OmROn

MOS FET Relays

Compact, General-purpose, Analogswitching MOS FET Relays, with Dielectric Strength of 5 kVAC between I/O Using Optical Isolation.

- Trigger LED forward current of 2 mA (maximum) facilities power saving designs.
- Switches minute analog signals.
- Continuous load current of 90 mA .

RoHS compliant

NEW
Note: The actual product is marked differently from the image shown here.

Refer to "Common Precautions".

Application Examples

- Power meter
- Measurement devices
- Security systems
- Industrial equipment

List of Models

Contact form	Terminals	Load voltage (peak value) (See the note.)	Model	Number per stick	Number per tape
SPST-NO	PCB terminals	600 V	G3VM-601AY	100	---
	Surface-mounting terminals		G3VM-601DY		
			G3VM-601DY(TR)	---	1,500

Note: The AC peak and DC value are given for the load voltage.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-601AY

Note: The actual product is marked differently from the image shown here.

G3VM-601DY

Note: The actual product is marked differently from the image shown here.

Terminal Arrangement/Internal Connections (Top View)
G3VM-601AY

G3VM-601DY

Note: The actual product is marked differently from the image shown here.

PCB Dimensions (Bottom View)
G3VM-601AY

■Actual Mounting Pad Dimensions

(Recommended Value, Top View)
G3VM-601DY

©Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	30	mA	
	Repetitive peak LED forward current	I_{FP}	1	A	100μ s pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)	$\mathrm{V}_{\text {OFF }}$	600	V	
	Continuous load current (AC peak/DC)	I_{0}	90	mA	
	ON current reduction rate	$\Delta \mathrm{I}{ }^{\prime}{ }^{\circ} \mathrm{C}$	-0.9	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Pulse ON current	$\mathrm{I}_{\text {op }}$	0.27	A	$\mathrm{t}=100 \mathrm{~ms}$, Duty $=1 / 10$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{\text {- }} \mathrm{O}$	5,000	Vrms	AC for 1 min
Operating temperature		T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)		---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.45	1.63	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	40	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	$\mathrm{I}_{\text {FT }}$	---	0.3	2	mA	$\mathrm{I}_{\mathrm{O}}=90 \mathrm{~mA}$
Output	Maximum resistance with output ON	$\mathrm{R}_{\text {ON }}$	---	30	40	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=90 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s} \end{aligned}$
				45	60		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=90 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open	${ }_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=600 \mathrm{~V}$
	Capacity between terminals	CofF	---	75	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals		$\mathrm{Cl}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time		tON	---	0.2	1	ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time		tOFF	---	0.2	1	ms	

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	480	V
Operating LED forward current	I_{F}	3	5	20	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	90	mA
Operating temperature	T_{a}	-20	---	65	${ }^{\circ} \mathrm{C}$

Engineering Data

Load Current vs. Ambient Temperature G3VM-601AY(DY)

