

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 ℃	Unit		
			Min	Typ <mark>[1]</mark>	Max	Min	Max			
t _{en}	enable time	nE to nY or nZ; see Figure 14 [4]								
		V_{CC} = 2.3 V to 2.7 V	1.0	4.7	12	1.0	15	ns		
		$V_{CC} = 2.7 V$	1.0	4.4	8.5	1.0	11	ns		
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	3.8	7.5	1.0	9.5	ns		
	V_{CC} = 4.5 V to 5.5 V	1.0	2.7	5.0	1.0	6.5	ns			
t _{dis}	disable time	nE to nY or nZ; see Figure 14 ^[5]								
		V_{CC} = 2.3 V to 2.7 V	1.0	6.0	16	1.0	20	ns		
		$V_{CC} = 2.7 V$	1.0	7.9	15	1.0	19	ns		
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.0	6.5	13.5	1.0	17	ns		
		V_{CC} = 4.5 V to 5.5 V	1.0	4.4	9.0	1.0	11.5	ns		
C _{PD}	power dissipation	$C_{L} = 50 \text{ pF}; f_{i} = 10 \text{ MHz}; V_{I} = \text{GND}$	to 5.5 V 🕻	6]						
	capacitance	$V_{CC} = 2.5 V$	-	9.7	-	-	-	pF		
		V _{CC} = 3.3 V	-	10.3	-	-	-	pF		
		V _{CC} = 5.0 V	-	11.3	-	-	-	pF		

Table 9. Dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 15.

[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC}.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).

- [4] t_{en} is the same as t_{PZH} and t_{PZL} .
- [5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[6] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

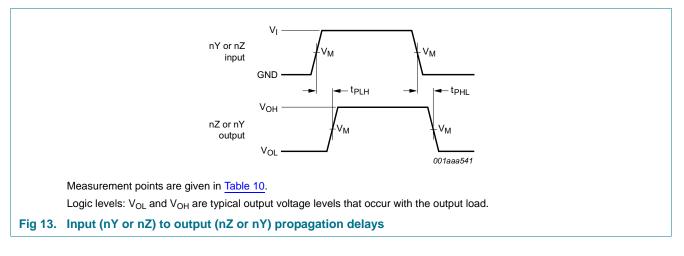
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma\{(\mathsf{C}_{\mathsf{L}} + \mathsf{C}_{\mathsf{S}(\mathsf{ON})}) \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_{\mathsf{o}}\} \text{ where:}$

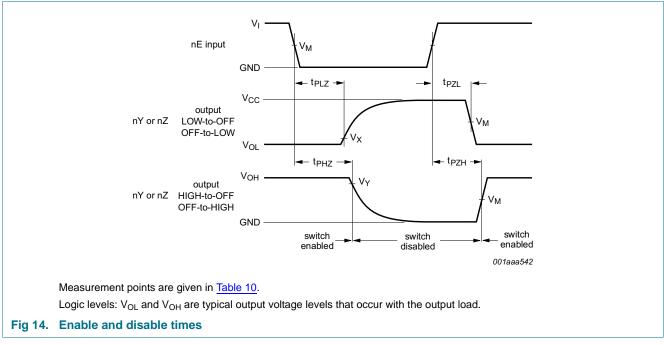
 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

 $C_{S(ON)}$ = maximum ON-state switch capacitance in pF;


V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma\{(C_L + C_{S(ON)}) \times V_{CC}{}^2 \times f_o\} = sum \text{ of the outputs.}$

Overvoltage tolerant bilateral switch

11.1 Waveforms and test circuit

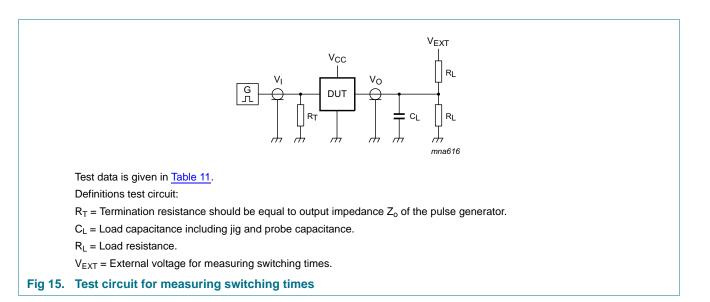


Table 10.	Measurement points
-----------	--------------------

Supply voltage	Input	Output		
V _{cc}	V _M	V _M	V _X	V _Y
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	V_{OL} + 0.1 V_{CC}	$V_{OH} - 0.1 V_{CC}$
2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V
3.0 V to 3.6 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

Overvoltage tolerant bilateral switch

Table 11. Test data

Supply voltage	Input		Load		V _{EXT}		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH,} t _{PHL}	t _{PZH,} t _{PHZ}	t _{PZL,} t _{PLZ}
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open	GND	2V _{CC}
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6.0 V
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6.0 V
4.5 V to 5.5 V	V _{CC}	\leq 2.5 ns	50 pF	500 Ω	open	GND	2V _{CC}

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

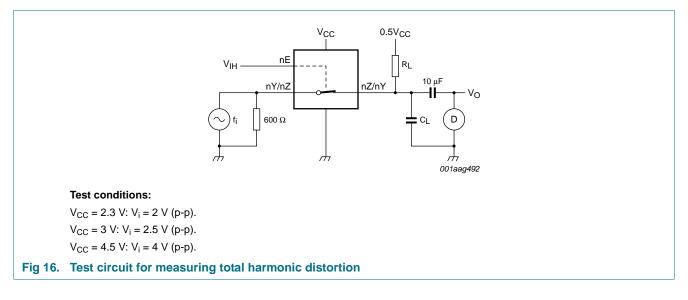
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

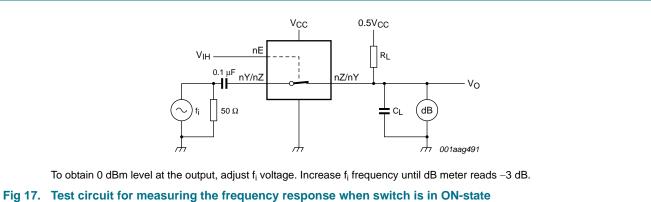
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; \text{ see } Figure$	9 16		1	
		$V_{CC} = 2.3 V$	-	0.42	-	%
		$V_{CC} = 3.0 V$	-	0.36	-	%
		$V_{CC} = 4.5 V$	-	0.47	-	%
		$f_i = 10 \text{ kHz}; \text{ R}_L = 10 \text{ k}\Omega; \text{ C}_L = 50 \text{ pF}; \text{ see } Figu$	re 16			
		V _{CC} = 2.3 V	-	0.11	-	%
		$V_{CC} = 3.0 V$	-	0.07	-	%
		$V_{CC} = 4.5 V$	-	0.01	-	%
f _(-3dB)	-3 dB frequency response	ponse $R_L = 600 \Omega$; $C_L = 50 pF$; see Figure 17				
		$V_{CC} = 2.3 V$	-	160	-	MHz
		$V_{CC} = 3.0 V$	-	200	-	MHz
		$V_{CC} = 4.5 V$	-	210	-	MHz
		$R_L = 50 \Omega$; $C_L = 5 pF$; see Figure 17				
		$V_{CC} = 2.3 V$	-	180	-	MHz
		V _{CC} = 3.0 V	-	180	-	MHz
		V _{CC} = 4.5 V	-	180	-	MHz

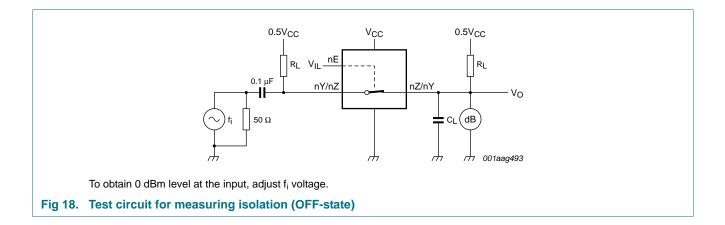
74LVCV2G66

© NXP Semiconductors N.V. 2015. All rights reserved.

Overvoltage tolerant bilateral switch

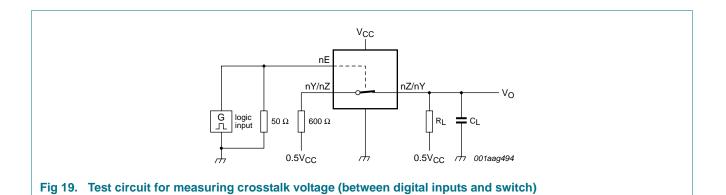

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
α_{iso}	isolation (OFF-state)	R_L = 600 Ω; C_L = 50 pF; f_i = 1 MHz; s	see Figure 18		1	-		
		$V_{CC} = 2.3 V$	-	-65	-	dB		
		V _{CC} = 3.0 V	-	-65	-	dB		
		$V_{CC} = 4.5 V$	-	-62	-	dB		
		$R_L = 50 \Omega$; $C_L = 5 pF$; $f_i = 1 MHz$; see Figure 18						
		V _{CC} = 2.3 V	-	-37	-	dB		
		V _{CC} = 3.0 V	-	-36	-	dB		
		$V_{CC} = 4.5 V$	-	-36	-	dB		
V _{ct}	crosstalk voltage	between digital inputs and switch; R_L $t_r = t_f = 2$ ns; see Figure 19	= 600 Ω; C _L = 50) pF; f _i = 1	MHz;			
		$V_{CC} = 2.3 V$	-	91	-	mV		
		V _{CC} = 3.0 V	-	119	-	mV		
		$V_{CC} = 4.5 V$	-	205	-	mV		
Xtalk	crosstalk	between switches; $R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see Figure 20						
		$V_{CC} = 2.3 V$	-	-56	-	dB		
		V _{CC} = 3.0 V	-	-55	-	dB		
		$V_{CC} = 4.5 V$	-	-55	-	dB		
		between switches; $R_L = 50 \Omega$; $C_L = 5$	pF; f _i = 1 MHz; s	ee <mark>Figure</mark>	20			
		$V_{CC} = 2.3 V$	-	-29	-	dB		
		$V_{CC} = 3.0 V$	-	-28	-	dB		
		$V_{CC} = 4.5 V$	-	-28	-	dB		
Q _{inj}	charge injection	C_L = 0.1 nF; V_{gen} = 0 V; R_{gen} = 0 Ω ; f	_i = 1 MHz; R _L = 1	$M\Omega$; see	Figure 2	21		
		$V_{CC} = 2.5 V$	-	< 0.003	-	рС		
		$V_{CC} = 3.3 V$	-	0.003	-	рС		
		$V_{CC} = 4.5 V$	-	0.0035	-	рС		
		V _{CC} = 5.5 V	-	0.0035	-	рС		

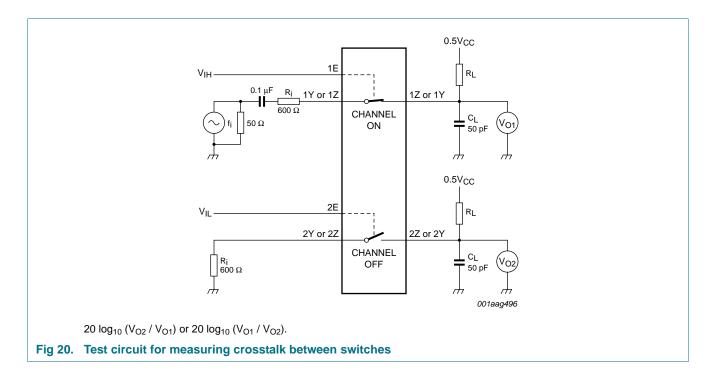

Table 12. Additional dynamic characteristics ...continued


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

Overvoltage tolerant bilateral switch

11.3 Test circuits

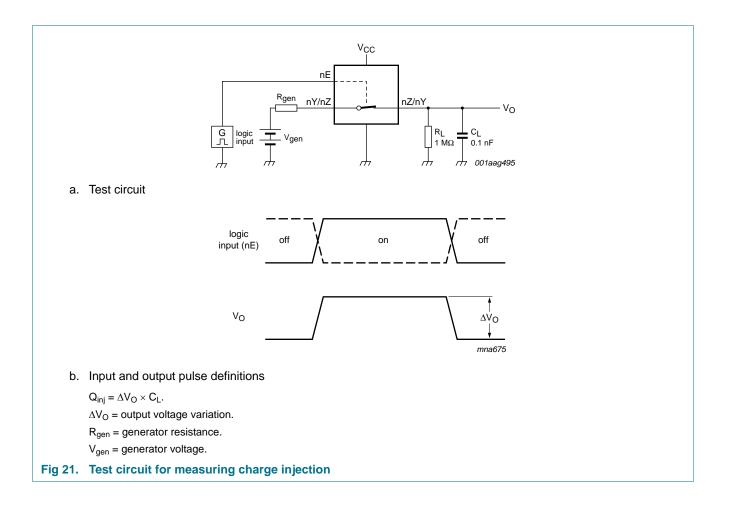



74LVCV2G66 Product data sheet

NXP Semiconductors

74LVCV2G66

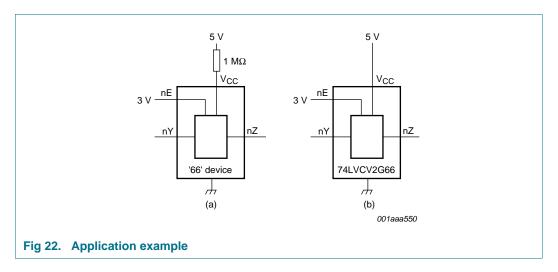
Overvoltage tolerant bilateral switch



NXP Semiconductors

74LVCV2G66

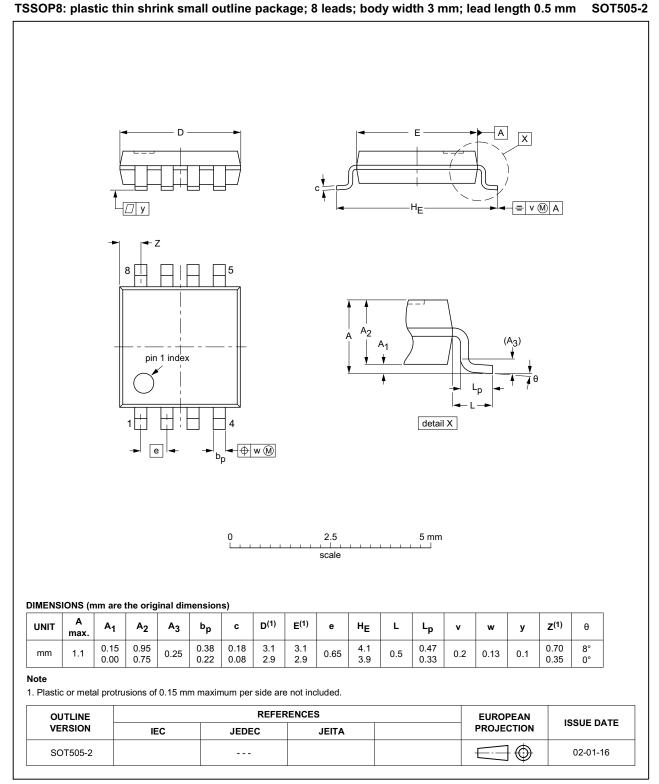
Overvoltage tolerant bilateral switch



Overvoltage tolerant bilateral switch

12. Application information

The 74LVCV2G66 is used to reduce component count and footprint in low-power portable applications.


Typical '66' devices do not have low-power enable inputs causing a high ΔI_{CC} . To reduce power consumption in portable (battery) applications, a current limiting resistor is used. (see Figure 22a). The low-power enable inputs of the 74LVCV2G66 have much lower ΔI_{CC} , eliminating the necessity of the current limiting resistor (see Figure 22b).

Product data sheet

Overvoltage tolerant bilateral switch

13. Package outline

Fig 23. Package outline SOT505-2 (TSSOP8)

74LVCV2G66 Product data sheet

Overvoltage tolerant bilateral switch

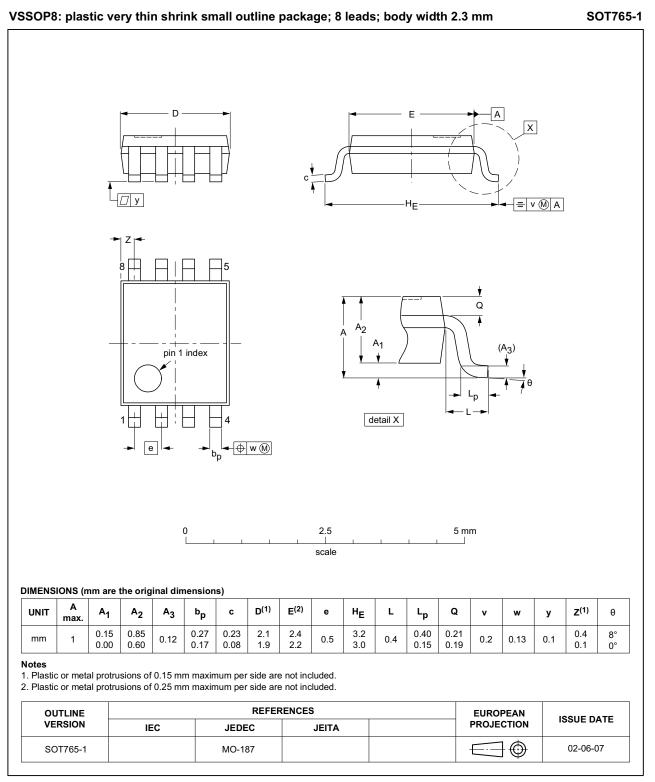


Fig 24. Package outline SOT765-1 (VSSOP8)

All information provided in this document is subject to legal disclaimers.

Overvoltage tolerant bilateral switch

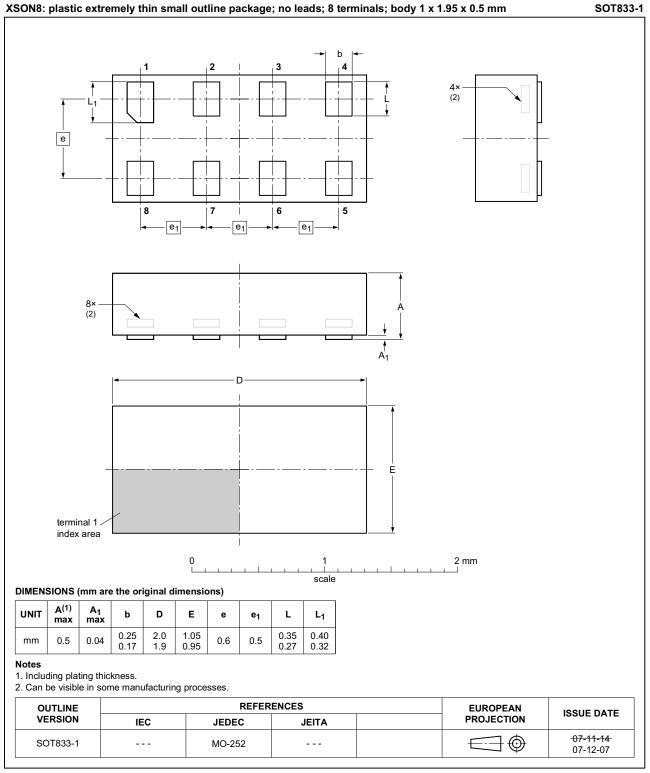
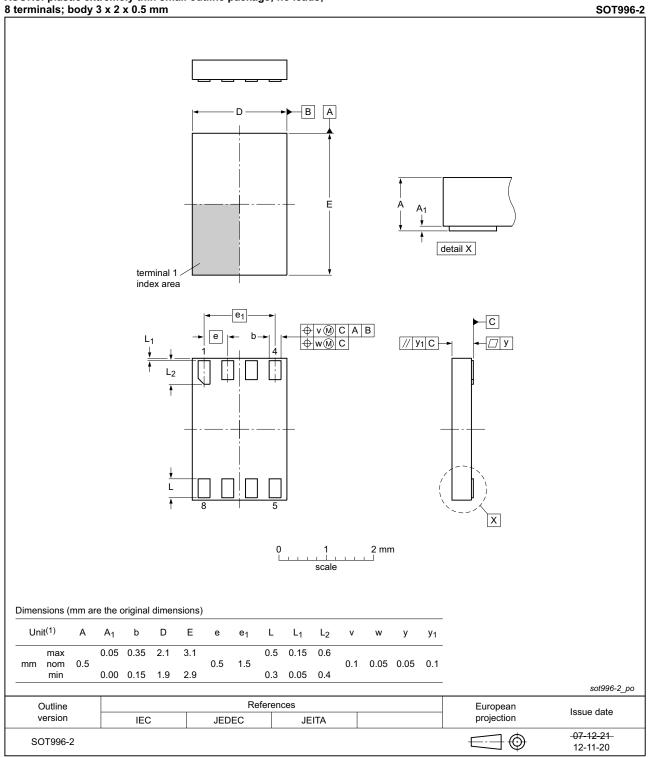
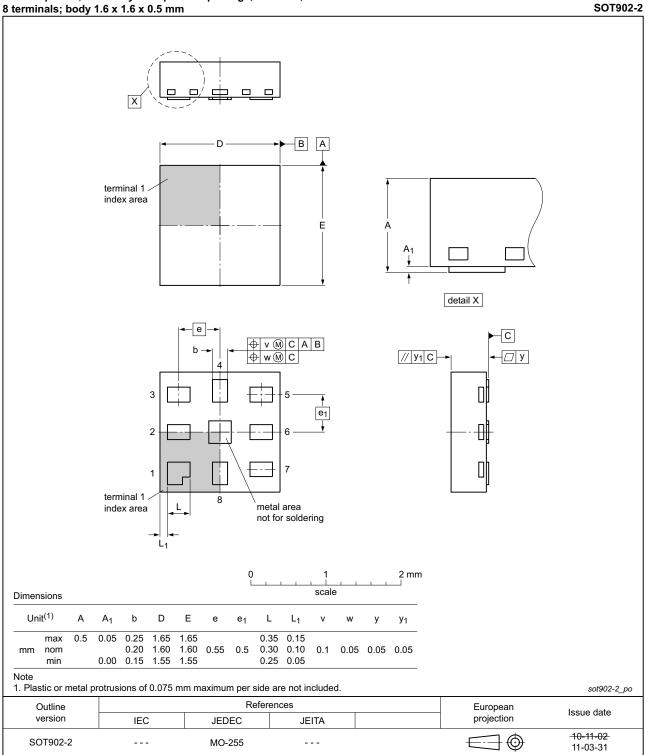



Fig 25. Package outline SOT833-1 (XSON8)

All information provided in this document is subject to legal disclaimers.

Overvoltage tolerant bilateral switch



XSON8: plastic extremely thin small outline package; no leads;

Fig 26. Package outline SOT996-2 (XSON8)

All information provided in this document is subject to legal disclaimers.

Overvoltage tolerant bilateral switch

XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm

Fig 27. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 13. Abbreviation	ons
Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test

15. Revision history

Table 14.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVCV2G66 v.6	20150722	Product data sheet	-	74LVCV2G66 v.5
Modifications:	 Added type 	e numbers 74LVCV2G66GT	and.74LVCV2G66GM	Λ
74LVCV2G66 v.5	20130329	Product data sheet	-	74LVCV2G66 v.4
Modifications:	 For type nu 	umber 74LVCV2G66GD XS	ON8U has changed to	XSON8.
74LVCV2G66 v.4	20111122	Product data sheet	-	74LVCV2G66 v.3
Modifications:	 Legal page 	es updated.		
74LVCV2G66 v.3	20100616	Product data sheet	-	74LVCV2G66 v.2
74LVCV2G66 v.2	20080703	Product data sheet	-	74LVCV2G66 v.1
74LVCV2G66 v.1	20040402	Product data sheet	-	-

Overvoltage tolerant bilateral switch

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2015. All rights reserved.

Overvoltage tolerant bilateral switch

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Overvoltage tolerant bilateral switch

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 4
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
10.1	Test circuits 6
10.2	ON resistance 6
10.3	ON resistance test circuit and graphs
	o .
11	Dynamic characteristics 8
11.1	Waveforms and test circuit 10
11.1 11.2	Waveforms and test circuit 10 Additional dynamic characteristics
11.1 11.2 11.3	Waveforms and test circuit
11.1 11.2 11.3 12	Waveforms and test circuit
11.1 11.2 11.3	Waveforms and test circuit
11.1 11.2 11.3 12	Waveforms and test circuit
11.1 11.2 11.3 12 13	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22
11.1 11.2 11.3 12 13 14	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22
11.1 11.2 11.3 12 13 14 15 16 16.1	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22Legal information23Data sheet status23
11.1 11.2 11.3 12 13 14 15 16 16.1 16.2	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22Legal information23Data sheet status23Definitions23
11.1 11.2 11.3 12 13 14 15 16 16.1 16.2 16.3	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22Legal information23Data sheet status23Definitions23Disclaimers23
11.1 11.2 11.3 12 13 14 15 16 16.1 16.2 16.3 16.4	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22Legal information23Data sheet status23Definitions23Disclaimers23Trademarks24
11.1 11.2 11.3 12 13 14 15 16 16.1 16.2 16.3	Waveforms and test circuit10Additional dynamic characteristics11Test circuits13Application information16Package outline17Abbreviations22Revision history22Legal information23Data sheet status23Definitions23Disclaimers23

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 July 2015 Document identifier: 74LVCV2G66