74LVC125A

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

Rev. 7 — 11 April 2013

Product data sheet

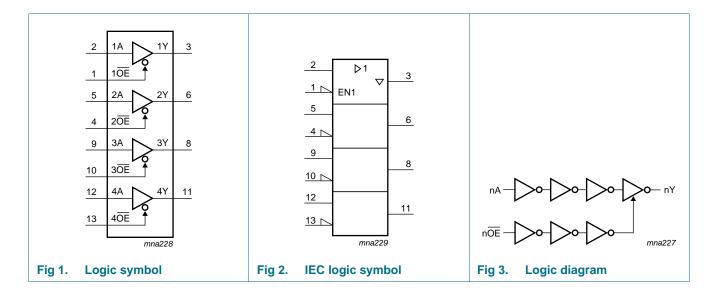
1. General description

The 74LVC125A consists of four non-inverting buffers/line drivers with 3-state outputs (nY) that are controlled by the output enable input (nOE). A HIGH at nOE causes the outputs to assume a high-impedance OFF-state.

Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs.

2. Features and benefits

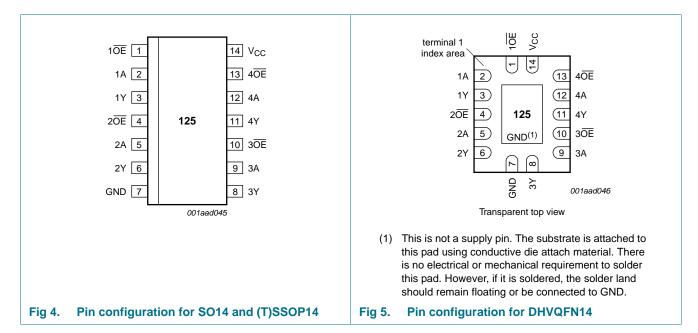
- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Complies with JEDEC standard:
 - ◆ JESD8-7A (1.65 V to 1.95 V)
 - ◆ JESD8-5A (2.3 V to 2.7 V)
 - ◆ JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C


Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

3. Ordering information

Table 1. Ordering information

Type number	Package	Package											
	Temperature range	Name	Description	Version									
74LVC125AD	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm; body thickness 1.47 mm	SOT108-1									
74LVC125ADB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1									
74LVC125APW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1									
74LVC125ABQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5\times3\times0.85$ mm	SOT762-1									


4. Functional diagram

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE , 3 OE , 4 OE	1, 4, 10, 13	data enable input (active LOW)
1A, 2A, 3A, 4A	2, 5, 9, 12	data input
1Y, 2Y, 3Y, 4Y	3, 6, 8, 11	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function selection[1]

Inputs nOE		Output
nOE	nA	nY
L	L	L
L	Н	Н
Н	X	Z

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	$V_I < 0 V$	-50	-	mA
VI	input voltage		[<u>1]</u> -0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
Vo	output voltage	output HIGH or LOW-state	[2] -0.5	$V_{CC} + 0.5$	V
		output 3-state	[2] -0.5	+6.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3] _	500	mW
T _{stg}	storage temperature		-65	+150	°C

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW state	0	-	V_{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and	V _{CC} = 2.3 V to 2.7 V	0	-	20	ns/V
	fall rate	V_{CC} = 2.7 V to 3.6 V	0	-	10	ns/V

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO14 packages: above 70 °C derate linearly with 8 mW/K.
For (T)SSOP14 packages: above 60 °C derate linearly with 5.5 mW/K.
For DHVQFN14 packages: above 60 °C derate linearly with 4.5 mW/K.

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

$V_{IH} \qquad \begin{array}{l} \text{HIGH-level} \\ \text{input voltage} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.2 \ \text{V} \\ V_{CC} = 1.65 \ \text{V to } 1.95 \ \text{V} \\ V_{CC} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{CC} = 2.7 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.2 \ \text{V} \\ V_{CC} = 1.2 \ \text{V} \\ V_{CC} = 1.65 \ \text{V to } 1.95 \ \text{V} \\ V_{CC} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{CC} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{CC} = 2.7 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array} \qquad \begin{array}{l} V_{CC} = 1.65 \ \text{V to } 3.6 \ \text{V} \\ \end{array}$	V	Min 1.08 0.65 × V _{CC} 1.7 2.0 V _{CC} - 0.2	Typ[1]	Max 0.12 0.35 × V _{CC} 0.7 0.8	Min 1.08 0.65 × V _{CC} 1.7 2.0 - - -	Max 0.12 0.35 × V _{CC} 0.7	V V V V V V V V
$\begin{array}{c} \text{input voltage} & V_{CC} = 1.65 \ \text{V to } 1.95 \ \text{V} \\ V_{CC} = 2.3 \ \text{V to } 2.7 \ \text{V} \\ V_{CC} = 2.7 \ \text{V to } 3.6 \ \text{V} \\ \end{array}$	V	0.65 × V _{CC} 1.7 2.0	- - - -	- 0.12 0.35 × V _{CC} 0.7	0.65 × V _{CC} 1.7 2.0	- 0.12 0.35 × V _{CC}	V V V V
$\begin{array}{c} V_{CC} = 1.03 \text{ V to } 1.93 \text{ V} \\ V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{CC} = 2.7 \text{ V to } 3.6 \text{ V} \\ \end{array}$	V	1.7 2.0 - - -	- - - -	- 0.12 0.35 × V _{CC} 0.7	1.7 2.0	- 0.12 0.35 × V _{CC}	V V V
$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{IL} \qquad \text{LOW-level input voltage} \qquad V_{CC} = 1.2 \text{ V}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{OH} \qquad \text{HIGH-level output voltage} \qquad V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = -100 \mu\text{A;}$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$ $I_{O} = -4 \text{ mA; } V_{CC} = 1 \text{ mA; } V_{CC} =$	V	2.0 - - - -	- - -	0.12 $0.35 \times V_{CC}$ 0.7	2.0	0.12 $0.35 \times V_{CC}$	V V
$\begin{array}{c c} V_{IL} & LOW\text{-level input} \\ voltage & V_{CC} = 1.2 \ V \\ \hline V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ \hline V_{OH} & HIGH\text{-level} \\ output \ voltage & V_{I} = V_{IH} \ or \ V_{IL} \\ \hline I_{O} = -100 \ \mu A; \\ V_{CC} = 1.65 \ V \ to \ 3.6 \\ \hline I_{O} = -4 \ mA; \ V_{CC} = 1.65 \ V \ to \ 3.6 \\ \hline \end{array}$	V	- - -	- - -	0.12 $0.35 \times V_{CC}$ 0.7	-	0.12 $0.35 \times V_{CC}$	V V
$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{OH} \qquad \begin{array}{l} \text{HIGH-level} \\ \text{output voltage} \end{array} \qquad \begin{array}{l} V_{I} = V_{IH} \text{ or } V_{IL} \\ I_{O} = -100 \mu\text{A;} \\ V_{CC} = 1.65 \text{ V to } 3.6 \\ I_{O} = -4 \text{ mA; } V_{CC} = 1.65 \text{ V to } 3.6 \\ \end{array}$	V	- - - - V _{CC} – 0.2	-	$0.35 \times V_{CC}$ 0.7	- - -	$0.35 \times V_{CC}$	V
$V_{CC} = 2.3 \text{ V to } 1.93 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{OH} \qquad \text{HIGH-level} \qquad V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = -100 \mu\text{A};$ $V_{CC} = 1.65 \text{ V to } 3.6$ $I_{O} = -4 \text{ mA}; V_{CC} = 1$	V	- - - V _{CC} – 0.2	-	0.7	- - -		
$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{OH} \qquad \begin{array}{l} \text{HIGH-level} \\ \text{output voltage} \end{array} \qquad \begin{array}{l} V_{I} = V_{IH} \text{ or } V_{IL} \\ I_{O} = -100 \mu\text{A;} \\ V_{CC} = 1.65 \text{ V to } 3.6 \\ \hline I_{O} = -4 \text{ mA; } V_{CC} = 1.65 \text{ V to } 3.6 \\ \end{array}$		- - V _{CC} – 0.2	-		-	0.7	V
$\begin{array}{c} V_{OH} & \text{HIGH-level} \\ \text{output voltage} & \hline \\ I_{O} = -100 \; \mu\text{A;} \\ V_{CC} = 1.65 \; V \; to \; 3.6 \\ \hline \\ I_{O} = -4 \; \text{mA;} \; V_{CC} = 1 \end{array}$		- V _{CC} - 0.2		0.8	-		
output voltage $I_O = -100 \; \mu A;$ $V_{CC} = 1.65 \; V \; to \; 3.6$ $I_O = -4 \; mA; \; V_{CC} = 1$		V _{CC} - 0.2				8.0	V
$V_{CC} = 1.65 \text{ V to } 3.6$ $I_{O} = -4 \text{ mA; } V_{CC} = 1$		$V_{CC}-0.2$					
	1.65 V		-	-	V _{CC} – 0.3	-	V
I 0 m 1 1 / 2		1.2	-	-	1.05	-	V
$I_{O} = -8 \text{ mA}; V_{CC} = 2$	2.3 V	1.8	-	-	1.65	-	V
$I_O = -12$ mA; $V_{CC} =$	2.7 V	2.2	-	-	2.05	-	V
$I_{O} = -18 \text{ mA}; V_{CC} =$	3.0 V	2.4	-	-	2.25	-	V
$I_O = -24$ mA; $V_{CC} =$	3.0 V	2.2	-	-	2.0	-	V
V_{OL} LOW-level $V_{I} = V_{IH}$ or V_{IL}							
output voltage $I_O = 100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6$	V	-	-	0.2	-	0.3	V
$I_{O} = 4 \text{ mA}; V_{CC} = 1.0$	65 V	-	-	0.45	-	0.65	V
$I_{O} = 8 \text{ mA}; V_{CC} = 2.3$	3 V	-	-	0.6	-	8.0	V
$I_{O} = 12 \text{ mA}; V_{CC} = 2$	2.7 V	-	-	0.4	-	0.6	V
$I_{O} = 24 \text{ mA}; V_{CC} = 3$	3.0 V	-	-	0.55	-	0.8	V
I_I input leakage $V_{CC} = 3.6 \text{ V}; V_I = 5.5 \text{ V}$ current	√ or GND	-	±0.1	±5	-	±20	μА
I_{OZ} OFF-state $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 3$ output current $V_O = 5.5$ V or GND	3.6 V;	-	±0.1	±5	-	±20	μΑ
I_{OFF} power-off $V_{CC} = 0.0 \text{ V}; V_{I} \text{ or } V_{O} = 0.0 \text{ V}$	= 5.5 V	-	±0.1	±10	-	±20	μΑ
I_{CC} supply current $V_{CC} = 3.6 \text{ V}; V_I = V_{CC}$ $I_O = 0 \text{ A}$	or GND;	-	0.1	10	-	40	μА
$\begin{array}{ll} \Delta I_{CC} & \text{additional} & \text{per input pin; V}_{I} = V_{CC} \\ & \text{supply current} & I_{O} = 0 \text{ A; V}_{CC} = 2.7 \text{ V t} \end{array}$		-	5	500	-	5000	μΑ
C_I input $V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ capacitance $V_I = \text{GND to } V_{CC}$		-	4.0	-	-	-	pF

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nA to nY; see Figure 6	[2]						
		$V_{CC} = 1.2 \text{ V}$		-	12.0	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.5	5.4	11.0	1.5	12.8	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	2.9	5.7	1.0	6.7	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	2.8	5.5	1.5	7.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.5	4.8	1.0	6.0	ns
t _{en}	enable time	nOE to nY; see Figure 7	[2]						
		V _{CC} = 1.2 V		-	16.0	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.0	5.0	12.2	1.0	14.2	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.5	2.9	6.8	0.5	7.9	ns
	$V_{CC} = 2.7 \text{ V}$		1.5	3.1	6.6	1.5	8.5	ns	
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.3	5.4	1.0	7.0	ns
t _{dis}	disable time	nOE to nY; see Figure 7	[2]						
		$V_{CC} = 1.2 \text{ V}$		-	7.0	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.2	4.6	7.5	2.2	8.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.5	2.6	4.2	0.5	5.0	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	3.1	5.0	1.5	6.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.2	4.6	1.0	6.0	ns
t _{sk(o)}	output skew time	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	-	1.0	-	1.5	ns
C_{PD}	power dissipation	per buffer; $V_I = GND$ to V_{CC}	[4]						
	capacitance	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	6.0	-	-	-	pF
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	9.4	-	-	-	pF
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	12.4	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF

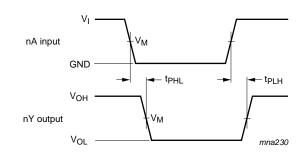
V_{CC} = supply voltage in Volts

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

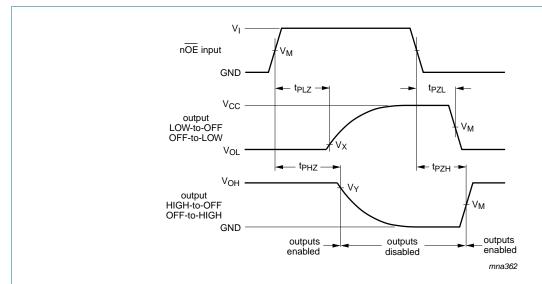
ten is the same as tPZL and tPZH.


 t_{dis} is the same as t_{PLZ} and t_{PHZ} .

^[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

^[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

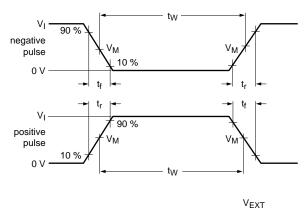

11. AC waveforms

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 6. The input nA to output nY propagation delays

Measurement points are given in <u>Table 8</u>.


 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical output voltage levels that occur with the output load.

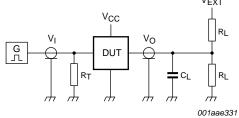

Fig 7. 3-state enable and disable times

Table 8. Measurement points

Supply voltage	Input		Output
V _{CC}	V _I	V _M	V _M
1.2 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
1.65 V to 1.95 V	V _{CC}	$0.5 \times V_{CC}$	0.5 × V _{CC}
2.3 V to 2.7 V	V _{CC}	$0.5 \times V_{CC}$	0.5 × V _{CC}
2.7 V	2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

Test data is given in Table 9.

Definitions for test circuit:

 R_L = Load resistance.

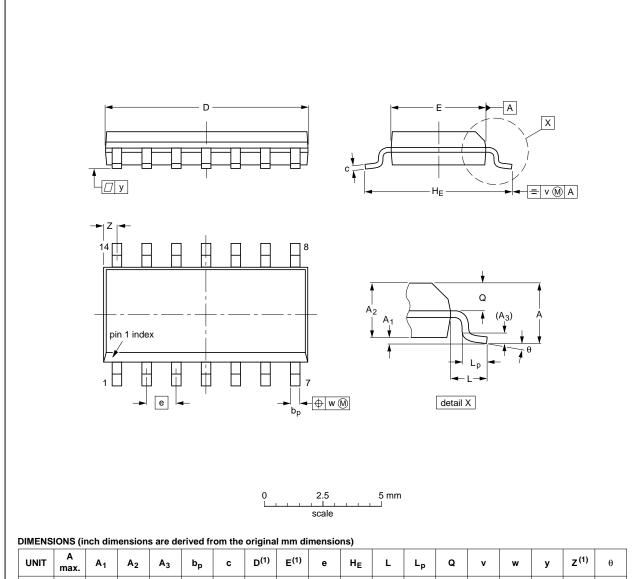
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig 8. Test circuit for measuring switching times

Table 9. Test data


Supply voltage	Input		Load		V _{EXT}	V _{EXT}				
	VI	t _r , t _f	CL	R_L	t_{PLH}, t_{PHL}	t_{PLZ}, t_{PZL}	t _{PHZ} , t _{PZH}			
1.2 V	V_{CC}	≤ 2 ns	30 pF	1 k Ω	open	$2\times V_{CC}$	GND			
1.65 V to 1.95 V	V_{CC}	≤ 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND			
2.3 V to 2.7 V	V_{CC}	≤ 2 ns	30 pF	500Ω	open	$2\times V_{CC}$	GND			
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND			
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND			

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

12. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

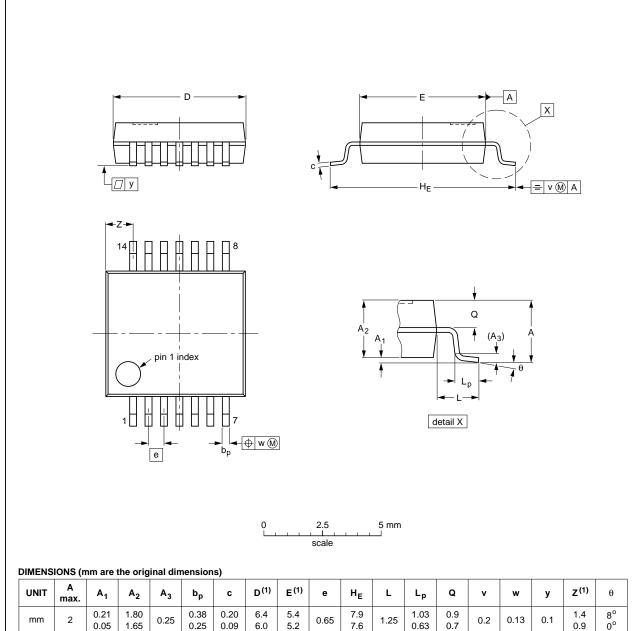
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

	REFER	ENCES	EUROPEAN	ISSUE DATE
IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
076E06	MS-012			99-12-27 03-02-19
		IEC JEDEC	IEC JEDEC JEITA	IEC JEDEC JEITA PROJECTION

Fig 9. Package outline SOT108-1 (SO14)

74LVC125A

All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2013. All rights reserved

74LVC125A **NXP Semiconductors**

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

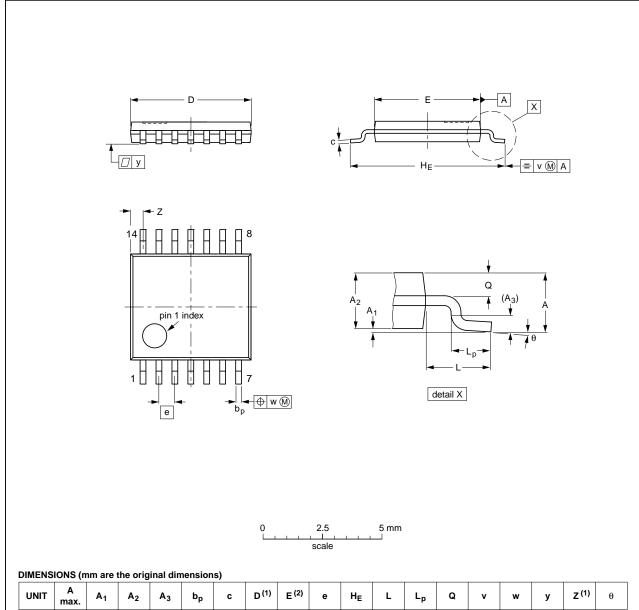
UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT337-1		MO-150				-99-12-27 03-02-19	

Fig 10. Package outline SOT337-1 (SSOP14)


74LVC125A

74LVC125A **NXP Semiconductors**

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	1550E DATE	
SOT402-1		MO-153				99-12-27 03-02-18	

Fig 11. Package outline SOT402-1 (TSSOP14)

74LVC125A

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

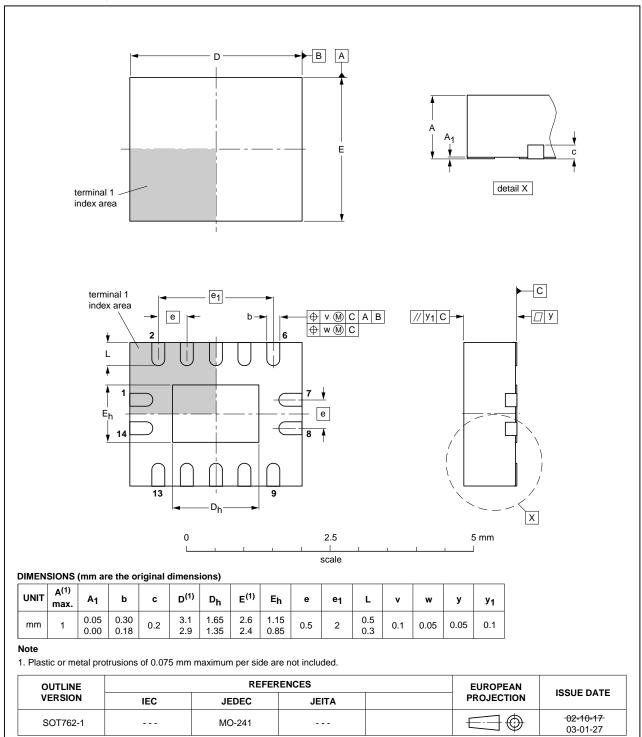


Fig 12. Package outline SOT762-1 (DHVQFN14)

74LVC125A All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
MM	Machine Model
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC125A v.7	20130411	Product data sheet	-	74LVC125A v.6
Modifications:	 Features list of 	orrected (errata)		
74LVC125A v.6	20130305	Product data sheet	-	74LVC125A v.5
74LVC125A v.5	20120208	Product data sheet	-	74LVC125A v.4
74LVC125A v.4	20030507	Product specification	-	74LVC125A v.3
74LVC125A v.3	20020308	Product specification	-	74LVC125A v.2
74LVC125A v.2	19980428	Product specification	-	74LVC125A v.1
74LVC125A v.1	19970801	Product specification	-	-

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC125A

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74LVC125A **NXP Semiconductors**

Quad buffer/line driver with 5 V tolerant input/outputs; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description
6	Functional description 3
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics 6
11	AC waveforms
12	Package outline 9
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks
16	Contact information 15
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.