Multi-use VHF power LDMOS transistor

Rev. 5 — 1 September 2015

1. Product profile

1.1 General description

A general purpose 500 W LDMOS RF power transistor for pulsed and continuous wave applications in the HF/VHF band up to 500 MHz.

Table 1. Typical performance

Typical RF performance at $V_{DS} = 32 \text{ V}$ and $T_h = 25 \text{ °C}$ in a common-source 225 MHz test circuit. 11

Mode of operation	f	PL	P _{L(PEP)}	G _p	η_{D}	IMD3
	(MHz)	(W)	(W)	(dB)	(%)	(dBc)
CW, class AB	225	500	-	18	60	-
2-tone, class AB	$f_1 = 225$; $f_2 = 225.1$	-	500	19	47	-28
pulsed, class AB [2]	225	500	_	19	55	-

^[1] T_h is the heatsink temperature.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Typical pulsed performance at 225 MHz, a drain-source voltage V_{DS} of 32 V and a quiescent drain current $I_{Dq} = 2 \times 1.0$ A:
 - ◆ Load power P_L = 500 W
 - ◆ Power gain G_p = 19 dB
 - Drain efficiency η_D = 55 %
- Advanced flange material for optimum thermal behavior and reliability
- Excellent ruggedness
- High power gain
- Designed for broadband operation (HF/VHF band)
- Source on underside eliminates DC isolators, reducing common-mode inductance
- Easy power control
- Integrated ESD protection
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS), using exemption No. 7 of the annex

^[2] $t_p = 2 \text{ ms}; \delta = 10 \%.$

Multi-use VHF power LDMOS transistor

1.3 Applications

- Pulsed applications up to 500 MHz
- Communication transmitter applications in the HF/VHF/UHF band under specific conditions
- Industrial applications up to 500 MHz under special conditions

2. Pinning information

Table 2. Pinning

Table 2.	Filling			
Pin	Description		Simplified outline	Graphic symbol
1	drain1			
2	drain2		1 2	1 . 🖵
3	gate1		3 4	3
4	gate2			5
5	source	<u>[1]</u>		2 sym117

^[1] Connected to flange.

3. Ordering information

Table 3. Ordering information

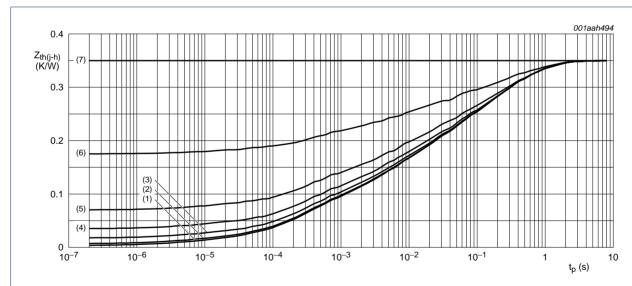
Type number	per Package				
	Name	Description	Version		
BLF369	-	flanged LDMOST ceramic package; 2 mounting holes; 4 leads	SOT800-2		

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-0.5	+13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C


Multi-use VHF power LDMOS transistor

5. Thermal characteristics

Table 5. Thermal characteristics

Tubic o.	Thermal characteristics				
Symbol	Parameter	Conditions		Тур	Unit
$R_{\text{th(j-case)}}$	thermal resistance from junction to case	T _j = 200 °C	[1][2]	0.26	K/W
R _{th(j-h)}	thermal resistance from junction to heatsink	T _j = 200 °C	[1][2][3]	0.35	K/W
Z _{th(j-h)} transient thermal impedance		T _j = 200 °C			
	from junction to heatsink	t_p = 100 μ s; δ = 10 %	<u>[4]</u>	0.063	K/W
		t_p = 1 ms; δ = 10 %	<u>[4]</u>	0.117	K/W
	t_p = 2 ms; δ = 10 %	[4]	0.133	K/W	
	t_p = 3 ms; δ = 10 %	[4]	0.142	K/W	
		t_p = 1 ms; δ = 20 %	<u>[4]</u>	0.140	K/W

- [1] T_i is the junction temperature.
- [2] $R_{th(j\text{-case})}$ and $R_{th(j\text{-h})}$ are measured under RF conditions.
- [3] R_{th(j-h)} is dependent on the applied thermal compound and clamping/mounting of the device.
- [4] See Figure 1.

- (1) $\delta = 1 \%$
- (2) $\delta = 2 \%$
- (3) $\delta = 5 \%$
- (4) $\delta = 10 \%$
- (5) $\delta = 20 \%$
- (6) $\delta = 50 \%$
- (7) $\delta = 100 \% (DC)$

Fig 1. Transient thermal impedance from junction to heatsink as function of pulse duration

Multi-use VHF power LDMOS transistor

6. Characteristics

Table 6. Characteristics

 $T_i = 25 \, ^{\circ}\text{C}$ unless otherwise specified.

,							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 6 \text{ mA}$	[1]	65	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$V_{DS} = 20 \text{ V}; I_{D} = 600 \text{ mA}$	[1]	4	-	5.5	V
I _{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}$		-	-	4.2	μА
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 9 V$; $V_{DS} = 10 V$		-	100	-	Α
I _{GSS}	gate leakage current	V_{GS} = 20 V; V_{DS} = 0 V		-	-	60	nA
9 _{fs}	forward transconductance	$V_{GS} = 20 \text{ V}; I_D = 13 \text{ A}$	[1]	-	15	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 9 V; I_D = 13 A$	[1]	-	40	-	mΩ
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$	[2]	-	400	-	pF
C _{oss}	output capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$	[2]	-	230	-	pF
C _{rss}	reverse transfer capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 32 \text{ V}; f = 1 \text{ MHz}$		-	15	-	pF

^[1] I_D is the drain current.

^[2] C_{iss} and C_{oss} include reverse transfer capacitance (C_{rss}).

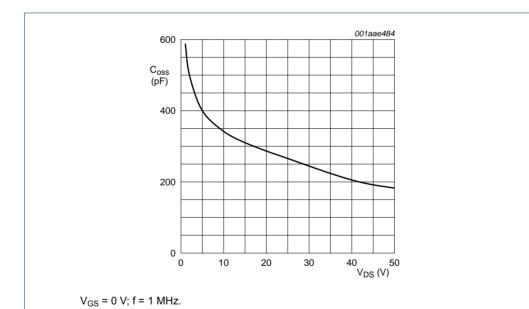


Fig 2. Output capacitance as a function of drain-source voltage; typical values per section

Multi-use VHF power LDMOS transistor

7. Application information

Table 7. RF performance in a common-source 225 MHz test circuit

 $T_h = 25$ °C unless otherwise specified.

Mode of operation	f	V _{DS}	I _{Dq}	PL	P _{L(PEP)}	Gp	η _D	IMD3	Δ G p
	(MHz)	(V)	(A)	(W)	(W)	(dB)	(%)	(dBc)	(dB)
CW, class AB	225	32	2 × 1.0	500	-	> 17	> 55	-	-
2-tone, class AB	f ₁ = 225; f ₂ = 225.1	32	2 × 1.0	-	500	> 18	> 43	< -24	1
pulsed, class AB [1]	225	-	-	500	-	> 18	> 50	-	-

^[1] $t_p = 2 \text{ ms}; \delta = 10 \%.$

7.1 CW

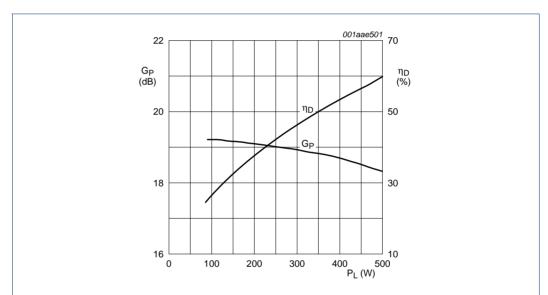
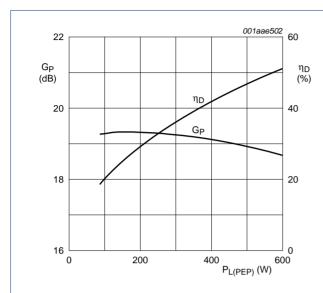



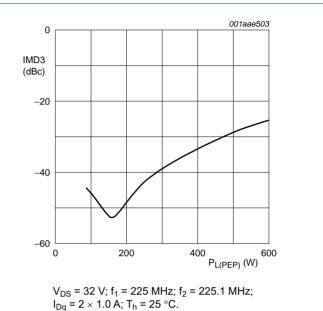
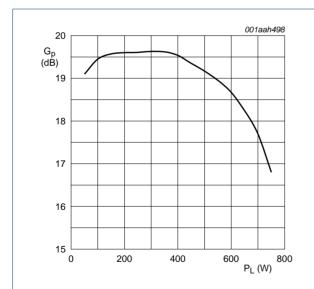
Fig 3. CW power gain and drain efficiency as a function of output power; typical values

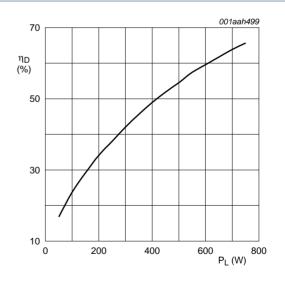
Multi-use VHF power LDMOS transistor

7.2 2-Tone

 V_{DS} = 32 V; f₁ = 225 MHz; f₂ = 225.1 MHz; I_{Dq} = 2 × 1.0 A; T_h = 25 °C.

Fig 4. 2-Tone power gain and drain efficiency as a function of peak envelope power; typical values


Fig 5. 2-Tone third order intermodulation distortion as a function of peak envelope power; typical values

7.3 Pulsed

f = 225 MHz; V_{DS} = 32 V; I_{Dq} = 2 × 1 A; t_p = 2 ms; δ = 10 %.

Fig 6. Pulsed power gain as function of load power; typical values

f = 225 MHz; V_{DS} = 32 V; I_{Dq} = 2 \times 1 A; t_p = 2 ms; δ = 10 %.

Fig 7. Pulsed drain efficiency as function of load power; typical values

Multi-use VHF power LDMOS transistor

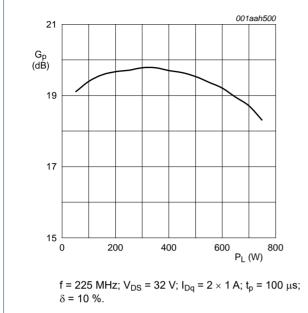
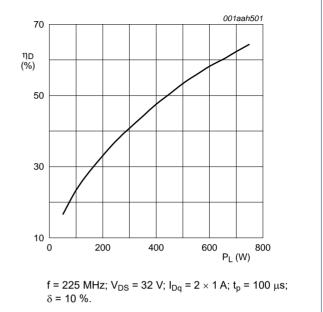
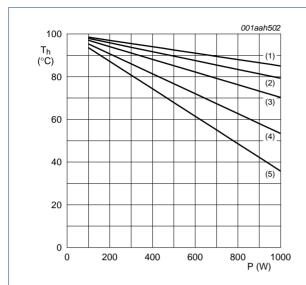


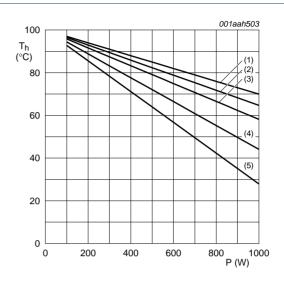
Fig 8. Pulsed power gain as function of load power; typical values




Fig 9. Pulsed drain efficiency as function of load power; typical values

7.4 Maximum heatsink temperature

The heatsink temperature is defined 1 mm below the surface of the heatsink at the center of the flange.


The maximum allowable heatsink temperature is given in the following graphs at several pulsed conditions as well as for CW.

Multi-use VHF power LDMOS transistor

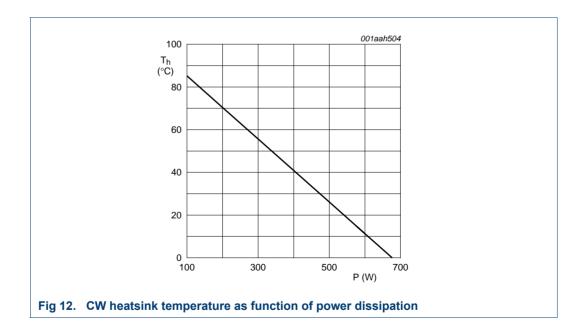
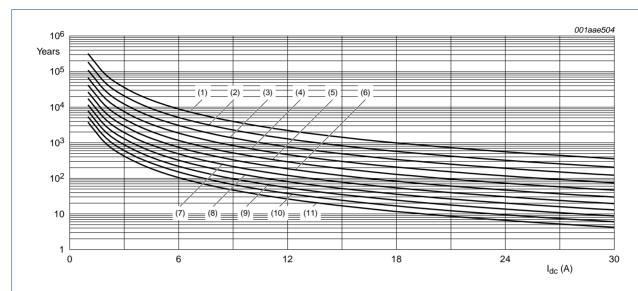

- $\delta = 10 \%$.
- (1) $t_p \le 2 \text{ ms}$
- (2) $t_p = 10 \text{ ms}$
- (3) $t_p = 20 \text{ ms}$
- (4) $t_p = 50 \text{ ms}$
- (5) $t_p = 100 \text{ ms}$

Fig 10. Heatsink temperature as function of power dissipation at a duty cycle of 10 %

- δ = 20 %.
- (1) $t_p \le 2 \text{ ms}$
- (2) $t_p = 10 \text{ ms}$
- (3) $t_p = 20 \text{ ms}$
- (4) $t_p = 50 \text{ ms}$
- (5) $t_p = 100 \text{ ms}$

Fig 11. Heatsink temperature as function of power dissipation at a duty cycle of 20 %



7.5 Ruggedness in class-AB operation

The BLF369 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: 2-tone signal; V_{DS} = 32 V; f = 225 MHz at rated load power ($P_{L(PEP)}$ = 500 W).

Multi-use VHF power LDMOS transistor

7.6 Reliability

TTF (0.1 % failure fraction); best estimate values.

The reliability at pulsed conditions can be calculated as follows: TTF (0.1 %) \times 1 / δ .

- (1) $T_i = 100 \, ^{\circ}C$
- (2) $T_i = 110 \, ^{\circ}C$
- (3) $T_i = 120 \, ^{\circ}C$
- (4) $T_j = 130 \, ^{\circ}C$
- (5) $T_j = 140 \, ^{\circ}\text{C}$
- (6) $T_j = 150 \, ^{\circ}\text{C}$
- (7) $T_j = 160 \,^{\circ}\text{C}$ (8) $T_j = 170 \,^{\circ}\text{C}$
- (9) $T_i = 180 \,^{\circ}\text{C}$
- (10) $T_i = 190 \,^{\circ}\text{C}$
- (11) T_i = 200 °C

Fig 13. BLF369 electromigration (I_D, total device)

8. Test information

Table 8. List of components

For test circuit, see Figure 14, Figure 15 and Figure 16.

Component	Description	Value	Remarks
B1	semi rigid coax	25 $Ω$; 120 mm	EZ90-25-TP
B2	semi rigid coax	25 $Ω$; 56 mm	EZ90-25-TP
C1	multilayer ceramic chip capacitor	91 pF	[1]
C2, C3	multilayer ceramic chip capacitor	56 pF	[1]
C4, C7	multilayer ceramic chip capacitor	100 pF	[1]
C5, C8	ceramic capacitor	15 nF	
C6, C9	electrolytic capacitor	220 μF	
C10, C11, C13, C14	multilayer ceramic chip capacitor	220 pF	[1]
C12, C15	ceramic capacitor	15 nF	[1]

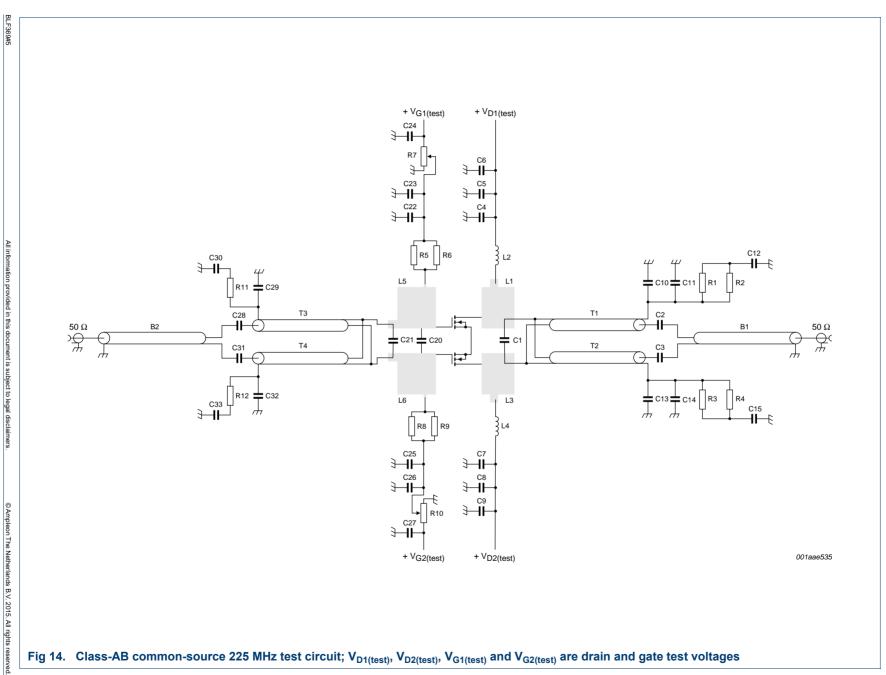
BLF369#

All information provided in this document is subject to legal disclaimers.

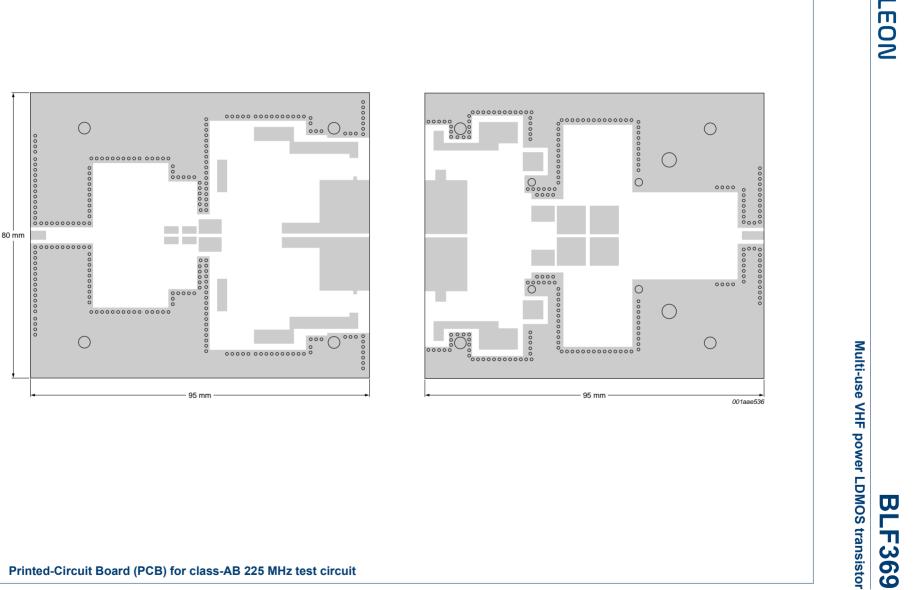
© Ampleon The Netherlands B.V. 2015. All rights reserved.

Multi-use VHF power LDMOS transistor

Table 8. List of components ...continued


For test circuit, see Figure 14, Figure 15 and Figure 16.

Component	Description	Value	Remarks
C20	multilayer ceramic chip capacitor	100 pF	[1]
C21	multilayer ceramic chip capacitor	20 pF	[1]
C22, C25	multilayer ceramic chip capacitor	100 pF	[1]
C23, C26	ceramic capacitor	15 nF	
C24, C27	electrolytic capacitor	10 μF	
C28, C31	multilayer ceramic chip capacitor	100 pF	[1]
C29, C32	multilayer ceramic chip capacitor	220 pF	
C30, C33	ceramic capacitor	15 nF	
L1, L3	stripline	-	[2] (W × L) 12 mm × 15 mm
L2, L4	air coil	-	4 windings; D = 8 mm; d = 1 mm
L5, L6	stripline	-	[2] (W × L) 14 mm × 15 mm
R1, R2, R3, R4	resistor	0.25 W; 4 Ω	
R5, R6, R8, R9	resistor	0.25 W; 10 Ω	
R7, R10	potentiometer	10 kΩ	
R11, R12	resistor	0.25 W; 1 Ω	
T1, T2	semi rigid coax	25 $Ω$; 68 mm	EZ90-25-TP
T3, T4	semi rigid coax	25 $Ω$; 60 mm	EZ90-25-TP


^[1] American technical ceramics type 100B or capacitor of same quality.

^[2] Printed-Circuit Board (PCB): Rogers 5880; ϵ_r = 2.2 F/m; height = 0.79 mm; Cu (top/bottom metallization); thickness copper plating = 35 μ m.

Product data sheet

Product data sheet

All information provided in this document is subject to legal disclaimers

Product data sheet

Multi-use VHF power LDMOS transistor

C1 mounted on top of transformers T1 and T2; C20 mounted on top of transformers T3 and T4.

Fig 16. Component layout for class-AB 225 MHz test circuit

© Ampleon The Netherlands B.V. 2015. All rights reserved 13 of 18

Multi-use VHF power LDMOS transistor

9. Package outline

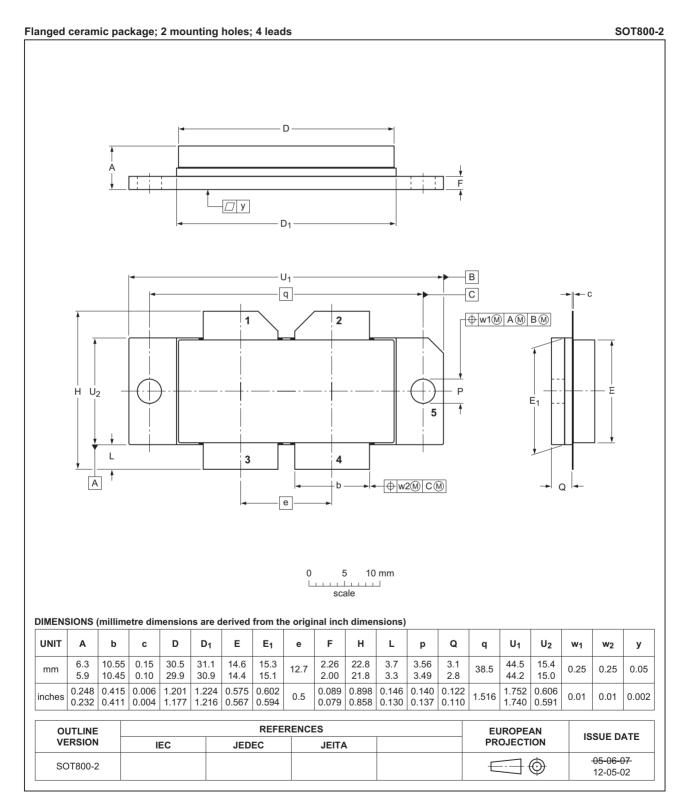


Fig 17. Package outline SOT800-2

Multi-use VHF power LDMOS transistor

10. Abbreviations

Table 9. Abbreviations

Acronym	Description
CW	Continuous Wave
DC	Direct Current
GSM	Global System for Mobile communications
HF	High Frequency
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
LDMOST	Laterally Diffused Metal-Oxide Semiconductor Transistor
PEP	Peak Envelope Power
RF	Radio Frequency
TTF	Time To Failure
UHF	Ultra High Frequency
VHF	Very High Frequency
VSWR	Voltage Standing-Wave Ratio

11. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
BLF369#5	20150901	Product data sheet	-	BLF369_4			
Modifications:		 The format of this document has been redesigned to comply with the new identity guidelines of Ampleon. 					
	Legal texts	Legal texts have been adapted to the new company name where appropriate.					
BLF369_4	20090219	Product data sheet	-	BLF369_3			
BLF369_3	20080129	Preliminary data sheet	-	BLF369_2			
BLF369_2	20061208	Objective data sheet	-	BLF369_1			
BLF369_1	20060413	Objective data sheet	-	-			

Multi-use VHF power LDMOS transistor

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or

BLF369#5

All information provided in this document is subject to legal disclaimers.

© Ampleon The Netherlands B.V. 2015. All rights reserved.

Multi-use VHF power LDMOS transistor

entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of

the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

13. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

Multi-use VHF power LDMOS transistor

14. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features	. 1
1.3	Applications	. 2
2	Pinning information	. 2
3	Ordering information	. 2
4	Limiting values	. 2
5	Thermal characteristics	. 3
6	Characteristics	. 4
7	Application information	. 5
7.1	CW	. 5
7.2	2-Tone	. 6
7.3	Pulsed	. 6
7.4	Maximum heatsink temperature	. 7
7.5	Ruggedness in class-AB operation	. 8
7.6	Reliability	. 9
8	Test information	. 9
9	Package outline	14
10	Abbreviations	15
11	Revision history	15
12	Legal information	16
12.1	Data sheet status	16
12.2	Definitions	16
12.3	Disclaimers	16
12.4	Trademarks	17
13	Contact information	17
14	Contents	18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.